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Abstract—People-centric sensing with smart phones can be
used for large scale sensing of the physical world at low cost
by leveraging the available sensors on the phones. Despite its
benefits, mobile people-centric sensing has two main issues: (i)
incentivizing the participants, and (ii) reliability of the sensed
data. Unfortunately, the existing solutions to solve these issue
either requires infrastructure support or adds significant over-
head on user phones. We believe that mobile crowd sensing will
become a widespread method for collecting sensing data from
the physical world once the data reliability issues are properly
addressed.

We present the concept of mobile crowd sensing and its
applications to everyday life. We describe the design and imple-
mentation of McSense, our mobile crowd sensing platform, which
was used to run a user study at the university campus for a period
of two months. We also discuss the data reliability issues in mobile
crowd sensing by presenting several scenarios involving malicious
behavior. We present a protocol for location reliability as a step
toward achieving data reliability in sensed data, namely, ILR
(Improving Location Reliability). ILR also detects false location
claims associated with the sensed data. Based on our security
analysis and simulation results, we argue that ILR works well at
various node densities. The analysis of the sensed data collected
from the users in our field study demonstrate that ILR can
efficiently achieve location data reliability and detect a significant
percentage of false location claims.

I. INTRODUCTION

Mobile sensors such as smart phones and vehicular systems
represent a new type of geographically distributed sensing
infrastructure that enables mobile people-centric sensing [1]–
[3]. According to a forecast for global smart phone shipments
from 2010 to 2017, more than 1.5 billion phones are expected
to be shipped worldwide [4]. Smart phones already have sev-
eral sensors: camera, microphone, GPS, accelerometer, digital
compass, light sensor, Bluetooth as proximity sensor [5], [6],
and in the near future they are envisioned to include health
and pollution monitoring sensors [7]–[9]. Vehicular systems
have access to several hundred sensors embedded in cars,
and recent vehicles come equipped with new types of sensors
such as radar and camera. Compared to the tiny, energy con-
strained sensors of static sensor networks, smart phones and
vehicular systems can support more complex computations,
have significant memory and storage, and offer direct access
to the Internet. Therefore, mobile people-centric sensing can
be a scalable and cost-effective alternative to deploying static
wireless sensor networks for dense sensing coverage across
large areas.

Smart phones have already enabled a plethora of mobile

sensing applications [10]–[13] in gaming, smart environ-
ments, surveillance, emergency response and social networks.
Specially, activity recognition through mobile sensing and
wearable sensors has led to many healthcare applications,
such as fitness monitoring, elder-care support and cognitive
assistance [14]. The expanding sensing capabilities of mobile
phones have gone beyond the sensor networks’ focus on
environmental and infrastructure monitoring where people are
now the carriers of sensing devices, the sources, and the
consumers of sensed events [15]–[19].

Despite its benefits, mobile people-centric sensing has two
main issues: (i) incentivizing the participants, and (ii) reli-
ability of the sensed data. Mobile crowd sensing has been
proposed as a solution for the first issue. A mobile crowd
sensing platform plays a similar role with the one played by
Amazon’s Mechanical Turk (MTurk) [20] or ChaCha [21] in
crowdsourcing [22], [23]: it allows individuals and organiza-
tions (clients) to access a sheer number of people (providers)
willing to execute simple sensing tasks for which they are
paid. Unlike the MTurk’s tasks which are executed on personal
computers and always require human work, mobile sensing
tasks are executed on mobile devices that satisfy certain
context/sensing requirements (e.g., location, time, specific
sensors) and many times do not require human work (i.e.,
automatic sensing tasks). Many organizations and individuals
could act as crowd sensing clients. For example, local, state,
and federal agencies could greatly benefit from this new
sensing infrastructure as they will have access to valuable
data from the physical world. Commercial organizations may
be very interested in collecting mobile sensing data to learn
more about customer behaviour. Researchers in many fields of
science and engineering could collect large amounts of sensed
data for various experiments. Ultimately, all of us could act
as clients through many mobile apps (e.g., find out the traffic
conditions ahead on the highway).

Regarding the data reliability issue, the sensed data submit-
ted by participants in crowd sensing is not always reliable as
they can submit false data to earn money without executing
the actual task. This problem will be illustrated in section I.C,
and our solution will be discussed extensively in this chapter.

A. Mobile Crowd Sensing Applications

In the following, we present several application domains that
can benefit from mobile crowd sensing as well as a number



of applications (some of them already prototyped) for each
domain:

Smart Cities: Worldwide, cities with high population
density and a very large number of interconnected issues
make effective city management a challenging task. Therefore,
several significant government and industrial research efforts
are currently underway to exploit the full potential of the
sensing data by initiating smart city systems to improve
city efficiency by deploying smarter grids, water management
systems [24] and ultimately the social progress [25]. Around
the world, the government of South Korea is building the
Songdo Business District, a green low-carbon area that aims
at becoming the first full-scale realization of a smart city [26].
Despite their potential benefits, many of these efforts could
be costly. Crowd sensing can reduce the costs associated with
large scale sensing and, at the same time, provide additional
human-related data. For example, our recent work on Partic-
ipAction [27] proposes to leverage crowd sensing to directly
engage citizens in the management of smart cities; people can
actively participate in sensing campaigns to make their cities
safer and cleaner.

Road Transportation: Departments of transportation can
collect fine grain and large scale data about traffic patterns in
the country/state using location and speed data provided by
GPS sensors embedded in cars. These data can then be used
for traffic engineering, construction of new roads, etc. Drivers
can receive real-time traffic information based on the same
type of data collected from smart phones [28]. Drivers can
also benefit from real-time parking data collected from cars
equipped with ultrasonic sensors [29]. Transportation agencies
or municipalities can efficiently collect pothole data using GPS
and accelerometer sensors [30] in order to quickly repair the
roads. Similarly, photos (i.e., camera sensor data) taken by
people during/after snowstorms can be analyzed automatically
to prioritize snow cleaning and removal.

