
RESEARCH ARTICLE

Relationship analysis: Formalizing relationships within the systems
analysis process
Joseph Catanioa and Michael Bieberb

aShippensburg University; bNew Jersey Institute of Technology

ABSTRACT
A significant aspect of the systems analysis process involves discovering
and representing entities and their inter-relationships. This article presents
relationship analysis (RA), a systematic, domain-independent systems ana-
lysis technique to determine a domain’s relationship structure. The quality
of design artifacts, such as class diagrams, can be improved by first repre-
senting the complete relationship structure of the problem domain. A
rigorous evaluation was conducted, including a formal experiment compar-
ing novice and experienced analysts with and without the use of RA. In
addition, professional software industry engineers were interviewed and
educated about RA. It was shown that the RA process provides a fuller
and richer systems analysis, resulting in improved quality of class diagrams.
It was also shown that RA enables analysts of varying experience levels to
achieve class diagrams of similar quality.

Introduction

The literature indicates that the best way to improve the software development life-cycle is to
enhance it during the early stages of the process (Booch, Jacobson, & Rumbaugh, 1998; Faulk,
2000; Sommerville, 2001; Wieringa, 1998)—in particular, during the requirements elicitation, ana-
lysis and design phases. During the system analysis phase, software components are determined
through the identification process of the system’s entities and relationships. Informal guidelines exist
to help identify entities and objects; however prior to Yoo’s (2000) dissertation on an initial version
of relationship analysis (RA), no guidelines existed to analyze an application domain in terms of its
relationship structure. No defined processes, templates, or diagrams existed to explicitly and system-
atically assist in eliciting relationships or documenting them in class diagrams or entity-relationship
(ER) diagrams (Beraha & Su, 1999). However, relationships constitute a large part of an application
domain’s implicit structure. Completely understanding the domain means knowing how all the
entities are interconnected. Relationships are only lightly addressed by class and ER diagrams. These
diagrams capture a limited subset of relationships and leave much of the relationship structure out of
the system model. While analyses and models are meant to be a limited representation of a system,
the incomplete relationship specification is not by design, but rather a lack of good methodology to
determine them explicitly (Bieber, 1998; Bieber & Yoo, 1999). As a result, many analyses miss aspects
of the systems they represent. Therefore meaningful research was needed to create a process to more
explicitly elicit and document the relationship structure of a problem domain, which should enhance
the creation of class diagrams. We have created an improved methodology by revamping existing RA
methodology with a theoretical model and a systematic approach. RA provides the requirements
analyst with a straightforward method and tools that employ a systematic set of questions designed

CONTACT Joseph Catanio JTCatanio@ship.edu Department of Management Information Systems, John L. Grove College
of Business, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA.
Color versions of one or more figures in the article can be found online at http://www.tandfonline.com/utca.
© 2016 Joseph Catanio and Michael Bieber

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH
2016, VOL. 18, NO. 2, 93–119
http://dx.doi.org/10.1080/15228053.2016.1198623

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

to elicit the relationship structure of a problem domain from a domain expert, and document these
in a set of specialized template forms and diagrams. RA thus fills a significant void in the systems
analysis process (Catanio, 2004; Catanio & Bieber, 2005; Yoo, 2000).

As an example of the possibly myriad way(s) that entities are interconnected, and how one entity
could lead to, influence, or otherwise impact others, consider an analyst tasked with designing or
enhancing a “friend request” in a social networking application similar to Facebook. Some obvious
features to include would be instructions, features to view people’s profiles and search for acquain-
tances or people with certain characteristics, a way to accept or decline this request, and a way to
block receiving such requests from certain people. However, a deeper analysis may reveal several
other aspects of a friend request that could enrich the application or enable it to be utilized by other
types of users, to be repurposed, or simply to discover aspects that had been overlooked initially.
Each of these aspects could be modeled as a relationship between the friend request and either a new
entity or an existing entity in a new way. The analyst would apply RA to elicit this enhanced
relationship structure. For example, the application may assist the user in understanding the
ramifications of a friend request with definitions, a way to understand the intentions of another
person inviting one with a friend request, a way to define one’s goals in building a particular “social”
network, ways to tweak one’s profile to facilitate these goals, ways to help one deal with rejection
when a friend request is declined (or analyze one’s online persona when friend requests are
declined), a way to think about issues such as honesty and revealing personal information as part
of such a request, and overall personal and societal issues surrounding friending. The preceding list
is but a subset of possible relationships surrounding a friend request that the requirements analyst
could elicit from a thorough analysis of the friend request entity’s relationships with one or more
domain experts. RA provides a systematic, theory-based methodology for conducting such a
thorough analysis.

This article presents the underlying theory and the resulting well-grounded RA process, model,
and tools, as well as empirical results showing RA’s potential to support both experienced and
inexperienced analysts in the creation of class diagrams. To support the researchers’ assertion that
software engineers currently do not have adequate tools to explicitly identify the complete relation-
ship structure of a software specific problem, three practicing software engineers from three different
software companies were interviewed and results of this field study are described later in text, in the
section on Debriefing Session with Subjects.

Theoretical foundation

Conceptual models in systems analysis and design capture the meaning of a problem domain. The
value of a model is its ability to identify and capture the relevant knowledge about a domain. In
addition, models help to represent and improve user requirements to meet user needs (Bajaj & Ram,
1999). In order to categorically say that a conceptual model is complete (and thus the domain
representation), it should be based on a theoretical model (Turoff, Rao, & Hiltz, 1991). In this
section we provide the theoretical basis for RA. We start by introducing structure of intellect (SI)
theory (Guilford, 1950), and describe how Turoff et al. mapped it to the computer application
domain through the hypermedia morphology model (HMM; Turoff et al., 1991). We, in turn, mapped
the hypermedia node and link representation to RA’s entity and relationship representation for the
domain of systems analysis. These mappings preserve the completeness of the representations, as we
next explain.

The SI theory is a general theory of human intelligence, thus forming a basis for comparing and
classifying the complete range of intellectual ability. Guilford designed SI with a focus on measuring
creativity (Guilford, 1950), which is an integral aspect of systems analysis and brainstorming
activities in general. The SI model classifies intellectual abilities into a three-plane system with
independent cross sections, each comprised of contents, products, and operations (Guilford, 1956).

94 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

As depicted in Figure 1, SI includes five kinds of contents, six kinds of products, and five kinds of
operations. Three independent planes result in theoretically 150 different components of intelligence.
The three dimensions of the model specify first the operation, second the content, and third the
product of a given kind of intellectual act. The convention (Operations, Contents, Products) is used to
specify each component. For example, Cognition, Semantic, Unit—or CMU—represents cognition of
a semantic unit. In this way the SI theory represents the major kinds of intellectual activities or
processes as an interrelated three-dimensional model.

Researchers have extracted relevant subsets of the SI components for particular domains.
Turoff et al. map SI to the computer application domain with their HMM (Turoff et al., 1991).
Arguing that not all of the SI components are necessary for classifying computer application
domains, they reduce it to two dimensions of products and operations by classifying all SI types
of contents as one, namely semantic. The four SI contents—visual, auditory, symbolic, and
behavioral—while useful in classifying tests of intellect, are not necessary for classifying applica-
tion domains. In addition, the SI operations of evaluation and memory are also not necessary for
classifying application domains (Turoff et al., 1991). As we shall describe, the RA approach maps
HMM to the entity and relationship domain for systems analysis. RA repurposes HMM’s
resulting 2-dimensional semantic classification model (Products and Operations) specifically for
relationship classification.

The concept of products (the products dimension in Guilford’s model) represents the form in
which information occurs (Guilford, 1967; Meeker, 1969) and will be used in RA to focus on the
following aspects of entities.

Figure 1. Guilford’s structure of intellect model (Guilford, 1950).

Unit

Elaboration

Specification

Figure 2. Unit focus.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 95

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

● Units: Most basic item. Things to which nouns are normally applied. Described units of
information.

● Classes: Sets of items of information grouped by virtue of their common properties.
● Relations: Connections between items of information based on variables or points of contact

that apply to them.
● Systems: Organized or structured aggregates of items of information.
● Transformations: Changes, redefinition, shifts, or modifications of existing information or in

its function.
● Implications: Extrapolations of information. Emphasizes expectancies, anticipations, and

predictions.

The operations dimension from Guilford’s model represents major kinds of intellectual activities
or processes that analysts perform with information (Guilford, 1967; Meeker, 1969), and will be used
in RA to elicit a complete set of relationships.

● Cognition: Discovery, awareness, or recognition of information by comprehension or under-
standing. Guilford views the cognition process as classifying an object. Turoff et al. (1991)
extend this concept to hypertext whereby cognition is represented by a node that classifies all
the linked objects as related to a common concept or characteristic. Hypertext at its core,
concerns nodes (elements-of-interest) and links (relationships). These links or relationships
among nodes are classified under convergent and divergent production properties. RA differ-
entiates itself from the HMM in its application of cognition. The HMM represents cognition by
a node and in hypertext terms: a node is an endpoint, and relationships exist among nodes or
endpoints. In contrast, the relationships of each element-of-interest in RA are represented by
six cognitive focus perspectives— units, classes, relations, systems, transformations, and
implications.

