

Lightweight Integration of Documents and Services
Nkechi Nnadi and Michael Bieber

Information Systems Department
College of Computing Sciences — New Jersey Institute of Technology

University Heights, Newark, NJ 07102, USA

http://is.njit.edu/dlsi/
ABSTRACT
This research’s primary contribution is providing a relatively
straightforward, sustainable infrastructure for integrating
documents and services. Users see a totally integrated
environment. The integration infrastructure generates
supplemental link anchors. Selecting one generates a list of
relevant links automatically through the use of relationship
rules.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Libraries –
systems issues; H.5.4 [Information Interfaces and
Presentation]: Hypertext/Hypermedia – architectures

General Terms: Design

Keywords: automatic link generation, metainformation,
service integration, relationship rules

INTRODUCTION
This research provides a general method for integrating
documents and services within Web systems through linking the
interrelated elements and functions. While our approach is a
general one that should apply to any Web application, thus far
we have applied it primarily to digital libraries.
The Digital Library Integration Infrastructure (DLII)
automatically generates links for digital library documents to
related documents and services. Services include searching,
providing annotations and peer review. Figure 1 presents an
example from our current prototype, which can be accessed
from our Web site. In addition to NASA’s National Space
Science Data Center (NSSDC) and the Arizona Document
Summarizer, we currently have three preliminary, partial
integrations of digital library systems within the National
Science Digital Library [http://www.nsdl.org]. These include the
AskNSDL “ask an expert” service, the Atmospheric
Visualization Collection, and the Earth Science Picture of the
Day system, as well as MapQuest, amazon.com and the NJIT
library.
DLII supplements documents by linking them automatically to
relevant services and related collections. DLII supplements
services by automatically giving relevant objects in collections

(and other services) direct access to these services. Users see a
totally integrated environment, using their system just as before.
However, they see additional link anchors, and when clicking
on one, DLII will present a list of supplemental links. The next
release of DLII will filter and rank order this set of generated
links to user preferences and tasks.
The DLII infrastructure provides a systematic approach for
integrating digital library systems, and by extension, any other
document-based system with a Web interface. Systems
generally require no changes to integrate with DLII.

INTEGRATION INFRASTRUCTURE
Figure 2 presents the DLII integration infrastructure. To
integrate a system that requests information (where DLII
provides links), an analyst must write an integrator. To
integrate a system that provides services (to or through which
DLII-provided links lead), an analyst must declare relationship
rules and/or register glossaries/thesauri.
(1) Develop an Integrator: An integrator sends DLII a
preliminary list of elements eligible for linking within its
system’s documents and screens. DLII uses “structural
analysis” (relationship rules) to generate links for each element.
Several integrator approaches exist. External approaches, such
as wrappers and content analysis operate solely on the collection
or service’s output, and therefore require no changes to the
system itself. This is especially useful for retrofitting DLII
support to an existing system.
Internal approaches can generate element information as the
screen or document is being produced, and either embed the
information within it (e.g., using XML) or provide this
information separately, perhaps through an application
programming interface (API).
(2) Declare Relationship Rules: Relationship rules specify the
“structural relationships” for automatically generating links for
recognized object types within the system being integrated.
(3) Register Glossaries/Thesauri: DLII’s lexical analysis engine
uses a unified glossary of terms from participating systems to
find key phrases associated with the glossary entries over the
entire document or screen content. These become supplemental
content-based links (not shown in Figure 1).

Most other systems could be integrated in the same manner as
digital library collections and services.
DLII is a loosely coupled system, where various components
communicate with each other via messages that conform to a
well-defined standardized internal protocol. (Future versions
will use the OpenURL standard [Van de Sompel & Beit-Arie 2001].)
This approach allows new components to be developed and
added without affecting existing components and functionality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng'04, October 28-30, 2004, Milwaukee, Wisconsin, USA.
Copyright 2004 ACM 1-58113-938-1/04/0010...$5.00.

51

Figure 1: A screenshot of our current
DLII prototype, integrating two

independent digital library systems:
NASA’s National Space Science Data
Center (NSSDC) Master Catalog and
the Arizona Document Summarizer.