Healthcare & Wellbeing: Wireless sensors worn by people
for heart rate monitoring [7] and blood pressure monitor-
ing [9] can communicate their information to the owners’
smart phones. Typically, this is done for both real-time and
long-term health monitoring of individuals. Mobile sensing
can leverage these existing data into large scale healthcare
studies that seamlessly collect data from various groups of
people, which can be selected based on location, age, etc.
A specific example involves collecting data from people who
eat regularly fast food. The phones can perform activity
recognition and determine the level of physical exercise done
by people, which was proven to directly influence people’s
health. As a result of such a study in a city, the municipality
may decide to create more bike lanes to encourage people
to do more physical activities. Similarly, the phones can
determine the level of social interaction of certain groups
of people (e.g., using Bluetooth scanning, GPS, or audio
sensor). For example, a university may discover that students
(or students from certain departments) are not interacting with
each other enough; consequently, it may decide to organize
more social events on campus. The same mechanism coupled

with information from “human sensors” can be used to monitor
the spreading of epidemic diseases.

Marketing/Advertising: Real-time location or mobility
traces/patterns can be used by vendors/advertisers to target
certain categories of people [31], [32]. Similarly, they can
run context-aware surveys (function of location, time, etc.).
For example, one question in such a survey could ask people
attending a concert what artists they would like to see in the
future.

B. Mobile Crowd Sensing Applications and Platforms

Recently, several mobile crowdsourcing projects tried to
leverage traditional crowdsourcing platforms for mass adop-
tion of people-centric sensing: Twitter [33] has been used as a
publish/subscribe medium to build a crowdsourced weather
radar and a participatory noise-mapping application [34];
mCrowd [35] is an iPhone based platform that was used to
build an image search system for mobile phones which relies
on Amazon MTurk [20] for real-time human validation [35].
This has the advantage of leveraging the popularity of existing
crowdsourcing platforms (tens of thousands of available work-
ers), but does not allow for truly mobile sensing tasks to be
performed by workers (i.e., tasks which can only be performed
using sensors on mobile phones). PEIR is an application for
participatory sensing that exploits mobile phones to evaluate
if users have been exposed to airborne pollution, enables data
sharing to encourage community participation, and estimates
the impact of individual user/community behaviors on the
surrounding environment [36]. Medusa is a mobile crowd
sensing framework that uses a high-level domain-specific
programming language to define sensing tasks and workflows
that are promoted with monetary incentives to encourage user
participation [37]. So far, none of these existing applications
and platforms has addressed the reliability of the sensed data.

C. Data Reliability Issues in Sensed Data

By leveraging smart phones, we can seamlessly collect sens-
ing data from various groups of people at different locations
using mobile crowd sensing. As the sensing tasks are asso-
ciated with monetary incentives, participants may try to fool
the mobile crowd sensing system to earn money. Therefore,
there is a need for mechanisms to efficiently validate the
collected data. In the following, we motivate the need for
such a mechanism by presenting several scenarios involving
malicious behavior.

Traffic jam alerts [38], [39]: Suppose that the Department
of Transportation uses a mobile crowd sensing system to
collect alerts from people driving on congested roads and then
distributes the alerts to other drivers. In this way, drivers on
the other roads can benefit from real-time traffic information.
However, the system has to ensure the alert validity because
malicious users may try to pro-actively divert the traffic on
roads ahead in order to empty these roads for themselves.

Citizen-journalism [40], [41]: Citizens can report real-
time data in the form of photos, video, and text from public
events or disaster areas. In this way, real-time information from



anywhere across the globe can be shared with the public as
soon as the event happens. But, malicious users may try to
earn easy money by claiming that an event is happening at a
certain location while being somewhere else.

Environment [8], [42]: Environment protection agencies
can use pollution sensors installed in the phones to map
with high accuracy the pollution zones around the country.
The participants may claim “fake” pollution to hurt business
competitors by submitting the sensed pollution data associated
with false locations.

Ultimately, the validation of sensed data is important in
a mobile crowd sensing system to provide confidence to its
clients who use the sensed data. However, it is challenging
to validate each and every sensed data point of each par-
ticipant because sensing measurements are highly dependent
on context. One approach to handle this issue is to validate
the location associated with the sensed data point in order
to achieve a certain degree of reliability on the sensed data.
Still, we need to overcome a major challenge: how to validate
the location of data points in a scalable and cost-effective
way without help from the wireless carrier? Let us note that
wireless carriers may not help with location validation for legal
reasons related to user privacy or even commercial interests.

To achieve reliability on participants’ location data, there
are a few traditional solutions such as using Trusted Platform
Modules (TPM) [43] on smart phones or duplicating the tasks
among multiple participants. However, these solutions cannot
be used directly for a variety of reasons. For example, it is not
cost-effective to have TPM modules on every smart phone,
while task replication may not be feasible at some locations
due to a lack of additional users there. Another solution is to
verify location through the use of secure location verification
mechanisms [44]–[47] in real time when the participant is
trying to submit the sensing data location. Unfortunately,
this solution requires infrastructure support or adds significant
overhead on user phones if it is applied for each sensed data
point.

The rest of the chapter is organized as follows. Section II
presents the overview of McSense, our mobile crowd sensing
platform, and its prototype implementation. Section III de-
scribes our ILR scheme to achieve data reliability in McSense
and analyzes ILR’s security. The experimental evaluation and
simulation results for ILR are presented in sections IV and V,
respectively. In section VI, we discuss a number of lessons
learned from our McSense field study as well as potential
improvements for ILR. Finally, section VII concludes the
chapter.