● Convergent production: Generation of information from the given information, where the
emphasis is on achieving unique best outcomes. Guilford (1967) views convergent production
as when the input information is sufficient to determine a unique answer. Turoff et al. (1991)
extend this concept so that a convergent link is a relationship that follows a major train of
thought. This is referred to as a convergent relationship in RA.

● Divergent production: Generation of information from the given information, where the
emphasis is on variety and quality of output from the given information. Guilford (1967)
views divergent production as fluency and flexibility of thinking. Turoff et al. (1991) extend this
concept so that a divergent link is a relationship that starts a new train of thought. This is
referred to as a divergent relationship in RA.

To summarize the transformation from SI, RA uses Guilford’s categories from SI, condenses
them in the same manner as Turoff et al. (1991), and re-labels several to reflect the goal of
relationship discovery and documentation. The differences between the HMM and RA are
semantically metaphoric. RA refocuses or expresses HMM anew for the domain of relationships
among entities within the domain of software systems analysis. The HMM, interprets the
“products” as nodes or endpoints, while RA interprets “products” to represent the six possible
cognitive foci of an item or “element of interest” being analyzed. (Recall that Guilford views the
cognition process as object classification.) The “operations” now represent relationships that
either conceptually converge or diverge within this focus. Therefore, it is possible to classify
relationships of an element of interest in terms of six products each of which has convergent and
divergent relationships. Table 1 depicts the 18 cells of RA, which we refer to as the relationship
analysis model (RAM), using SI nomenclature.

The RAM contributes a new and theoretically complete model specifically classifying the relation-
ships in a software system. It can be directly applied during the requirements analysis stage in

96 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

guiding analysts to effectively elicit a domain’s relationships from an expert for inclusion in the
system design.

The following section applies the aforementioned concepts and describes the RAM in detail.

Relationship analysis model (RAM)

Taking SI theory from Guilford and HMM from Turoff et al., our goal is to fully describe the
relationships surrounding an element of interest using the meanings of the cells outlined in Table 1.
These theories give us a model comprising a set of sound relationships for describing systems.
Identifying the relationships between various parts of a system represents a systems thinking
approach to understanding the problem (Rubenstein-Montano et al., 2001). Our research further
applies the HMM model to develop a systematic systems analysis approach. A systems thinking
approach improves business processes (Chun, Sohn, Arling, & Granados, 2009). During the analysis
process, documents and dialogue (discussions, knowledge elicitation and brainstorming) provide
analysts with descriptions of desired system functionality. Through these interactions it is possible to
identify elements of interest. Thus, the relationships surrounding an element of interest (cognitive
product in SI terms) are described by six cognitive focal points. Relationships of each focal point are
classified under convergent and divergent operation properties. The convergent and divergent
relationships are not opposites. Rather they provide two separate emphases for exploring the
relationships under each of the six cognition foci. The following sub-sections describe the six focal
aspects of the corresponding RAM classification of relationships depicted in Table 2.

Elements of interest can also be seen as different objects that exist in an application’s problem
domain. For every object that is identified there are a number of relationships that may surround it.
Each RA category contains a series of questions to be used by systems analysts and domain experts
which facilitate identification of a given object’s various relationships. To elicit these relationships a
systems analyst would pose questions to a domain expert in relation to each of the identified objects.
The following provides a description and sample questions for each of the six focus aspects.

Unit focus

Guilford views a unit as descriptions or definitions of items of information (Guilford, 1967), before
they form collections or groupings. Guilford views the cognition process as the classification of an

Table 1. Relationship analysis model using SI nomenclature.

Products

Operations

Cognition Convergent production Divergent production

Unit Cognition, Unit Convergent, Unit Divergent, Unit
Class Cognition, Class Convergent, Class Divergent, Class
Relation Cognition, Relation Convergent, Relation Divergent, Relation
System Cognition, System Convergent, System Divergent, System
Transformation Cognition, Transformation Convergent, Transformation Divergent, Transformation
Implication Cognition, Implication Convergent, Implication Divergent, Implication

Table 2. Relationship analysis model (RAM).

Cognition focus Convergent relationship Divergent relationship

Unit Specification Elaboration
Collection Membership Aggregation
Comparison Generalization/specialization Similar/dissimilar
System Structure Occurrence
Transformation Modify Transpose
Implication Influence Extrapolate

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 97

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

object and as such, cognition of a unit takes the form of defining the object. These descriptions or
definitions can be explicit or implicit. Explicit descriptions yield specific relationship types. In
contrast, implicit relationships are uncovered as descriptions are further elaborated. Descriptions
provide characteristics of items of information, which are attributes, also known as metadata. Thus,
metadata relationships are identified within the unit focus.

Guilford views convergence as when the input information is sufficient to determine a unique
answer (Guilford, 1967). Guilford views convergent production of a semantic unit as explicitly
specified in the description of the element of interest, which corresponds to the first row, second
column of Table 2. Thus, the corresponding relationships connect the unit (element of interest) to
other elements that provide some descriptive specification. The following list is an example of
knowledge elicitation questions to find specific convergent relationships (Yoo, Catanio, Paul, &
Bieber, 2004).

● Does the item have a description?
● Does the item have a definition?
● Does the item have an explanation?
● Does the item have a set of instructions?
● Does the item have an illustration?

Guilford views divergence as flexibility of thinking (Guilford, 1967). When considering divergent
production of a semantic unit (corresponding to the first row, third column of Table 2), divergent
relationships are determined as descriptions that are further elaborated. These types of relationships
are generally found not within, but just below the surface of the description of an element of interest.
The following list is an example of questions to elicit divergent relationships.

● Does the description fully describe the item?
● Does the definition fully encompass the item?
● Does the explanation make assumptions?
● Is the set of instructions complete?
● How can this item be expanded or broadened?

Both structured and object-oriented analysis utilize functional definitions to help perform the
analysis (Borgida, Mylopoulos, & Wong, 1984; Brachman, 1983; Martin & Odell, 1995; Smith &
Smith, 1977). Jacobson’s use-case analysis technique has made the process more explicit by generat-
ing descriptions of the use-cases (Booch et al., 1998). Use-case descriptions are narratives that
describe a functional aspect of the desired system. From these narratives it is possible to extract
both explicit and implicit relationships. Unit (or definition) focus is depicted in Figure 2.

Collection focus

Collections are recognized sets of information grouped by virtue of their common properties
(Guilford, 1967) and the collection (class1) focus emphasizes group or collection relationships of
units of information.

Guilford views convergent production of a semantic collection2 as the ability to produce mean-
ingful collections or groups under specific conditions and restrictions (Guilford, 1967). Therefore,
collection convergent relationships represent groupings or membership properties. Membership

1At the time Guilford developed SI theory, analysis—as it pertains to software systems development—did not exist. The term
“class” has a different connotation in present day software engineering methodologies. In Guilford’s framework, a class is a
grouping of information or a collection of information. To prevent confusion with the term “class” in software engineering
methodologies, the term “collection” is used in its place.

2This terminology continues our references to the appropriate cells of Table 1.

98 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

relationships of collections are based on aspects of the whole-part properties (Henderson-Sellers,
1997; Odell, 1994). Its intent is to represent an element of interest as a member of a collection.
Membership connects a member of a collection to other members or to a whole collection or class.
The following knowledge elicitation questions determine membership relationships (Yoo et al.,
2004).

● Is this item a segment of a whole item?
● Is this item a member of a collection?
● What is this item a part-of?
● What components consist of this item?
● What phrases are in this whole activity?

Guilford views divergent production of a semantic collection as the ability to produce meaningful
sub-categories of ideas appropriate to a given collection (Guilford, 1967; Meeker, 1969). Therefore,
collection divergent relationships represent the components or aggregates of collection members.
Aggregation relationships are determined for the collection members or whole-part composition
(Boggs & Boggs, 2002; Booch et al., 1998; Brodie, 1981; Motschnig-Pitrik & Storey, 1995). Their
intent is to represent an element’s members as part-of the whole. The following list is an example of
questions to help determine aggregation relationships (Yoo et al., 2004).

● Which components comprise this item?
● What materials are used to make this item?
● What is part of this item?

The collection focus is depicted in Figure 3 and represents membership relationships as looking
outside the element and aggregation relationships as looking inside a collection. The premise is that
membership converges to whole collection and aggregation diverges into the disparate components.

Comparison focus

The comparison3 focus, which is equivalent to Guilford’s term relation, is defined as recognized
connections between items of information based upon variables or points of contact that apply to
them (Guilford, 1967). Comparison focus is depicted in Figure 4.