DLII is open source, written in JAVA. It currently runs on a
LINUX machine using an Appache server.
The core DLII “engine” shown in Figure 2 consists of four
primary components:

• The Desktop translates the displayable portion of DLII’s
internal messages, from the standard internal XML format to a
format that can be displayed to a user via a Web browser (or
other kind of user interface) and vice versa.

• The Broker enables the communication between the DLII
engine modules. All DLII messages pass through the Broker,
which then redirects them to the appropriate component.

• The Relationship Engine maps the system data and
relationships to links at run-time. The Relationship Engine
maintains a repository of relationship and metadata rules. When

a screen is being sent to the DLII
Desktop for display, the Relationship
Engine retrieves all relevant rules for
each element in that screen. The
Desktop then converts the elements to
link anchors and the relationships to
links.

• The Lexical Analysis engine is
based on Wu’s Noun Phrase Extractor
[Wu & Chen 2003]. It identifies key
phrases, which it then compares to those
in the registered thesauri and glossaries.
Links to and/or within the thesauri’ and
glossaries’ entries are added to the list of
links that the Relationship Engine
generates for that key phrase’s element.
(In future research, we shall incorporate

other forms of content analysis for non-textual elements.) As
lexical analysis is not a focus of this paper, we shall not describe
it further.
A key characteristic of many elements of interest is that their
identifiers are not the same as their display content. For
example, a document or book may have a title that most people
use, but several underlying services will match information and
operations to its internal document identifier or ISBN. It is the
job of the integrator to return the internal identifiers that
services would use for elements of interest.
Information flows through DLII as follows. Assume the user
asked a digital library collection to display a document. The
collection’s retrieval function will pass the document to its
integrator. The integrator forms an XML message in DLII’s
internal format containing the document, along with the set
containing the identifier, types and location within the document
of its “elements of interest”. The integrator sends this message

to DLII. DLII’s lexical
analysis engine uses a unified
glossary of terms from
participating collections and
services to find key phrases
within the document’s content
associated with the glossary
entries. DLII’s Relationship

User’s Web
Browser

AskNSDL
Integrator

AVC
Integrator

NSSDC
Integrator

Collection
Integrator (i)

Service
Integrator (j)

AskNSDL AVC NSSDC Collection (i) Service (j)

DLII Relationship
Engine

DLII Broker

DLII DesktopDigital Library
Integration

Infrastructure
Engine DLII Lexical

Analysis

DLII Collaborative Filtering

Figure 2: DLII Architecture.
DLII is within the shaded
area. The dashed paths

indicate that once integrated,
collections and services can
share features through DLII

links automatically.
Integrated systems also

continue to operate
independently of DLII.

52

Engine adds link anchors for each element to a copy of the
document, which is then passed to the user’s Web browser for
display. When the user selects any of these DLII anchors, the
Relationship Engine uses the relationship rules to generate a
filtered list of links, which it passes back to the Web browser.
When the user selects one of these links, the appropriate set of
commands associated with its relationship rule is passed to the
associated collection or service. (For the second link in Figure
1, the DLII Relationship Engine would use the relationship rule
presented below to generate a query to the Arizona Document
Summarizer.)

Much More than Lexical Analysis
DLII generates the majority link anchors and links
automatically through structural analysis using relationship
rules. (Lexical analysis supplements these structural links.) If a
system can operate on an element, DLII generates a link leading
directly to this system’s service. For example, given a
discussion thread about a document, any time that document’s
identifier or title appears, DLII automatically detects this and
adds an anchor over the document identifier or title.
Relationship rules define which relationships (links) should be
available for which kinds of elements. Each relationship rule
represents a single relationship for a single element class. As
elements can have many relationships, each element class can
have several relationship rules. Each element instance triggers
the same set of relationship rules, assuming conditions are
satisfied for each. In Figure 1, two relationship rules triggered
for the “document” element (or more rules triggered, but DLII’s
collaborative filtering produced this customized list).
Because they operate at the “class” or “kind of element” level,
each relationship rule works for every element of that class.
E.g., the rule below applies to any “document” element found
within any screen or document displayed.
As an example, in Figure 1, the relationship rule underlying the
second link would include the following parameters:
- the element type (in this case “document”)
- the link display label (“Summarize document...”)
- relationship metadata (semantic type, keywords, etc.,

useful for filtering)
- the destination collection or service (in this case the

“Arizona Document Summarizer”)
- the exact command(s) to send to the destination system