II. MCSENSE: A MOBILE CROWD SENSING
PLATFORM

We have designed and implemented McSense [48], a mobile
crowd sensing platform that allows clients to collect many
types of sensing data from smart phones carried by mobile
users. The interacting entities in our mobile crowd sensing
architecture are:

Fig. 1. McSense Architecture.

• McSense: A centralized mobile crowd sensing system
which receives sensing requests from clients and delivers
them to providers; these entities are defined next.

• Client: The organization or group who is interested in
collecting sensing data from smart phones using the
mobile crowd sensing system.

• Provider: A mobile user who participates in mobile
crowd sensing to provide the sensing data requested by
the client.

A. System Architecture and Processes Involved

The architecture of McSense, illustrated in Figure 1, has
two main components: (1) the server platform that accepts
tasks from clients and schedules the individual tasks for
execution at mobile providers; and (2) the mobile platform (at
the providers) that accepts individual tasks from the server,
performs sensing, and submits the sensed data to the server.
The communication among all these components takes place
over the Internet. Next we discuss the overall process in more
detail.

User Registration: The McSense application on the smart
phones shows a registration screen for first time users, prompt-
ing them to enter an email address and a password. During
the registration process, the user phone’s MEID (Mobile
Equipment IDentifier) is captured and saved in the server’s
database along with the user’s email address and password.
We chose to store the phone’s MEID in order to restrict one
user registration per device. In addition, the server also avoids
duplicate registrations when users try registering with the same
email address again.

Posting new sensing tasks: New sensing tasks can be posted
by clients using a web interface running on the McSense
server. The sensing task details are entered on this web page
by the client and submitted to the server’s database. Once
a new task is posted, the background notification service
running on the provider’s phone identifies the new available
tasks and notifies the provider with a vibrate action on the
phone. Providers can check the notification and can open the
McSense application to view the new available tasks. When
the application is loaded, the providers can see four tabs
(Available, Accepted, Completed and Earnings). The providers
can view the list of tasks in the respective tabs (Figure 2, left)



and can click on each task from the list to view the entire task
details (type, status, description, accepted time, elapsed time,
completion time, expiration time, payment amount).

Life cycle of a task: The life cycle starts from the Available
tasks tab. When a provider selects an available task and clicks
on the Accept button, the task is moved to the Accepted tab.
Once a task is accepted, then that task is not available to
others anymore (Figure 2, right). When the accepted task is
completed according to its requirements, the task is moved
to the Completed tasks tab. Finally, the providers view their
aggregated total dollars earned for successfully completed
tasks under the Earnings tab. If the accepted task expires
before completing successfully according to its requirements,
it is moved to the Completed tasks tab and marked as
unsuccessfully completed. The providers do not earn money
for the tasks that are completed unsuccessfully.

Background services on phone: When the network is not
available, a completed task is marked as pending upload. A
background service on the phone periodically checks for the
network connection. When the connection becomes available,
the pending data is uploaded and finally these tasks are marked
as successfully completed. If the provider phone is restarted
manually or due to the mobile OS crash, then all the in-
progress sensing tasks are automatically resumed by the An-
droid’s BroadcastReceiver service registered for the McSense
application. Furthermore, the Accepted and the Completed
tab’s task lists are cached locally and are synchronized with
the server. If the server is not reachable, the users can still see
the tasks that were last cached locally.

B. Prototype Implementation

The McSense application, shown in Figure 2, has been
implemented in Android and is compatible with smart phones
running Android OS 2.2 or higher. The application was tested
successfully using Motorola Droid 2 phones which have 512
MB RAM, 1 GHz processor, Bluetooth 2.1, Wi-Fi 802.11
b/g/n, 8 GB on board storage, and 8 GB microSD storage. The
McSense [49] Android application was deployed to Google
Play [50] to make it available for campus students. The server
side of McSense is implemented in Java/J2EE using the MVC
(Model View Controller) framework. The Derby database is
used to store the registered user accounts and assigned task
details. The server side Java code is deployed on the Glassfish
Application Server, which is an open-source application server.

C. User Study and Tasks Developed for McSense

To evaluate McSense and its data reliability protocol (see
section III), we ran a user study at our campus for approxi-
mately two months. Over 50 students have participated in this
study. Participants have been asked to download the McSense
application from the Android market and install it on their
phones. On the application server, we periodically posted var-
ious tasks. Some tasks have a monetary value associated with
the task, which is paid on the task’s successful completion;
a few other tasks do not offer monetary incentives just to
observe the participation of providers when collecting free

Fig. 2. McSense Android Application showing tabs (left) and task screen
for a photo task (right).

sensing data. As tasks are submitted to the application server,
they also appear on the phones where our application has been
installed. Each task contains a task description, its duration,
and a certain amount of money. The students use their phones
to sign up to perform the task. Upon successful completion
of the task, the students accumulate credits (payable in cash
after the study terminated).

The sensing tasks that we choose to use for this study fall
into two categories:

• Manual tasks, e.g., photo tasks.
• Automated tasks, e.g., sensing tasks using accelerometer

and GPS sensors; sensing tasks using Bluetooth.

Manual Photo Sensing Task: Registered users are asked to
take photos from events on campus. Once the user captures a
photo, she needs to click on the “Complete Task” button to
upload the photo and to complete the task. When the photo
is successfully uploaded to the server, the task is considered
successfully completed. These uploaded photos can be used
by the university news department for current news articles.