Guilford views convergent production of a semantic comparison as the ability to produce an idea
that conforms to specific relationship requirements (Guilford, 1967; Meeker, 1969). The ability to
specify from a general meaning to a more specific or specialized meaning represents a way to
represent commonality among concepts (Boggs & Boggs, 2002; Booch et al., 1998). In terms of

Membership

Aggregation

Figure 3. Collection focus.

3To prevent confusion with the term “relationship” in RA, the term “comparison” is used in place of Guilford’s term “relation”.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 99

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

analysis, generalization/specialization are the terms used to describe commonality among compo-
nents and the phrases “is-a” or “a-kind-of” are used to relate objects (Booch, 1994; Rumbaugh, Blaha,
Premerlani, Eddy, & Lorensen, 1991). The following knowledge elicitation questions help determine
generalization/specialization relationships (Yoo et al., 2004).

● Is the item a kind of parent item?
● Does the item completely include or encompass other items?
● Is there a broader term for this item?
● Is there a narrower term for this item?

Guilford views divergent production of a semantic comparison as the ability to produce many
relationships appropriate in meaning to a given idea (Guilford, 1967). Identifying appropriate meaning
among information represents similarity characteristics between information components. Dissimilar
characteristics also are determined as a natural result of components not being similar. Therefore,
comparison divergent relationships represent both similarity and dissimilarity among elements of
interest. Characteristics or attributes become criteria to determine the degree of similarity present
with other elements (Belkin & Croft, 1987; Booch et al., 1998; Neelameghan & Maitra, 1978). The
following questions help determine similar and dissimilar relationships (Yoo et al., 2004).

● Which other items are similar to this item?
● What serves the same purposes as this item?
● Which others items are opposite to this item?

System focus

Guilford defines a system as organized or structured items of information, a complex of interrelated
parts (Guilford, 1967). Cognition of a semantic system shows comprehension of meaning derived
from a system of components. System focus is depicted in Figure 5.

Similar

Dissimilar

Generalization/
Specialization

Figure 4. Comparison focus.

Structure Occurrence

Figure 5. System focus.

100 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Guilford views convergent production of a semantic system as the ability to order or structure
information into a meaningful sequence (Guilford, 1967; Meeker, 1969). Structure identifies how an
item fits into the framework of a system and includes spatial perspective concepts of before, after,
above, and below (Cobb & Petry, 1998; Egenhofer & Herring, 1990; Rodríguez, Egenhofer, & Rugg,
1999). The following list is an example of knowledge elicitation questions to help determine structure
relationships (Yoo et al., 2004).

● What prerequisites or preconditions exist for this item?
● What follows this item for a given purpose?
● What precedes this item for a given purpose?
● Which items are close to this item?

Guilford views divergent production of a semantic system as the ability to organize information in
various complex ideas (Guilford, 1967; Meeker, 1969). Its intent is to represent an item within the
context of its appearances and uses at different places, and therefore can be viewed as occurrence
relationships based on the temporal attributes of before, during, and after (Allen, 1983; Cobb &
Petry, 1998; Egenhofer & Herring, 1990; Frank, 1998; Rodríguez et al., 1999). The following
questions are examples to help determine occurrence relationships (Yoo et al., 2004).

● Where else does this item appear in the domain?
● Where else is this item used in this system and in other systems?
● What are all uses of this item?
● Where was this item used before?
● Where else is the item used now?
● Where will this item be used later?

Transformation focus

Transformations are changes or modifications of various kinds, of existing or known information in
its attributes, meaning, role, or use (Guilford, 1967). A transformation is a matter of redefining an
element. In essence, it is the ability to see potential changes of interpretations of elements and
situations dependent upon a particular activity (Meeker, 1969). Therefore, it represents an element
in the context of its activities.

Activities can be identified by combining SADT activity diagrams (Mylopoulos, 1998) and case
relationships (Fillmore, 1968). These relationship types cover activities that involve input or output,
and deal with agents and elements involved in the activities.

Convergent transformation concerns how an item can be modified focusing on the item itself and
how it can change. The following knowledge elicitation questions are examples to help determine
modify relationships.

● What can this item change into?
● What output results from the item’s inputs?
● What resources and mechanisms are required to modify this item?
● Who can modify this item?
● Which activities result in this item being modified?

Guilford views divergent production of a semantic transformation as the ability to produce
responses involving re-interpretations or new emphasis on some aspect of an element or situation
(Guilford, 1967). Meeker extends this definition and argues that it is the ability to produce responses
remote in time, remote in space, and remote in sequence (Meeker, 1969). Divergent transformations
are those that transpose an item, reusing it in different contexts or viewing it in different ways.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 101

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Transpose relationships change an item in form or nature, or re-conceptualize it. The following list is
an example of questions to help determine transpose relationships.

● How can this item be reused?
● How can this item be viewed differently?
● Can this item be used in a different context?

Transformation focus is depicted in Figure 6 with an item being modified or changed, as well as a
shape being transposed into another (in this case a square being squeezed into a circle).

Implication focus

Implication emphasizes expectancies, anticipations, and predictions—the fact that one item of
information leads naturally to another (Guilford, 1967). Meeker argues that cognition of semantic
implication is the ability to anticipate consequences of a given situation in meaningful terms
(Meeker, 1969). In essence, it is the ability to anticipate consequences of an item of interest in an
organization or a social setting. Implication focus is depicted in Figure 7.

Convergent implication is dependence and control relationships both on an element and by an
element, exhibiting some type of influence on other elements. It is how an element of information
influences, controls, impacts, or (if conscious) thinks about other people or things in the social
environment. The following knowledge elicitation questions are examples to help determine influ-
ence relationships (Yoo et al., 2004).

● What items or people cause this item to be created, changed, or deleted?
● What items or people have control over this item?
● What is this item dependent on?
● What is dependent on this item?

Divergent production of a semantic implication is the ability to produce many antecedents,
concurrents, or consequents of given information (Guilford, 1967; Meeker, 1969). In contrast, to
influence relationships, there is more freedom to produce information in divergent production of
semantic implications. In context of a social setting, relationships are extrapolated from the given
information. Divergent implication is impacts, consequences, extrapolations, rationale, deductions,

TransposeModify

Figure 6. Transformation focus.

ExtrapolateInfluence

Figure 7. Implication focus.

102 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

and opinions both on an element and by an element. The following questions are examples to help
determine extrapolate relationships (Yoo et al., 2004).

● Which goals, issues, and arguments involve this item?
● What are the positions and statements on the item?
● What are the comments on this item?
● What are the opinions on this item?
● What is the rationale for this decision?

Relationship analysis process (RAP)

The relationship analysis process (RAP) is a rigorous and systematic technique to identify the
relationship structure of an application domain. A systematic process is an essential element of
process improvement (Becker-Kornstaedt, 2001). A systematic approach to knowledge elicitation
makes requirements gathering and problem understanding less dependent on the experience level of
the process engineer (Bandinelli, 1995). A systematic approach to requirements elicitation helps to
improve accuracy and provide a greater level of detail. In addition, a systematic technique helps to
ensure analysis completeness and has been identified as an important criterion to develop efficient
and effective information systems (Bajaj & Ram, 1999).

The RAP uses three steps in its elicitation process. The first step utilizes use-case analysis as a way
to acquire system familiarity. In the second step, the process extracts detailed knowledge from
information obtained earlier through use-cases by explicitly identifying the relationships between
system components using a relationship analysis template (RAT). The resulting relationship informa-
tion is then depicted in a relationship analysis diagram (RAD). The process consists of the following
three process steps:

● Perform a use-case analysis to identify items of interest
● Identify the relationship structure utilizing the RATs, for each item of interest
● Graphically depict the relationships utilizing the RAD, for each item of interest

Use-cases are the feeder into the RAP. The RAP explicitly identifies the relationship structure of an
application domain and provides more information than use-case analysis alone and helps in the
creation of class diagrams.

Relationship analysis template (RAT)

Each item of interest can be described in terms of relationships based on the RAM. Each relationship
focus has its own RAT for each item of interest, outlined in Table 3 and illustrated in Table 4, that
can be used to document the relationships discovered during the elicitation process. Each RAT is
used by the analyst to record the analysis results and help to track analysis decisions (Booch et al.,
1998).

It is important to note that the template provides a way for analysts to communicate and
document the process of discovering relationships. To this end, the template provides cells that
contain brainstorming questions to help elicit and identify specific relationships. In particular, the
template contains a cell that captures domain independent generic questions. These generic ques-
tions can be used to help create more domain dependent specific questions, which are also captured
in the template. The results recorded in the template systematically document both the process and
the relationships, which as we shall show in the experiment section, afford lesser-experienced (“low
experience”) analysts the ability to create class diagrams of similar quality to those of high experi-
enced analysts.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 103

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Relationship analysis diagram (RAD)

In addition to capturing the relationship structure in the aforementioned templates, it is also possible
to consolidate and present the information from a set of RATs in a graphical representation—see
Figure 8.