(“<http://keats.ecom.arizona.edu:8080/ebizport/
serlet/ebizport/Summarizer.jsp?url=X&length=3” where X
is the document URL)

- any relevant conditions for including this relationship
(including access restrictions)

Relationship rules are stored in an XML database. A recent
research project called xlinkit [http://www.xlinkit.com] is the only
system we know doing something similar. They express
relationship rules in first-order logic, which we actually did in
an early prototype [Bieber & Kimbrough 1994]. In future versions of
DLII we hope to go back to this more flexible and powerful
format, and will consider using xlinkit within an extended
version.

DISCUSSION
A major longer-term research goal is developing a structure for
providing users with comprehensive metainformation [Catanio et
al. 2004, Galnares 2001]. The notion of metainformation expands
on what people typically consider metadata. Whereas metadata
often describes characteristics of an element of interest,
surrounding relationships often point to other entities or
documents, as well as to functions (services) that can be
executed over aspects of that element. Metainformation
includes structural relationships, content-based relationships,
user-declared knowledge-sharing relationships, as well as the
metadata around an element of interest [Catanio et al. 2004,
Galnares 2001]. Combined, the metainformation goes a long way
towards establishing the full semantics for (the meaning of and
context around) a document’s elements.
DLII’s approach is entirely different from federated search and
metasearch. The vast majority of DLII links are not found
through searching. Instead they are specified through structural
relationships. These are pre-specified through the relationship
rules by element type.
In many ways, DLII is a link resolver service, in that it
generates a set of relevant links to information resources, and
when the user selects one, DLII forwards appropriate commands
and parameters to have that information presented to the user.
Link resolvers primarily link citations within traditional library
systems to accessible copies of the cited document [Collins &
Ferguson 2002; Vogt 2003]. DLII links among citation and non-
citation sources as well as other document elements (e.g.,
headlines, photo captions, key words in paragraphs, geographic
names). (Furthermore, we could integrate these existing link
resolver systems as metainformation providers and
metainformation requesters, bringing their services to users of
other document systems and enriching them with the other types
of links that DLII can provide.)

ACKNOWLEDGMENTS
We gratefully acknowledge support by the NSF under grants
IIS-0135531 and DUE-0226075, and the UPS Foundation. DLII
is part of the National Science Digital Library project.
REFERENCES
Bieber, Michael and Steven O. Kimbrough (1994), On the Logic of
Generalized Hypertext, Decision Support Systems 11, North Holland,
241-257.
Catanio, Joseph, Nkechi Nnadi, Li Zhang, Michael Bieber and Roberto
Galnares, "Ubiquitous Metainformation and the ‘What You Want When
You Want It’ Principle," forthcoming in the Journal of Digital
Information, 2004.
Collins, Maria D. and Christine L. Ferguson (2002). “Context-sensitive
Linking: It’s a Small World After All,” Serials Review, 28(4), 267-282.
Galnares, R. (2001). Augmenting Applications with Hypermedia
Functionality and Metainformation. Ph.D. Thesis, New Jersey Inst. of
Technology, Newark, NJ 07102.
Van de Sompel, Herbert and Oren Beit-Arie (2001). Generalizing the
OpenURL Framework beyond References to Scholarly Works: The Bison-
Futé Model, D-lib Magazine 7(7/8).
Vogt, Sjoerd (2003). “Resolving the links,” Information Today, 20(4),
25-26.
Wu, Yi-Fang and Xin Chen (2003). Extracting Features from Web
Search Returned Hits for Hierarchical Classification. Proceedings of the
2003 International Conference on Information and Knowledge
Engineering (IKE'03), June 23 - 26, 2003, Las Vegas, Nevada, USA,
page 103-108.

53