Automated Sensing Task using Accelerometer and GPS
Sensors: The accelerometer sensor readings and GPS location
readings are collected at 1 minute intervals. The sensed data
is collected along with the userID and timestamp, and it is
stored into a file in the phone’s internal storage which can
be accessed only by the McSense application. This data is
then uploaded to the application server on task completion
(which consists of many data points). Using the collected
sensed data of accelerometer readings and GPS readings, we
can identify user activities such as walking, running, driving,
or locations that are important to the user. By observing the
daily activities, we could find out how much exercise each
student is getting daily and derive interesting statistics such as
which departments have the most active and healthy students.

Automated Sensing Task using Bluetooth Radio: In this
automated sensing task, the user’s Bluetooth radio is used to
perform periodic Bluetooth scans (every 5 minutes) until the
task expires; on its completion, the task reports the discovered
Bluetooth devices with their location back to the McSense
server. The sensed data from Bluetooth scans can provide
interesting social information such as how often McSense



users are near to each other. Also, it can identify groups
who are frequently together to determine the level of social
interaction of certain people [5].

Automated Resources usage Sensing Task: In this automated
sensing task, the usage of user’s smart phone resources is
sensed and reported back to the McSense server. Specifically,
the report contains the mobile applications’ usage, the network
usage, the periodic WiFi scans, and the battery level of the
smart phone. While logging the network usage details, this
automated task also logs the overall device network traffic
and per-application network traffic.

III. IMPROVING LOCATION RELIABILITY IN
CROWD SENSED DATA

This section presents ILR, a scheme which improves the
location reliability of mobile crowd sensed data with minimal
human efforts. We also describe the validation process used
by McSense to detect false location claims from malicious
providers.

A. Assumptions

We assume that the sensed data is already collected by
McSense from providers at different locations. However, this
sensed data is awaiting validation before being sent to the
clients who requested this data. We assume that every provider
performs Bluetooth scans at each location where it is collecting
sensing data. We also assume that the sensed data reported by
providers for a given task always includes location, time, and
a Bluetooth scan. Note that Bluetooth scans can have a much
lower frequency than the sensor sampling frequency.

B. Adversarial Model

We assume all the mobile devices are capable of deter-
mining their location using GPS. We also assume McSense
is trusted and the communication between mobile users and
McSense is secure. In our threat model, we consider that any
provider may act maliciously and may lie about their location.

A malicious provider can program the device to spoof a
GPS location [51] and start providing wrong location data for
all the crowd sensing data requested by clients. Regarding this,
we consider three threat scenarios, where 1) The provider does
not submit the location and Bluetooth scan with a sensing data
point; 2) The provider submits a Bluetooth scan associated
with a sensing task, but claims a false location; 3) The
provider submits both a false location and a fake Bluetooth
scan associated with a sensing data point. In section III.D, we
will discuss how these scenarios are addressed by ILR.

We do not consider colluding attack scenarios, where a
malicious provider colludes with other providers to show that
she is present in the Bluetooth co-location data of others. In
practice, it is not easy for a malicious provider to employ
another colluding user at each sensing location. Additionally,
these colluding attacks can be reduced by increasing the
minimum node degree requirement in co-location data of each
provider (i.e., a provider P must appear in the Bluetooth
scans of at least a minimum number of other providers at

Fig. 3. Example of McSense collected Photo tasks [A-I] and Sensing tasks
[1-15] on the campus map, grouped using Bluetooth discovery co-location
data.

her claimed location and time). Therefore, it becomes difficult
for a malicious provider to create a false high node degree by
colluding with real co-located people at a given location and
time.

Finally, the other class of attacks that are out of scope for
our current scheme are attacks in which a provider submits the
right location and Bluetooth scan associated with this sensing
task, but is able to fool the sensors to create false readings
(e.g., using the flame of a lighter to create the false impression
of a high temperature).

C. ILR Design

The main idea of our scheme is to corroborate data col-
lected from manual (photo) tasks with co-location data from
Bluetooth scans. We describe next an example of how ILR
uses the photos and co-location data.

1) An example of ILR in action: Figure 3 maps the data
collected by several different tasks in McSense. The figure
shows 9 photo tasks [marked as A to I] and 15 sensing
tasks [marked as 1 to 15] performed by different providers
at different locations. For each of these tasks, providers also
report neighbors discovered through Bluetooth scans. All these
tasks are grouped into small circles using co-location data
found in Bluetooth scans within a time interval t. For example,
Photo task A and sensing tasks 1, 2, and 3 are identified
as co-located and grouped into one circle because they are
discovered in each others Bluetooth scans.

In this example, McSense does not need to validate all
the photo tasks mapped in the figure. Instead, McSense will
first consider the photo tasks with the highest node degree
(NodeDegree) by examining the co-located groups for photo
task providers who have seen the highest number of other
providers in Bluetooth scans around them. In this example we
consider NodeDegree ≥ 3. Hence, we see that photo tasks
A, B, C, D, and G have discovered the highest number of
providers around their location. Therefore, McSense chooses
these 5 photo tasks for validation. These selected photo tasks
are validated either manually or automatically (we discuss
this in detail in section III-C2). When validating these photo
tasks, invalid photos are rejected and McSense ignores the



Fig. 4. The phases of the ILR scheme.

Bluetooth scans associated with them. If the photo is valid,
then McSense considers the location of the validated photo
as trusted because the validated photo is actually taken from
the physical location requested in the task. However, it is
not always possible to categorize every photo as a valid or
a fake photo. Therefore some photos will be categorized as
“unknown” when a decision cannot be made.

In this example, we assume that these 5 selected photos
are successfully validated through manual verification. Next,
using the transitivity property, McSense extends the location
trust of validated photos to other co-located providers’ tasks
which are found in the Bluetooth scans of the A, B, C, D, and
G photo tasks. For example, A extends the trust to the tasks 1,
2, and 3, while B extends the trust to tasks 4, 5, and 6. Then,
task 6 extends its trust to tasks 13 and 14. Finally, after the
end of this process, McSense has 21 successfully validated
tasks out of a total of 24 tasks. In this example, McSense
required manual validation for just 5 photo tasks, but using
the transitive trust property it was able to extend the trust to
16 additional tasks automatically. Only 3 tasks (E, F, and 12)
are not validated as they lack co-location data around them.