Both the RAT and RAD represent a new way to document the relationship structure of a domain,
which will greatly assist in developing class diagrams. The relationships of each item of interest are
documented in six templates and one diagram. The collection of all RAT and RAD components
comprise the relationship structure of the problem domain. The RAD provides an information rich
graphic, while more details can be accessed via the information recorded in the templates. Utilizing
the collection of RADs of a problem domain, which depict the discovered relationships, should
enhance the generation of class diagrams.

Table 3. Generic relationship analysis template.

Item of interest Each item of interest should have a unique name suggesting its purpose.
Description Description and purpose of the item of interest.
Focus Unit, Collection, Comparison, System, Transformation, or Implication. {Each template takes one focus.}
Convergent
relationship

Specification, Membership, Generalization/Specialization, Structure, Modify, or Influence. {Corresponds to
the template focus.}

Generic question(s)
(optional)

The generic questions provided in the RAM section above for the corresponding convergent relationships
could be contained here. This helps generate the specific question(s) to ask for a particular application
domain.

Specific question(s) This cell contains the exact question(s) to ask to determine appropriate convergent relationships and is/are
tailored to the particular application domain.

Results The results generated from the specific question(s) are recorded in this cell.
Divergent
relationship

Elaboration, Aggregation, Similar/Dissimilar, Occurrence, Transpose, or Extrapolate. {Corresponds to the
template focus.}

Generic question(s)
(optional)

The generic questions provided in the RAM section above for the corresponding divergent relationships,
could be contained in this cell.

Specific question(s) This cell contains the exact question(s) to ask to determine divergent relationship and is/are tailored to the
particular application domain.

Results The results generated from the specific question(s) are recorded in this cell.

Table 4. Order relationship analysis template.

Item of interest Order

Description An order is a list of one or more products that a customer or vendor desires to purchase.
Focus Unit
Convergent
relationship

Specification

Specific question(s) Does an “order” have an explanation?
Results Customers place orders.

Vendors place orders.
Sales Representatives take orders.
Orders consist of products.
Orders have an order number.
Orders are packaged by fulfillment clerks.
Orders are shipped by shipping clerks.
Orders are filled by fulfillment clerks.
Orders are processed.
Orders written on an order form.

Divergent
relationship

Elaboration

Specific question(s) How does a customer select a product to purchase?
How does a sales representative fulfill an order?
How is an order shipped?

Results A customer selects items from a drop down list box and a purchase order request form is generated for an
order.
A sales representative views an order request form, fetches and packages the order items from the
warehouse and updates the product database.
The shipping department receives the packaged items of an order and delivers the package.

104 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Concrete example to explain the concepts

Consider a basic inventory control system in which a store is set up to fill customer and vendor
orders. To fill these orders, products are stored and maintained in a warehouse. These products are
not given directly to the customer; they are packaged first and then shipped to the customer. Once a
customer order is placed, the order fulfillment employee locates the product in the warehouse; places
requisite number of the product in a proper package; updates the inventory list to reflect the fact that
a particular product item was taken from inventory. Once all the product items of the order are
packaged, the order-processing department is notified that the order has been filled. Some of the use
cases associated with this example are, place order, fill order, and ship order. Use case analysis can be
utilized to outline the flow of events of each of these use cases.

Beyond use cases, this example focuses on demonstrating the RAP regarding relationship
discovery and documentation.

Item of interest

Unit

Specification

Elaboration

Identified relationship

Identified relationship

Collection

Membership

Aggregation

Identified relationship

Identified relationship

Comparison

Generalization/
Specialization

Similar/Dissimilar

Identified relationship

Identified relationship

System

Structure

Occurrence

Identified relationship

Identified relationship

Transformation

Modify

Transpose

Identified relationship

Identified relationship

Implication

Influence

Extrapolate

Identified relationship

Identified relationship

Figure 8. Relationship analysis diagram (RAD).

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 105

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Normally a RAT would be created for each of the other focus components namely, class, relation,
system, transformation, and implication, however for brevity only the unit focus component is
provided. The next step would be to transcribe the elicited information from the six RATs for the
item of interest, Order, into the RAD depicted in Figure 9. Note that the RAD contains the results of
all of the RATs.

The set of RADs constitute the complete relationship structure of all the items of interest for the
problem domain. Our proposed RATs and the RADs will be useful in the creation of class diagrams.

Experiment

While much IT project and systems analysis research involves case studies, a number of solid
studies based on theory-based models have been conducted using laboratory experiments (Keil,
Tan, Wei, & Saarinen, 2000; Lee, Keil, Smith, & Sarkar, 2016; Mangalaraj, Nerur, Mahapatra, &
Price, 2014; Marakas & Elam, 1998; Shaft & Vessey, 2006). An experiment was designed to assess
whether the RAP is an effective technique to explicitly identify the relationship structure of a
problem. While not an integral aspect of this study, the experiment was conducted using groups
of analysts since software product development is generally realized as a team effort. Teams have
been shown to generate better solutions than individual solutions (Baroudi, Olson, & Ives, 1986;
Connolly, Jessup, & Valacich, 1990; DeSanctis & Gallupe, 1987; Gallupe, DeSanctis, & Dickson,
1988; Goguen & Linde, 1993; Kontonya & Sommerville, 1996; Rumbaugh, 1994; Sommerville,
2001).

Order

Unit

Collection

Comparison

System

Transformation

Implication

customers, vendors, sales representatives, products, order number, order,
fulfillment clerk, shipping clerk, order form

drop down list box, purchase order request form, order request form, order
item, updates product database, shipping department, delivers package

products

order number, order date, product number, product quantity, customer
information, payment information, delivery information

purchase order

unique, opposite to a delivery product

client database

placed before shipping, placed before inventory, updated, placed before
filled

back order

most desirable inventory items

customer, vendor, sales representative, order fulfilment clerk, shipping clerk

customer, sales representative, shipping clerk

Specification

Elaboration

Membership

Aggregation

Generalization/
Specialization

Similar/Dissimilar

Structure

Occurence

Modify

Transpose

Influence

Extrapolate

Figure 9. Order relationship analysis diagram.

106 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Furthermore, the experiment was designed to assess whether a rigorous and systematic process
helps low experienced groups achieve a similar level of quality as high experienced groups (Amento,
Terveen, & Hill, 2000; Bandinelli, 1995; Becker-Kornstaedt, 2001; Carter, Cushing, Sabers, Stein, &
Berliner, 1988; Hillerbrand & Claiborn, 1990; Saleem, 1996; Schenk, Vitalari, & Davis, 1998; Spence
& Brucks, 1997).

Method

The method of the experiment is a 2 × 2 factorial design. The two independent variables are analyst
experience and analysis tool, depicted in Table 5.

Therefore, the four conditions in this experiment are:

● Use-case only, low experience
● Use-case & RA, low experience
● Use-case only, high experience
● Use-case & RA, high experience

The use-case analysis tool represents the control group category and the treatment group represents
the use-case & RA category. Thus, it is possible to measure the effects of the RA technique.

Hypotheses: Analysis quality

(1) The class diagram generated by performing a RA will be more accurate and complete than
by groups using use-case analysis alone.

(2) The groups with high experience will generate more accurate and complete class diagrams
than low experience groups using use-case analysis or the RAP.

(3) The low experience groups utilizing Use case & RA will generate more accurate and
complete class diagrams than high experience groups using use-case analysis alone.

Analysis quality is measured by the quality of the class diagram generated by the group subjects
that performed the same task utilizing different analysis tools. Schenk’s research findings indicate
that novices exhibit less detail in problem-solving tasks than do experts, resulting in lower quality
(Schenk et al., 1998). In addition, a study of novice and expert programmers found that novices tend
to employ easy methods for their tasks (Vessey, 1985). The results from these previous studies
indicate that novices were unable to formulate an overall structure to the task. However, these
experiments did not include a systematic process to follow. We speculate that low experience groups
utilizing the systematic well-structured process (RAP, for example) will produce documents of equal
quality as high experience groups. This speculation is supported by Spence and Brucks, who provide
convincing empirical evidence that the benefits of expertise are less pronounced when analyzing and
solving a problem with a well-defined technique (Spence & Brucks, 1997). In addition, another study
concluded that experts, compared to novices make qualitatively different inferences in their reason-
ing, focus on different problem features, and thereby reason to different conclusions (Hillerbrand &
Claiborn, 1990). We speculate that the very nature of a well-defined process, namely RA, will permit
novices to reach the same conclusions as experts.

Table 5. Factorial design experiment.