2) ILR Phases: The ILR scheme has two phases as shown
in Figure 4. “Phase 1: Photo Selection” elects the photo tasks
to be validated. And “Phase 2: Transitive Trust” extends the
trust to data points co-located with the tasks elected in Phase
1:

Phase 1 - Photo Selection: Using collected data from Blue-
tooth scans of providers, ILR constructs a connected graph of
co-located data points for a given location and within a time
interval t (these are the same groups represented in circles in
Figure 3). From these graphs, we elect the photo tasks that
have node degree greater than a threshold (NodeDegree).

These selected photo tasks are validated either by humans
or by applying computer vision techniques. For manual val-
idation, McSense could rely on other users recruited from
Amazon MTurk [20] for example. In order to apply computer
vision techniques, first we need to collect ground truth photos
to train image recognition algorithms. One alternative is to
have trusted people collect the ground truth photos. However,
if the ground truth photos are collected through crowd sens-
ing, then they have to be manually validated as well. Thus,
reducing the number of photos that require manual validation
is an important goal for both manual and automatic photo
recognition. Once the validation is performed, the location
of the validated photo task is now considered to be reliable
because the validated photos have been verified to be taken
from the physical location requested in the task. For simplicity,

we will refer to the participants who contributed valid photo
tasks with reliable location and time as “Validators”.

Phase 2 - Transitive Trust: In this phase, we rely on
the transitive property and extend the trust established in the
Validator’s location to other co-located data points. In short,
if the photo is valid, the trust is extended to co-located data
points found in Bluetooth scan of the validated photo task. In
the current scheme, trust is extended until all co-located tasks
are trusted or no other task is found; alternately, McSense can
set a TTL (Time To Live) on extended trust. The following
two steps are performed in this phase:

• (Step 1) Mark co-located data points as trusted: For each
task co-located with a validated photo task, mark the
task’s location as trusted.

• (Step 2) Repeat Step 1 for each newly validated task until
all co-located tasks are trusted or no other task is found.

Algorithm 1 ILR Validation Pseudo-Code

Notation:
TList: Tasks List which are not yet marked trusted
after completing first two phases of ILR scheme.
T: Task submitted by a Provider.
L: Location of the Photo or Sensing Task (T).
t: Timestamp of the Photo or Sensing Task (T).
hasValidator(L, t): Function to check, if already
there exist any valid data point at task T’s
location and time.

validationProcess():
run to validate the location of each task in TList
1: for each task T in TList do
2: if hasV alidator(L, t) == TRUE then
3: Update task T with false location claim at (L, t)

3) Validation Process: After executing the two phases of
ILR scheme, all the co-located data points are validated
successfully. If any malicious provider falsely claims one of
the validated task’s location at the same time, then the false
claim will be detected in the validation step. Executing the
validation process shown in algorithm 1 will help us to detect
wrong location claims around the already validated location
data points. For instance, if we consider task 12 from Figure
1 as a malicious provider claiming a false location exactly at
photo task A’s location and time, then task 12 will be detected
in the validationProcess() as it does not appear in the Bluetooth
scans of photo task A. In addition to the validation process,
McSense also performs a basic spatiotemporal correlation
check to ensure that the provider is not claiming a location
at different places at same time.

D. Security Analysis

The goal of the ILR scheme is to establish the reliability of
the sensed data by validating the claimed location of the data
points. In addition, ILR seeks to detect false claims made by
malicious participants.

ILR is able to handle all the three threat scenarios presented
in our adversarial model section. In the first threat scenario,
when there is no location and Bluetooth scan submitted along



with the sensed data, the sensed data of that task is rejected
and the provider will not be paid by McSense.

In the second threat scenario, when a provider submits
its Bluetooth discovery with a false location claim, ILR
detects the provider in its neighbors’ Bluetooth scans at a
different location using the spatio-temporal correlation check
and rejects the task’s data.

Finally, when a provider submits a fake Bluetooth discovery
with a false location claim, ILR looks for any validator around
the claimed location and if it finds anyone, then the sensed
data associated with the false location claim is rejected. But,
if there is no validator around the claimed location, then the
data point is categorized as “unknown”.

As discussed in our adversarial model section, sensed data
submitted by malicious colluding attackers could be filtered to
a certain extent in McSense by setting the node degree thresh-
old (NodeDegree) to the minimum node degree requirement
requested by the client.

E. Related Work

Trusted hardware represented by the Trusted Platform Mod-
ule (TPM) [52]–[54] to design new architectures for trustwor-
thy software execution on mobile phones [55]–[57]. Recent
work has also proposed architectures to ensure that the data
sensed on mobile phones is trustworthy [58], [59]. When
untrusted client applications perform transformations on the
sensed data, YouProve [52] is a system that combines a mobile
device’s trusted hardware with software in order to ensure the
trustworthiness of these transformations and that the meaning
of the source data is preserved. YouProve describes three
alternatives to combine the trusted hardware with software:
The first two require to extend the trusted codebase to include
either the code for the transformations or the entire application,
whereas the third one requires building trust in the code
that verifies that transformations preserve the meaning of the
source data.

Relying completely on TPM is insufficient to deal with
attacks in which a provider is able to “fool” the sensors (e.g.,
using the flame of a lighter to create the false impression of
a high temperature). Recently, there have also been reports of
successful spoofing of civilian GPS signals [51].

Orthogonal to the work in ILR, task pricing also helps in im-
proving the data quality. A recent paper [60] presents pricing
incentive mechanisms to achieve quality data in participatory
sensing application. In this work, the participants are encour-
aged to participate in the sensing system through a reverse
auction based on a dynamic pricing incentive mechanism in
which users can sell their sensing data with their claimed bid
price.

The LINK protocol [44], [61] was recently proposed for
secure location verification without relying on location infras-
tructure support. LINK can provide stronger guarantees than
ILR, but it has a number of drawbacks if used for mobile
sensing. LINK requires a provider to establish Bluetooth
connections with her co-located users at each sensing location,
which increases latency and consumes more phone battery. In

TABLE I
DEMOGRAPHIC INFORMATION OF THE STUDENTS

Total participants 58
Males 90%
Females 10%
Age 16-20 52%
Age 21-25 41%
Age 26-35 7%

TABLE II
PHOTO TASK RELIABILITY

Number of photo tasks
Total photos 1784
Num of photos with Bluetooth scans
(manually validated in ILR)

204

Trusted data points added by ILR 148

addition, LINK is executed in real-time to verify the users’
locations, whereas ILR is executed on the collected data
from mobile crowd sensing. Therefore, employing ILR helps
providers in submitting sensed data quickly and also consumes
less phone battery.

IV. EXPERIMENTAL EVALUATION: FIELD STUDY

The providers (students shown in Table I) registered with
McSense and submitted data together with their userID. Both
phases of ILR and the validation process are executed on data
collected from the providers. In these experiments, we acted
as the clients collecting the sensed data.

A. Evaluating the ILR Scheme

The location data is mostly collected from the university
campus (0.5 miles radius). The main goal of these experiments
is to determine how efficiently can the ILR scheme help
McSense validate the location data and detect false location
claims. ILR considers the Bluetooth scans found within 5min
interval of measuring the sensor readings for a sensing task.

Table II shows the total photo tasks that are submitted by
students; only 204 photo tasks have Bluetooth scans associated
with them. In this data set, we considered the NodeDegree 1,
therefore we used all these 204 photo tasks with Bluetooth
scans in Phase-1 to perform manual validation, and then in
Phase-2 we are able to automatically extend the trust to 148
new location data points through the transitive closure property
of ILR.

To capture the ground truth, we manually validated all the
photos collected by McSense in this study and identified that
we have a total of 45 fake photos submitted to McSense from
malicious providers, out of which only 16 fake photo tasks are
having Bluetooth scans with false location claims. We then
applied ILR to verify how many of these 16 fake photos can
be detected.

We were able to catch 4 users who claimed wrong locations
to make money with fake photos, as shown in Table III. Since
the total number of malicious users involved in the 16 fake
photo tasks is 10, ILR was able to detect 40% of them. Finally,
ILR is able to achieve this result by validating only 11% of
the photos (i.e., 204 out of 1784).



TABLE III
NUMBER OF FALSE LOCATION CLAIMS

Detected
by ILR
scheme

Total Percentage
Detected

Tasks with False Location claim 4 16 25%
Cheating People 4 10 40%

TABLE IV
SIMULATION SETUP FOR THE ILR SCHEME

Parameter Value
Number of nodes 200
% of tasks with false
location claims

10, 15, 30, 45, 60

Bluetooth transmission range 10m
Simulation time 2hrs
User walking speed 1m/sec
Node Density 2, 3, 4, 5
Bluetooth scan rate 1/min

B. The Influence of the Task Price on Data Quality

In the field study performed at NJIT, a few tasks are posted
with a high price (ranging from $2 - $10) to observe the impact
on the sensing tasks. We have noticed a 15% increase in the
task completion success rate for the high priced sensing tasks
compared to the low priced sensing tasks. In addition, we have
noticed an improvement in data quality for the high priced
photo tasks, with clear and focused photos compared to the
low priced photo tasks (the task priced with $1 or lower are
considered low priced tasks). Thus, our study confirms that
task pricing influences the data quality. This result confirms
that various task pricing strategies [60] can be employed by
McSense in parallel to the ILR scheme to ensure data quality
for the sensing tasks.

V. SIMULATIONS

This section presents the evaluation of the ILR scheme
using the NS-2 network simulator. The two main goals of
the evaluation are: (1) Estimate the right percentage of photo
tasks needed in Phase 1 to bootstrap the ILR scheme, and (2)
Quantify the ability of ILR to detect false location claims at
various node densities.

A. Simulation Setup

The simulation setup parameters are presented in Table IV.
Given a simulation area of 100m x 120m, the node degree (i.e.,
average number of neighbors per user) is slightly higher than
5. We varied the simulation area to achieve node degrees of
2, 3, and 4. We consider low walking speeds (i.e., 1m/sec) for
collecting photos. In these simulations, we considered all tasks
as photo tasks. A photo task is executed every minute by each
node. Photo tasks are distributed evenly across all nodes. Photo
tasks with false location claims are also distributed evenly
across several malicious nodes. We assume the photo tasks in
ILR’s phase 1 are manually validated.

After executing the simulation scenarios described below,
we collect each photo task’s time, location, and Bluetooth
scan. As per simulation settings, we will have 120 completed

Fig. 5. ILR performance as function of the percentage of photos manually
validated in phase 1. Each curve represents a different percentage of photos
with fake locations.

photo tasks per node at the end of the simulation (i.e 24,000
total photo tasks for 200 nodes). Over this collected data,
we apply the ILR validation scheme to detect false location
claims.