2 × 2 factorial design

Analyst experience

Low High

Analysis tool Use-case only
Use-case & RA

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 107

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Experience has been used extensively in experiments to determine its effect on the learning
process (Amento et al., 2000; Carter et al., 1988; Hillerbrand & Claiborn, 1990; Saleem, 1996; Schenk
et al., 1998; Spence & Brucks, 1997). To determine experience level, subjects completed a pre-
experiment questionnaire (Appendix B) that identified academic background, software background,
and professional work experience relating to software system analysis and design. The authors
divided the subjects into low and high experience based upon the scores from the pre-experiment
questionnaire. The criteria assigned a range of scores from 26 to 203 points. Those below 100 points
were considered low experience subjects and were then randomly selected and placed in a team
consisting of three low experience individuals. Similarly, high experience subjects were those that
scored above 100 points and were then randomly selected and placed in a team consisting of three
high experience individuals.

Table 6 provides the means and standard deviation calculations of the subjects’ experience level
score for each of the conditions. In addition, the sample size is also provided.

Subjects

The subjects in the experiment consisted of both undergraduate and graduate students enrolled in
the College of Computing Sciences at the New Jersey Institute of Technology.

Procedures

The main experiment took place during the semester and lasted one week, whereby the first day
included a training session. One week prior to the experiment, the subjects completed a pre-
experiment questionnaire (Appendix B) to determine analysis experience level. Each group, consist-
ing of three subjects, was placed in one of the four conditions. Each group, from the four different
group types, performed the same task (Appendix A). This permits the pure effect of the treatments
to be isolated because the difference in tasks is controlled. This will increase the internal validity of
the research (Straub, 1989).

The experiment was conducted at the end of the semester so all subjects had some level of
modeling experience. All subjects were taught how to develop use-case analysis diagrams and
generate class diagrams prior to the experiment. The treatment groups were trained in RA. To
eliminate any training effect, the control groups were provided an equivalent enrichment topic,
namely entity relationship (E/R) analysis. After the training, all groups were provided the same task,
(Appendix A), to solve with their team members. All groups had one hour to create the use-case
analysis diagram. This afforded all groups adequate time to become familiar with the problem
domain. At the conclusion of the session, all groups were provided with an expert-generated use-
case analysis diagram to the problem statement. All groups used this as a basis to complete the
remaining experimental steps. The control groups generated class diagrams after use-case analysis.
The treatment groups performed RA and then generated class diagrams. This allows the effect of RA
to be measured. All groups had one week to complete the task and submit all analysis documents
and class diagrams.

Table 6. Subject experience score mean, standard deviation calculations, sample size.

2 × 2 factorial design

Analyst experience

Low High

Analysis tool Use-case only Mean, 62.13 Mean, 127.36
SD ,14.17 SD, 12.87
Sample, 15 Sample, 13

Use-case & RA Mean, 58.98 Mean, 122.33
SD, 15.14 SD, 11.59
Sample, 16 Sample, 13

108 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Measures

Two professional software engineers were deemed as experts. Each rated the quality of each group’s
generated class diagram. Expert judges have been used in many studies to evaluate quality of system
design and decision-making (Ocker, Fjermestad, Hiltz, & Johnson, 1998; Shaft & Vessey, 1998).

The expert judges had their own training session to ensure that their evaluations were compatible.
The expert judges used a 10-point scale whereby a 10 represents a perfect score. In order to eliminate
potential bias of individual experts, each expert judge evaluated each group’s class diagrams
independently and the average evaluation was computed and used as the final score. Whenever
the difference in their individual evaluations exceeded 1 point, (an acceptable 10% threshold), the
two experts met to resolve the issues and cooperatively assigned a final score.

Data analysis

This section describes the evaluation of the data collected with respect to the analysis quality of the
class diagram created by each group in each of the four conditions. The results were compared
against the hypotheses described earlier in this section.

To determine if the data is normally distributed, SAS was used to run the Kolmogorov-Smirnov
normality test and the results (p< 0.01) indicate that the data is not normally distributed. Therefore,
to determine the interaction effect among the two experience level groups, we divide the data into
two groups, namely low and high, and apply the following non-parametric methods (available in
SAS) to both groups. The FREQ procedure compares the two groups and tests for independence
between two variables. The asymptotic Wilcoxon rank sum test is obtained by using
SCORES = RANK in the TABLES. This method alters the original 10 point scale range by creating
mean ranks and compares the difference between UC and UC&RA in low and high experience
groups separately. If the “differences” are significantly different, then there is an interaction effect.
For example, suppose the difference between UC and UC&RA in the low experience groups is 4 and
the difference between UC and UC&RA in high experience groups is 1. Then, the effect of UC/
UC&RA is bigger in low experience groups than high experience groups, which means that the two
variables (Analysis Tool: UC/UC&RA and Experience: Low/High) interact with each other. Table 7
provides the analysis quality score mean, standard deviation calculations, and sample size for each of
the conditions.

Main effect 1
The analysis tool independent variable main effect shows a significant effect at alpha = 0.05 level
(p = 0.0001) and mean ranks of 38.36 and 19.30 (Table 8) for UC&RA and UC respectively.

The results shown in Table 8 support H1 (The class diagram generated by performing a RAP will
be more accurate and complete than by groups using use-case analysis alone.) and indicate that this
variable is statistically significant at alpha = 0.05 level. The mean ranks of those using RA (38.36) is
much better than not using RA (19.30) and indicate that RA significantly improves analysis
quality.

Table 7. Quality score mean, standard deviation calculations, sample size.

2 × 2 factorial design

Analyst experience

Low High

Analysis tool Use-case only Mean, 5.87 Mean, 6.81
SD, 2.53 SD, 0.97
Sample, 15 Sample, 13

Use-case & RA Mean, 7.78 Mean, 7.96
SD, 0.55 SD, 0.78
Sample, 16 Sample, 13

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 109

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Main effect 2
The analyst experience level independent variable main effect does not show a significant effect at
alpha = 0.05 level (p=0.5892) and mean ranks of 30.27 and 27.94 (Table 9) for high and low
experience respectively.

The results shown in Table 9 do not support H2 (The groups with high experience will generate
more accurate and complete class diagrams than low experience groups using use-case analysis or the
RAP.) and indicate that this variable is not statistically significant at alpha=0.05 level.

Interaction effect
An interaction effect is present when the main effect of independent variable analysis tool changes at
different levels to the main effect of independent variable analyst experience. The data (Table 10)
indicates at alpha = 0.05 level (p=0.0023) that the mean differences percentage increase for low
experience analysts groups using analysis tools is 32.54% and high experience analysts groups using
analysis tools is 16.89%.

The results shown in Table 7 support H3 (The low experience groups utilizing the RAP will
generate more accurate and complete class diagrams than high experience groups using use-case
analysis alone.) and indicate that this variable is statistically significant at the alpha=0.05 level.
Table 7 indicates the mean score of low experience groups using RA (7.78) is higher than the mean
score of high experience groups not using RA (6.81). Figure 10 confirms that there is an interaction
effect between Analyst Experience and Analysis Tool.

Debriefing session with subjects

At the conclusion of the experiment, a debriefing session was performed and the following com-
ments (paraphrased) from the experimental subjects deserve mention.

● I am not able to draw class diagrams by looking at use-case diagrams. I would have preferred to
be in a group that did the RA.

● It is difficult to create class diagrams and I agree that something is missing to help do this. The
technique was helpful, but very long.

● After our group did one, the process was pretty straightforward.
● I liked the way the final class diagram was developed by the previous pieces.

Table 8. Quality score main effect 1 (analysis tool).

Independent variable N Mean ranks Significance

Use-case only 28 19.303 0.0001
Use-case and relationship analysis 29 38.362

Table 9. Quality score main effect 2 (analyst experience level).

Independent variable N Mean ranks Significance

High experience 26 30.269 0.5892
Low experience 31 27.935

Table 10. Interaction effect.

Interaction effect N Mean differences % increases Significance

High experience analysts using analysis tools 26 1.15 16.89% 0.0023
Low experience analysts using analysis tools 31 1.19 32.54%

110 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

● The technique was helpful in creating the class diagram, but I saw the solution about half-way
through.

● It would have been nice to have a computer tool to help generate the templates and the
diagrams instead of doing it on paper.

From the discussions during the debriefing sessions two conclusions can be drawn. The first is that
the RA process does aid in class diagram generation. In addition, the subjects believed that the
templates were easy to use to elicit and document the relationships. Second, however, most subjects
expressed that the time needed to perform the analysis was too long and required too much paper.

Interviews with practitioners

To help ascertain whether RA is a viable technique in the software industry field, three practicing,
professional software engineers from three different software companies were interviewed during
January–February 2016. Subject 1 has 20+ years of practical experience developing both embedded
systems firmware and software application software. Subject 2 has 5+ years of experience working as
a business analyst designing, documenting, and implementing application software components that
are incorporated into a larger information system. Subject 3 has two years of experience creating
client server applications using Microsoft SQL server and Microsoft Access as the back-end database
layer and Microsoft Visual Basic as the front-end application layer.

To make best use of subjects’ time and expertise, an open-ended interview was conducted using
five open-ended questions. The results are paraphrased and summarized below.

● Question 1: Explain the concept of relationship analysis and its application to the development
of class diagrams.

The researcher presented the concept of RA by providing an overview of the topic and suggested
that the technique can be used to develop class diagrams. These discussions involved the explanation
of the RAT and the RAD.

Subject 1: The development of software applications always involves a backend database, and as
such this subject creates a database diagram first prior to writing any software code. The subject

5

5.5

6

6.5

7

7.5

8

8.5

UC UC&RA

Low

High

Figure 10. Quality score for groups.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 111

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

further noted that relationships with which he or she is familiar are those displayed on the database
diagram. The relationships depicted in the RAT seem to be very detailed and at first glance
somewhat complicated. In contrast, the RAD provides a good overview diagram and appears easy
to read and understand.

Subject 2: Documentation is a very important element to the process that Subject2 follows. There
are many different individuals working on the same project and the better it is documented, the
fewer questions occur during implementation. Both the RAT and RAD may be ideal ways of having
the implementation team develop code as outlined by the business analyst in the specification.

Subject 3: The subject simply mentioned that it looks good and immediately wanted to see an
example. The researcher noted that Subject 3 worked in the implementation capacity and did not
seem to have a role in design.

● Question 2: Ask how the subject currently develops and documents software prior to
implementation.

Subject 1: A separate team decides what projects the company will pursue and creates a limited
system request that is distributed to the software department for evaluation. The software depart-
ment assigns a software project lead who becomes responsible to more concretely elicit and
document the functional requirements of the proposed system. In further conversation it is impor-
tant to note that the subject believes that the system request provided generally lacks important
information and much is left to the software department to determine. The subject uses an in-house
created template, similar to a use case analysis template. This template identifies system functionality
down into a collection of data to be processed from a user’s perspective. A data model is then created
that groups data elements together. Subsequent steps when developing code in C++ simply involve
the creation of classes based on each of the entities depicted on the database diagram. Class methods
are written to access the data variables located in each class. The researcher believes that this process
is primarily driven by the highly experienced engineers of the software department.

Subject 2: Uses a combination of agile and rational unified processes. Daily scrum meetings set
the team’s objectives for the day. Use case templates are employed to determine functional require-
ments with special attention paid to the flow of data. Subject 2 reviews identified data components
and develops methods detailing data inputs and outputs. The subject then groups common methods
and data together in a class. This information is thoroughly documented using a series of in-house
process steps. Once the documentation is completed it is passed to the implementation team. Prior
to implementation, the affected individuals involved in the project meet and discuss the project to
hammer out unclear details.

Subject 3: The documentation has already been completed and Subject 3 implements the classes,
methods, and data variables that have already been documented. In further discussions, the
researcher believes that the process followed by Subject 3 is similar to that of Subject 1. Namely,
an experienced software engineer architects the software system and junior less experienced software
engineers help to implement the software system in a modular fashion.

● Question 3: Discuss results of laboratory experiment.

All three subjects were equally impressed that both low and high experienced groups achieved a
similar level of quality of design artifacts using the RA technique.

Subject 1: Mentioned that this might be a useful tool to train entry-level software engineers.
Subject 2: Elaborated that it is the responsibility of the specification writer to design the class

diagrams and that RA might help make that easier.
Subject 3: Mentioned that perhaps this tool will allow him or her to become a software architect

instead of just a “code monkey.”

112 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

● Question 4: Demonstrate a brief example.

Both Subject 1 and Subject 2 are familiar with use case analysis so they provided several use cases
from a previous project during this portion of the interview. Both subjects identified an item of
interest that they wanted to know more about and together with one of the researchers performed
RA. As described in the RAM section of this article, the relationships of the item of interest were
elicited and documented using the RAT and elicitation questions were already preprinted on the
RAT. During the demonstration, subjects recorded the answers to the elicitation question in the
RAT. In addition, the answers were transcribed onto the RAD. Both subjects mentioned that the
process was very easy but was very time-consuming and requires lots of paper.

Subject 1: Asked if RA must be performed for every item of interest identified in the collection of
use cases. The subject suggested a modified form of RA to speed up the process. The proposal was to
only apply RA to items of interest that need more elaboration. Since the goal is to create a class
diagram, then let us only use the tool if we need more information on a “thing” so as to properly
classify the item as a class, method, data element, or relationship.

Subject 2: Mentioned that a benefit of RA is that it can be deployed as a validation technique for
the actual class diagram to be created. The subject went on to describe that documents created
undergo a thorough scrutiny process and perhaps RA could be used to justify the correctness of the
documented solution.

Subject 3: The researcher demonstrated RA to Subject 3 using the laboratory experiment example.
Subject 3 believes he or she would be able to use this tool and create a system software architecture
broken down into classes.

● Question 5: Ask if the technique would add-value to their process of software development.

Subject 1: This subject did not think that the tool was needed to design software but thought that
maybe it would be a useful tool for less experienced designers. Potentially more junior level software
engineers could become involved in the software architecture creation and not just experienced
software engineers.

Subject 2: Yes! Subject 2 was a proponent of RA and does plan on incorporating it into the
process of software design. The subject mentioned again personally believing it to be a very useful
validation technique that can be used concurrently during the software design process.

Subject 3: This subject was not sure how his or her company actually designs software but thinks
that with explicit tools like RA, he or she would be able to become a software architect.

Conclusions from the subjects’ comments

Both experimental subjects and professional software engineers mentioned that the RA process is
very lengthy and requires a lot of paper. Ovaska and Stapleton also investigated the requirements
understanding process of information systems and similar results indicate that working professionals
believe that too much time is spent during the requirements capturing phase (Ovaska & Stapleton,
2010). Therefore, a way must be found to reduce the time needed to perform the analysis without
reducing the effectiveness of the technique and are common goals of process improvement.
Shankararaman et al. also support process improvement through the reduction of time without
sacrificing effectiveness (Shankararaman, Gottipati, & Duran, 2012). The researchers also believe that
implementing the technique using paper needs to be improved. To these ends, the researchers plan
to develop a computerized version to create the RATs and RADs. This computerized version will
provide an easy, and hopefully streamlined automated process, thereby addressing both concerns,
namely too much paper and too much time.

In addition, one subject of the field study suggested not performing a complete RA on every item
of interest in the use-case diagrams. Instead, perform RA on a reduced set of items. Since the

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 113

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

fundamental goal is to create a complete class diagram, a minimal RA may only be needed. The
researchers like this idea and will consider positioning RA to allow for both a complete and reduced
analysis once computerized RAT and RAD versions are created.

Conclusions

RA provides the software community a usable technique that improves an analyst’s effectiveness in
relationship discovery and documentation. Based on the experimental results, RA does provide a
fuller and richer systems analysis, resulting in improved quality of class diagrams, and that RA
enables analysts of varying experience levels to achieve a similar level of quality of class diagrams. RA
significantly enhances the systems analyst’s effectiveness, especially in the area of relationship
discovery and documentation, resulting in improved analysis and design artifacts.

In a post-experiment debriefing session many subjects mentioned that current software object-
oriented analysis techniques provide little assistance in identifying classes and how they interrelate.
Much of the system analysis process and class diagram creation is delegated to highly experienced
system analysts. RA attempts to level the playing field among analysts of varying experience by
providing a process to explicitly identify and document classes and their relationships. RA is poised
to serve as the missing link, which can supplement the everyday techniques for documenting and
creating class diagrams.

Although a methodology independent technique, RA can be positioned seamlessly between the
use-case analysis and class diagram generation steps of the widely used object-oriented paradigm. In
future work, the researchers plan to conduct additional field studies using a computerized version of
RA. Showing that RA improves the development process, is compatible with current approaches, and
that practitioners are satisfied with and accept it will be the first stage towards RA’s inclusion into
the object-oriented paradigm and toolkits used by software engineers.

Future research: Extending the RAT with risk and other broad metadata

A possible extension would be to capture metadata about a relationship that would be useful for
determining whether to include the relationship in the final system design. Aspects such as the cost
of gathering and importing/inputting the relationship data; the risk that this data may be biased,
incorrect or incomplete; conditionality (e.g., that a relationship may be temporary, or only valid
under certain circumstances or locations); that it may be open to cultural interpretation (organiza-
tional or regional; Keil et al., 2000) all may influence whether or in what way the relationship is
implemented. For such a full understanding of relationships important to a system, it may be useful
for conducting the RAP with experts from different levels and regional locations of an organization,
and engaging a cross-cultural team to resolve any important differences of opinion among these
experts regarding the true system relationship structure.

Acknowledgments

We thank the JITCAR reviewers and the Editor-in-Chief Dr. Shailendra Palvia for their detailed comments and
suggestions to improve this article during the review process. James Bell provided input on the introductory friend-
request example.

In loving memory of Shadow.

Funding

We gratefully appreciate funding support for this research by the United Parcel Service, the New Jersey Institute of
Technology, the National Science Foundation under grants IIS-0135531, DUE-0226075, and DUE-0434581, and the
Institute for Museum and Library Services under grant LG-02-04-0002-04.