B. Simulation Results

Varying percentage of false location claims. In this set
of experiments, we vary the percentage of photo tasks with
false location claims. The resulting graph, plotted in Figure 5,
has multiple curves as a function of the percentage of photo
tasks submitting false location. This graph is plotted to gain
insights on what will be the right percentage of photo tasks
needed in Phase 1 to bootstrap the ILR scheme. Next, we
analyze Figure 5;

• Low count of malicious tasks submitted: When 10% of
total photo tasks are submitting false location, Figure 5
shows that the ILR scheme can detect 55% of the false
location claims just by using 10% of the total photo
tasks validated in Phase 1. This figure also shows that
in order to detect more false claims, more photos need
to be manually validated: for example, ILR uses up to
40% of the total photo tasks in Phase 1 to detect 80%
of the false location tasks. Finally, Figure 5 shows that
increasing the percentage of validated photo tasks above
40% does not help much as the percentage of detected
false tasks remains the same;

• High count of malicious tasks submitted: When 60%
of the total photo tasks are submitting false location,
Figure 5 shows that ILR can still detect 35% of the
false claims by using 10% of the total photo tasks in
Phase 1. But in this case, ILR requires more validated
photo tasks(70%) to catch 75% of the false claims. This
is because by increasing the number of malicious tasks,
the co-location data is reduced and therefore ILR cannot
extend trust to more location claims in its Phase 2.

Therefore, we conclude that the right percentage of photo
tasks needed to bootstrap the ILR is proportional to the
expected false location claims (which can be predicted using
the history of the users’ participation).



Fig. 6. ILR performance as function of the percentage of photos manually
validated in phase 1. Each curve represents a different network density
represented as average number of neighbors per node.

Node density impact on the ILR scheme. In this set of
experiments, we assume that 10% of the total photo tasks are
submitting false locations. In Figure 6 we analyze the impact
of node density on the ILR scheme. We seek to estimate the
minimum node density required to achieve highly connected
graphs to extend the location trust transitively to more co-
located nodes;

• High Density: When simulations are run with node
density of 5, Figure 6 shows ILR can detect the highest
percentage (85%) of the false location claims. The figure
also shows similarly high results even for a node density
of 4;

• Low Density: When simulations are run with node
density of 2, we can see that ILR can still detect 65% of
the false location tasks using 50% of the total photo tasks
in Phase 1. For this node density, even after increasing
the number of validated photo tasks in Phase 1, the
percentage of detected false claims does not increase.
This is because of there are fewer co-located users at
low node densities.

Therefore, we conclude that ILR can efficiently detect false
claims with a low number of manual validations, even for low
node densities.

VI. FIELD STUDY INSIGHTS AND IMPROVING THE
ILR SCHEME

In this section, we present our insights from the analysis of
the data collected from the field study and discuss possible
improvements of the ILR scheme based on these insights.
In addition, we present observations of the survey that was
collected from users at the end of the field study to understand
the participants’ opinion on location privacy and usage of
phone resources.

A. Correlation of User Earnings and Fake Photos

To understand the correlation between the user earnings and
the number of fake photos submitted, we plot the data collected
from the McSense crowd sensing field study. The experimental
results in Figure 7 show that the users who submitted most of

Fig. 7. Correlation of earnings and fake photos.

Fig. 8. Correlation of User Location and Fake Photos.

the fake photos are among the top 20 high earners (with an
exception of 4 low earning users who submitted fake photos
once or twice). This is an interesting observation that can be
leveraged to improve the ILR scheme.

In the current ILR scheme, there are cases where the
validation process cannot make a firm decision on some data
points. Those data points fall under the “Unknown” category
as described in the “ILR Design” section. If these “Unknown”
data points are too many (in millions), then it becomes
challenging to validate all of them manually. Therefore, to
improve the ILR scheme, we propose that these “Unknown”
cases of data points must go through an extra check to find
whether the user is a high earner in the sensing system. If
the user is a high earner, then there is a high probability that
the user submitted data point is fake. Those photos should be
manually validated. If the user is a mid/low range earner, then
there is a low probability of his/her data point being faked and
the data point should be considered as valid. This method will
help in reducing the number of photos that require manual
validation.

B. Correlation of Location and Fake Photos

We ask the question “Is there any correlation between the
amount of time spent by users on campus and the number of
submitted fake photos?” As suspected, the users who spent
less time on campus have submitted more fake photos. This
behavior can be observed in Figure 8.

Figure 8 shows the number of fake photos submitted by



Fig. 9. Photo counts of 17 cheating people.

each user, with the users sorted by the total hours spent on the
NJIT campus. The participants’ total hours recorded at NJIT
campus are the hours that are accumulated from the sensed
data collected from “Automated Sensing task” described in the
“Tasks Developed for McSense” section. The NJIT location is
considered to be a circle with a radius of 0.5 miles. If the user
is in circle, then she is considered to be at NJIT. For most
of the submitted fake photos with the false location claim,
the users claimed that they are at a campus location where
the photo task is requested, but actually they are not frequent
visitors on the campus.

This is an interesting observation, which can also be lever-
aged to improve the ILR scheme’s validation process when
there is a large number of data points classified as “Unknown”.
The intuition behind this argument is that users tend to fake
the data mostly when they are not around the task’s location.
Therefore, to improve the ILR scheme, we propose to use a
user’s recorded location trail in the McSense system in order
to identify whether the user is or is not a frequent visitor
of the task’s location. If the user is not a frequent visitor
of the claimed location, then there is a high probability that
location claim is false and the “Unknown” data point should
be manually checked. On the other hand, if the user is a
frequent visitor of the claimed location, then her claim can be
trusted. By reducing the number of photos that require manual
validation, McSense can improve ILR’s validation process for
“Unknown” data points.

C. Malicious User: Menace or Nuisance?

The photos submitted by malicious users are plotted in
Figure 9. The data show that malicious users have submitted
good photos at a very high rate compared to the fake photos.
These malicious users are among the high earners, so they are
submitting more data than the average user. Thus, it may not
be a good idea to remove the malicious users from the system
as soon as they are caught cheating.

Instead, it may be a better idea to identify the validity of
the individual data points (which is exactly the same process
done in the current ILR scheme discussed in “ILR Design”
section). We conclude that the malicious users are not a
significant menace, but may cause some confusion in the
collected data. However, this can be filtered out by McSense

through correlating the data with location and earnings as
discussed earlier in the section.

D. Influence of Maintaining a Reputation Score

When a fake location claim is detected by ILR, McSense
would benefit if the malicious user who submitted the fake
claim receives a lower compensation upon completion of a
task. In order to perform such a process, McSense should
use a reputation module such as in [62], which maintains
a trust score for each user. This is similar with many other
systems which rely on the participation of users. The trust
score varies between 0 and 1. Initially, the trust score is given
a default value to every user, and it evolves depending on the
user participation. The trust score is reduced when the user
is caught providing fake data and is increased when the user
submits good data.

We propose that the McSense system maintains a trust score
for every user, and then it uses this score for calculating
the user payment upon task completion. For example, for a
completed task that is worth $5, a user with trust score 0.9
will be paid only $4.5. We envision that by maintaining a
reputation score, the users providing fake data will eventually
stop making false claims. We have seen earlier in the section
that the malicious users also submit a significant amount
of good data. But, if their trust score drops to 0, then the
malicious users will not participate anymore as they do not
earn the task amount and will eventually leave the system. As
we argued earlier in this section, it is not a good idea to entirely
remove the malicious users from the system. Therefore, to
avoid eliminating malicious users from the system, the trust
score will not decrease anymore after reaching a minimum
threshold (e.g., 0.2). Hence, the malicious user will only get
20% of the task dollars until she improves her trust score.
Therefore, the McSense system does not need to worry about
discarding good data that is submitted by malicious users.

E. Users Survey Results and Observations

At the end of the field study, we requested each user to
fill a survey in order to understand the participants’ opin-
ion on location privacy and usage of phone resources. The
survey contains 16 questions with answers on a five-point
Likert scale (1=“Strongly disagree”, 2=“Disagree”, 3=“Neu-
tral”, 4=“Agree”, 5=“Strongly agree”). Out of 58 participants,
27 filled in the survey. Based on the survey answers, we
provide next a few interesting observations which are directly
or indirectly relevant in the context of data reliability:

• One of the survey questions was: “I tried to fool the
system by providing photos from other locations than
those specified in the tasks (the answer does not in-
fluence the payment)”. By analyzing the responses for
this specific question, we observe that only 23.5% of
the malicious users admitted that they submitted the fake
photos (4 admitted out of 17 malicious). This shows that
the problem stated in the article on data reliability is real
and it is important to validate the sensed data;



• One survey question related to the user privacy was: “I
was concerned about my privacy while participating in
the user study”. The survey results show that 78% of
the users are not concerned about their privacy. This
shows that many participants are willing to trade off their
location privacy for paid tasks. The survey results are
correlated with the collected McSense data points. We
posted a few sensing tasks during weekends, which is
considered to be private time for the participants who are
mostly not in the campus at that time. We observe that
33% of the participants participated in the sensing and
photo tasks, even when spending their personal time in
the weekends. We conclude that the task price plays a
crucial role (trading the user privacy) to collect quality
sensing data from any location and time;

• Another two survey questions are related to the usage
of phone resources (e.g., battery) by sensing tasks: 1)
“Executing these tasks did not consume too much battery
power (I did not need to re-charge the phone more often
than once a day)”; 2) “I stopped the automatic tasks
(resulting in incomplete tasks) when my battery was low”.
The responses to these questions are interesting. Most of
the participants reported that they were carrying chargers
to charge their phone battery as required while running
the sensing tasks and were keeping their phone always
ready to accept more sensing tasks. This proves that
phone resources, such as battery, are not a big concern for
continuously collecting sensing data from different users
and locations. We describe next the battery consumption
measurements in detail.

F. Battery Consumption

We try to determine the amount of energy consumed by the
user’s phone battery for collecting sensing data that is required
for ILR. Basically, ILR is executed on the server side over
the collected data. But the collected data such as Bluetooth
scans at each location is crucial for ILR. Next, we provide
measurements for the extra battery usage caused by keeping
Bluetooth/Wi-Fi radios ON. We measured the readings using
“Motorola Droid 2” smart phones running Android OS 2.2:

• With Bluetooth and Wi-Fi radios ON, the battery life of
the “Droid 2” phone is over 2 days (2 days and 11 hours);

• With Bluetooth OFF and Wi-Fi radio ON the battery life
of the “Droid 2” phone is over 3 days (3 days and 15
hours);

• For every Bluetooth discovery the energy consumed is
5.428 Joules. The total capacity of the “Droid 2” phone
battery is: 18.5KJ. Hence, over 3000 Bluetooth discover-
ies can be collected from different locations using a fully
charged phone.

VII. CONCLUSIONS

This chapter presented the concept of mobile crowd sensing
and its applications to everyday life. We described the design
and implementation of McSense, our mobile crowd sensing
platform, which was used to run a user study with over 50

users at the NJIT campus for a period of 2 months. We
also discussed the data reliability issues in mobile crowd
sensing by presenting several scenarios involving malicious
behavior. We presented a protocol for location reliability as a
step toward achieving data reliability in sensed data, namely,
ILR (Improving Location Reliability). ILR also detects false
location claims associated with the sensed data. Based on
our security analysis and simulation results, we argue that
ILR works well at various node densities. The analysis of
the sensed data collected from the users in our field study
demonstrate that ILR can efficiently achieve location data
reliability and detect a significant percentage of false location
claims. Therefore, we conclude this chapter with our belief
that mobile crowd sensing will become a widespread method
for collecting sensing data from the physical world once the
data reliability issues are properly addressed.
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