114 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Notes on contributors

Joseph T. Catanio is currently an Associate Professor of Management Information Systems at the John L. Grove
College of Business, Shippensburg University of Pennsylvania. He earned his Ph.D. in Information Systems from the
New Jersey Institute of Technology (NJIT) in Newark, New Jersey. His research interests include business systems
analysis and design, project management, and management information systems. His research has been published in
journals including, International Journal of Information Technology Project Management, Journal of Advances in
Information Technology, Journal of Human Resources Education, Requirements Engineering Journal, Journal of
Technical Writing & Communications, Journal of Digital Information. In addition, he has worked in the private sector
as a software engineer for 16+ years.

Michael Bieber is Professor in the Information Systems Department at NJIT’s Ying Wu College of Computing
Sciences. He is conducting research in several related areas: learning sciences, cyber-learning, lightweight systems
integration, relationship analysis (as part of the software engineering process), automatic link and meta-information
generation, and hypermedia. He has received several NSF grants.

References

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communication of the ACM, 26(11), 832–843.
doi:10.1145/182.358434

Amento, B., Terveen, L., & Hill, W. (2000). Does “authority” mean quality? Predicting expert quality ratings of web
documents. In Association for Computing Machinery (Ed.), Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘00) (pp. 296–303). New York, NY:
Editor. doi:10.1145/345508.345603

Bajaj, A., & Ram, S. (1999). Evaluating completeness of Conceptual Business Process Models (CBPMs): A metric based
on case studies. Journal of Information Technology Case and Application Research, 1(4), 5–30. doi:10.1080/
15228053.1999.10855945

Bandinelli, S. (1995). Modeling and improving an industrial software process. IEEE Transactions on Software
Engineering, 21(5), 440–454. doi:10.1109/32.387473

Baroudi, J., Olson, M., & Ives, B. (1986). An empirical study of the impact of user involvement on system usage and
information satisfaction. Communications of the ACM, 29(3), 232–238. doi:10.1145/5666.5669

Becker-Kornstaedt, U. (2001). Towards systematic knowledge elicitation for descriptive software process modeling.
Proceedings of PROFES, pp. 118.

Belkin, N., & Croft, W. (1987). Retrieval techniques. Annual Review of Information Science and Technology (ARIST), 22
(4), 109–131.

Beraha, M., & Su, J. (1999). Support for modeling relationships in object-oriented databases. Data and Knowledge
Engineering, 29(3), 227–278. doi:10.1016/S0169-023X(99)80001-9

Bieber, M. (1998). Hypertext and web engineering. Proceedings of the Ninth ACM Conference on Hypertext and
Hypermedia, ACM Press, pp. 277–278.

Bieber, M., & Yoo, J. (1999). Hypermedia: A design philosophy. ACM Computing Surveys, 31(4es). doi:10.1145/
345966.346028

Boggs, W., & Boggs, M. (2002). UML with rational rose. Alameda, CA: Sybex.
Booch, G. (1994). Object-oriented analysis and design (2nd ed.). Redwood City, CA: Benjamin/Cummings.
Booch, G., Jacobson, I., & Rumbaugh, J. (1998). The unified modeling language users guide. Reading, MA: Addison

Wesley.
Borgida, A., Mylopoulos, J., & Wong, H. (1984). Generalization/specialization as a basis for software specification. In

M. L. Brodie, J. Mylopoulos, & J. W. Schmidt (Eds.), On conceptual modeling: Perspectives from artificial intelligence,
databases, and programming languages (pp. 87–117). New York, NY: Springer-Verlag.

Brachman, R. (1983). What IS-A is and isn’t: An analysis of taxonomic links in semantic networks. IEEE Computer, 16
(10), 30–36. doi:10.1109/MC.1983.1654194

Brodie, M. (1981). Association: A database abstraction for semantic modeling. In P. P. Chen (Ed.), Entity-relationship
approach to information modeling and analysis (pp. 583–608). Amsterdam, the Netherlands: Elsevier.

Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. (1988). Expert-novice differences in perceiving and
processing visual classroom information. Journal of Teacher Education, 39(3), 25–31. doi:10.1177/
002248718803900306

Catanio, J. (2004). Relationship Analysis: Improving The Systems Analysis Process (Ph.D. Dissertation). New Jersey
Institute of Technology.

Catanio, J., & Bieber, M. (2005). Relationship analysis: A technique to enhance systems analysis for web development.
In W. Suh (Ed.), Web engineering: Principles and techniques (pp. 97–113). Hershey, PA: Idea Group.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 115

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Chun, M., Sohn, K., Arling, P., & Granados, N. (2009). Applying systems thinking to management systems: The case of
Pratt-Whitney Rocketdyne. Journal of Information Technology Case and Application Research, 11(3), 43–67.
doi:10.1080/15228053.2009.10856164

Cobb, M., & Petry, F. (1998). Modeling spatial relationships within a fuzzy framework. Journal of the American Society
for Information Science, 49(3), 253–266. doi:10.1002/(ISSN)1097-4571

Connolly, T., Jessup, L., & Valacich, J. (1990). Effects of anonymity and evaluation tone on idea generation in
computer-mediated groups. Management Science, 36(6), 305–319. doi:10.1287/mnsc.36.6.689

DeSanctis, G., & Gallupe, B. (1987). A foundation for the study of group decision support systems. Management
Science, 33(5), 589–609. doi:10.1287/mnsc.33.5.589

Egenhofer, M., & Herring, J. (1990). Categorizing binary topological relations between regions, lines, and points in
geographic databases. Technical Report, Department of Surveying Engineering, University of Maine.

Faulk, S. (2000). Software requirements: A tutorial. In Software requirements engineering (2nd ed., pp. 158–179). Los
Alamitos, California: IEEE.

Fillmore, C. J. (1968). The case for case. In E. Bach, & R. T. Harms (Eds.), Universals in linguistic theory. New York,
NY: Holt, Rinehart & Winston.

Frank, A. (1998). Different types of times in GIS. In M. Egenhofer, & R. Golledge (Eds.), Spatial and temporal
reasoning in geographic information systems (pp. 41–62). New York, NY: Oxford University Press.

Gallupe, B., DeSanctis, G., & Dickson, G. (1988). Computer-based support for group problem-finding: An experi-
mental investigation. MIS Quarterly, 12(2), 277–296. doi:10.2307/248853

Goguen, J., & Linde, C. (1993). Techniques for requirements elicitation. Proceedings from the International Symposium
on Requirements Engineering, pp. 152–164.

Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454. doi:10.1037/h0063487
Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53(4), 267–293. doi:10.1037/h0040755
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.
Henderson-Sellers, B. (1997). OPEN relationships—Compositions and containments. Journal of Object-Oriented

Programming, 10(7), 51–72.
Hillerbrand, E., & Claiborn, C. (1990). Examining reasoning skill differences between expert and novice counselors.

Journal of Counseling & Development, 68(6), 684–691. doi:10.1002/j.1556-6676.1990.tb01437.x
Keil, M., Tan, B., Wei, K. K., & Saarinen, T. (2000). A cross-cultural study on escalation of commitment behavior in

software projects. MIS Quarterly, 24(2), 299–325. doi:10.2307/3250940
Kotonya, G., & Sommerville, I. (1996). Requirements engineering with viewpoints. Software Engineering Journal, 11(1),

5–18.
Lee, H. K., Keil, M., Smith, H. J., & Sarkar, S. (2016). The roles of mood and conscientiousness in reporting of self-

committed errors on IT projects. Information Systems Journal. Advance online publication. doi:10.1111/isj.12111
Mangalaraj, G., Nerur, S., Mahapatra, R., & Price, K. (2014). Distributed cognition in software design: An experimental

investigation of the role of design patterns and collaboration. MIS Quarterly, 38(1), 249–274.
Marakas, G., & Elam, J. (1998). Semantic structuring in analyst acquisition and representation of facts in requirements

analysis. Information Systems Research, 9(1), 1–37. doi:10.1287/isre.9.1.37
Martin, J., & Odell, J. (1995). Object-oriented methods: A foundation. Englewood Cliffs, New Jersey: Prentice Hall.
Meeker, M. (1969). The structure of intellect: Its interpretations and uses. Columbus, Ohio: Merrill Publishing.
Motschnig-Pitrik, R., & Storey, V. (1995). Modelling of set membership: The notion and the issues. Data & Knowledge

Engineering, 16(2), 147–185. doi:10.1016/0169-023X(95)00014-J
Mylopoulos, J. (1998). Information modeling in the time of the revolution. Information Systems, 23(3–4), 127–155.

doi:10.1016/S0306-4379(98)00005-2
Neelameghan, A., & Maitra, R. (1978). Non-hierarchical associative relationships among concepts: Identification and

typology (Part A of FID/CR report No. 18). Bangalore, India: Documentation Research and Training Centre, Indian
Statistical Institute.

Ocker, R., Fjermestad, J., Hiltz, S. R., & Johnson, K. (1998). Effects of four modes of group communication on the
outcomes of software requirements determination. Journal of Management Information Systems, 15(1), 99–118.
doi:10.1080/07421222.1998.11518198

Odell, J. (1994). Six different kinds of composition. Journal of Object-Oriented Programming, 5(8), 10–15.
Ovaska, P., & Stapleton, L. (2010). Requirements engineering during complex ISD: Case study of an international ICT

company. Journal of Information Technology Case and Application Research, 12(2), 36–59. doi:10.1080/
15228053.2010.10856182

Rodríguez, A., Egenhofer, M., & Rugg, R. (1999). Assessing semantic similarity among geospatial feature class
definitions. In A. Vckovski, K. Brassel, & H.-J. Schek (Eds.), Interoperating Geographic Information Systems—
Second International Conference, INTEROP’99 (Vol. 1580, pp. 1–16). Berlin, Germany: Springer-Verlag.

Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., & Rebeck, K. (2001). A systems
thinking framework for knowledge management. Decision Support Systems, 31(1), 5–16. doi:10.1016/S0167-9236
(00)00116-0

116 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Rumbaugh, J. (1994). Getting started: Using use cases to capture requirements. Object-Oriented Programming, 7(5),
8–23.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. E. (1991). Object-oriented modeling and design.
Englewood Cliffs, NJ: Prentice Hall.

Saleem, N. (1996). An empirical test of the contingency approach to user participation in information systems
development. Journal of Management Information Systems, 13(1), 145–166. doi:10.1080/07421222.1996.11518116

Schenk, K. D., Vitalari, N., & Davis, K. (1998). Differences between novice and expert systems analysts: What do we
know and what do we do? Journal of Management Information Systems, 15(1), 9–50. doi:10.1080/
07421222.1998.11518195

Shaft, T. M., & Vessey, I. (1998). The relevance of application domain knowledge: Characterizing the computer
program comprehension process. Journal of Management Information Systems, 15(1), 51–78. doi:10.1080/
07421222.1998.11518196

Shaft, T., & Vessey, I. (2006). The role of cognitive fit in the relationship between software comprehension and
modification. MIS Quarterly, 30(1), 29–55.

Shankararaman, V., Gottipati, S., & Duran, R. (2012). A retail bank’s BPM experience: Research note. Journal of
Information Technology Case and Application Research, 14(3), 46–51. doi:10.1080/15228053.2012.10845706

Smith, J., & Smith, D. (1977). Database abstractions: Aggregation and generalization. ACM Transactions on Database
Systems, 2(2), 105–133. doi:10.1145/320544.320546

Sommerville, I. (2001). Software engineering (6th ed.). Reading, MA: Addison-Wesley.
Spence, M. T., & Brucks, M. (1997). The moderating effects of problem characteristics on experts’ and novices’

judgments. Journal of Marketing Research, 34, 233–247. doi:10.2307/3151861
Straub, D. W. (1989). Validating instruments in MIS research. MIS Quarterly, 13(2), 147–169. doi:10.2307/248922
Turoff, M., Rao, U., & Hiltz, S. R. (1991). Collaborative hypertext in computer mediated communications. Proceedings

of the 24th Annual Hawaii International Conference on System Sciences, Vol. IV.
Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man-

Machine Studies, 23(5), 459–494. doi:10.1016/S0020-7373(85)80054-7
Wieringa, R. (1998). A survey of structured and object-oriented software specification methods and techniques. ACM

Computing Surveys, 30(4), 459–527. doi:10.1145/299917.299919
Yoo, J. (2000). Relationship Analysis (Ph.D. Dissertation). Rutgers University.
Yoo, J., Catanio, J., Paul, R., & Bieber, M. (2004). Relationship analysis in requirements engineering. Requirements

Engineering Journal, Springer Verlag London Ltd., 9(4), 238–247. doi:10.1007/s00766-004-0205-5

Appendix A: Task

Topic: University On-Line Registration System

● At the beginning of each semester, the registrar’s office will provide a list of courses to students through a new on-
line registration system. Information about each course, such as professor, department, and prerequisites will be
included to help students make informed decisions.

● The new system will allow students to review available courses and select four of them for the coming semester. In
addition, each student will indicate two alternative choices in case a course becomes filled or canceled. No course
will have more than ten students. No course will have fewer than three students. A course with fewer than three
students will be canceled. If there is enough interest in a course, then a second session will be established.

● Professors must be able to access the on-line system to indicate which courses they will be teaching. They will also
need to see which students have signed up for their courses. Professors are expected to maintain a list of their
research interests and projects as well as a list of publications. All students have access to each professor’s research
interests and projects lists. Each professor has access rights to their own publications list and can assign individual
students permission rights to view these publications.

● The registration process will last for three days. The first day will be freshman orientation and registration. All other
students will arrive on the second day of the semester to register. The third day will be used to resolve any
outstanding course assignment conflicts.

● Once the course registration process is completed for a student, the registration system sends information to the
billing system, so the student can be billed for the semester.

● As a semester progresses, students must be able to access the on-line system to add or drop courses.

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 117

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Appendix B: Experience questionnaire

Academic Coursework:

Please place a check mark () in the box next to any of the following courses that you have already completed or are
currently enrolled. Also, indicate the grade you received in the already completed courses.

General Software Background:

1. Circle the number that indicates your familiarity with the following programming languages.
a. C# Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
b. C++ Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
c. C Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used
d. Java Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used
e. Basic Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used
f. Pascal Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
g. Cobol Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used
h. Assembly Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
i. Fortran Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used

2. Circle the number that indicates your familiarity with the following scripting languages.
a. XML Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
b. HTML Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
c. VBScript Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used
d. JavaScript Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used

3. Circle the number that indicates your familiarity with the following Database Management System (DBMS)
packages.

a. Oracle Very Familiar With ← 7–6—5–4—3–2—1 → Have Not Used
b. SQL Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used
c. Access Very Familiar With ← 1–2—3–4—5–6—7 → Have Not Used

Name: ___________________________________
Last 4 digits of your SS#: ___________________________________
Course #: ___________________________________
Section #: ___________________________________

Course number and name Grade

CIS 101 Computer Programming and Problem Solving
CIS 103 Computer Science Business Problem Solving
CIS 113 Introduction to Computer Science I
CIS 114 Introduction to Computer Science II
CIS 280 Programming Language Concepts
CIS 375 Application Development on the WWW
CIS 381 Object-oriented Software Systems
CIS 390 Analysis & System Design
CIS 431 Introduction Database Systems
CIS 434 Advanced Database Systems
CIS 464 Advanced Information Systems
CIS 490 Design in Software Engineering
CIS 491 Computer Science Project
CIS 601 Object-oriented Programming in C++
CIS 602 Java Programming
CIS 631 Data Management Systems Design
CIS 632 Advanced Data Management Systems Design
CIS 663 Advanced Systems Analysis & Design
CIS 673 Software Design & Production Methodology
CIS 676 Requirements Engineering
CIS 683 Object-oriented Software Development

118 J. CATANIO AND M. BIEBER

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

Software Development Background: (Please indicate your skill level in the following areas)

1. Software development life-cycle models (waterfall, spiral, iterative, RUP, etc.)
High Skill ← 7–6—5–4—3–2—1 → Low Skill

2. Software Economics (cost-benefit analysis, software cost estimation, feasibility studies, etc.)
High Skill ← 7–6—5–4—3–2—1 → Low Skill

3. Generating software system analysis documents.
High Skill ← 1–2—3–4—5–6—7 → Low Skill

4. Generating software system design documents.
High Skill ← 1–2—3–4—5–6—7 → Low Skill

5. Generating software system class diagrams.
High Skill ← 7–6—5–4—3–2—1 → Low Skill

6. Developing software code.
High Skill ← 7–6—5–4—3–2—1 → Low Skill

7. Using Modeling Languages and Techniques (UML, etc.)
High Skill ← 1–2—3–4—5–6—7 → Low Skill

Work Related Experience: (Please indicate your skill level in the following areas)

1. Working as a software engineer.
High Skill ← 7–6—5–4—3–2—1 → Low Skill

2. Working as a software developer.
High Skill ← 1–2—3–4—5–6—7 → Low Skill

3. Working as a system analyst.
High Skill ← 7–6—5–4—3–2—1 → Low Skill

End of Experience Questionnaire

Decision Criteria
The score possible ranges from 26 to 203 points, lowest to highest respectfully.

The cutoff point was 100, those below were classified as low experience and those above were classified as high
experience.

Criterion Possible points Earned points

Academic performance 0 to 21
General software background 16 to 112
Software development background 7 to 49
Software engineering professional background 3 to 21

Total

JOURNAL OF INFORMATION TECHNOLOGY CASE AND APPLICATION RESEARCH 119

D
ow

nl
oa

de
d

by
 [

M
ic

ha
el

 B
ie

be
r]

 a
t 1

4:
49

 0
8

Ju
ly

 2
01

6

