
Context-Aware File Discovery System
for Distributed Mobile-Cloud Apps

Nafize R. Paiker, Xiaoning Ding, Reza Curtmola, Cristian Borcea
Department of Computer Science, New Jersey Institute of Technology Newark, NJ 07102, USA

Email: {nrp48, xiaoning.ding, reza.curtmola, borcea}@njit.edu

Abstract—Recent research has proposed middleware to enable
efficient distributed apps over mobile-cloud platforms. This paper
presents a Context-Aware File Discovery Service (CAFDS) that
allows distributed mobile-cloud applications to find and access
files of interest shared by collaborating users. CAFDS enables
programmers to search for files defined by context and content
features, such as location, creation time, or the presence of certain
object types within an image file. CAFDS provides low-latency
through a cloud-based metadata server, which uses a decision
tree to locate the nearest files that satisfy the context and content
features requested by applications. We implemented CAFDS in
Android and Linux. Experimental results show CAFDS achieves
substantially lower latency than peer-to-peer solutions that can-
not leverage context information.

Index Terms—Mobile-cloud computing, File discovery service,
Computation offloading, Decision tree

I. INTRODUCTION

According to a Cisco forecast [1], the amount of global
mobile data traffic per month will reach 49 exabytes by 2021.
Driven by the increasing demand for sharing and exploiting
mobile data, mobile distributed apps enabling direct collabo-
ration among users proliferate rapidly. To fully exploit mobile
data in distributed mobile apps, two problems must be solved.
One is how to quickly locate and obtain the required data. The
other is how to efficiently process the data. The latter has been
effectively addressed with the recent advancements in mobile-
cloud computing, which allow distributed mobile apps to
offload costly computation to the cloud [2]–[6]. However, the
former remains largely unsolved due to three issues that impact
the effectiveness of the distributed mobile-cloud (DMC) apps
and the efficiency of their executions.

First, to find the required files, a DMC app can only
examine the files on the devices of the participating users.
Non-participating users may have the files that the app needs
and may be willing to share them, but the app cannot locate
these files. This significantly reduces the number of files
available to the app and lowers the quality of user experience.

Second, each DMC app has to search and examine files
independently. However, different apps may search for files
using similar criteria, and the same set of files may fit the
needs of different apps. For example, many apps need photos
taken at the location and within the time window of specific
events. It is inefficient to implement the searching code in each
app and run the code repeatedly for different apps.

Third, DMC apps cannot locate the files with low latency
and low overhead. A file may have multiple copies distributed

at different locations with different access latency and over-
head. For example, a photo is copied among the mobile devices
of a group of friends, and one of them uploads it to the cloud.
Retrieving the photo from the cloud incurs lower latency than
getting it from mobile devices.

Conventional solutions, e.g., search engines [7], [8] and file
searching functionalities in storage systems and peer-to-peer
systems [9]–[15] do not solve well the three issues for DMC
apps. Search engines focus on searching file content with
keywords instead of more general context and content features
as required by DMC apps. File searching functionalities in
storage systems are usually tightly coupled with the system
design and rely on a global file system space. DMC apps,
on the other hand, need to access data from a large number
of independent users. Peer-to-peer systems offer distributed
file searching functionalities. However, they introduce large
latency due to their multi-hop networking nature.

This paper presents Context-Aware File Discovery Service
(CAFDS) to fundamentally address these issues. CAFDS is
implemented as a middleware that runs on participating mobile
devices and in the cloud. Its main component is a metadata
server that runs in the cloud and indexes the files shared by
users based on three types of searching criteria: file context,
file content, and traditional file metadata. CAFDS provides
several benefits to DMC apps: 1) It reduces the programming
effort to write file searching code in different apps. 2) It
can increase the searching scope and provide the apps with
more data. 3) When multiple files with the same content are
available, it returns the file with the lowest access latency.

The design of CAFDS addresses two major challenges.
One is how to determine whether a file meets the feature
requirements of a DMC app. CAFDS labels and then searches
files based on implicit and explicit file features. A feature
of a file can be the hash value of its content, its type, its
size, user-generated tags, location and time for file creation,
objects identified in an image file, etc. CAFDS starts with a
set of predefined features (e.g., file size, type, location, etc.),
and it allows apps the flexibility to add app-defined features
(e.g., an image file contains faces). The other challenge is
how to quickly locate the required files. The searching process
is intended to serve the computation of a DMC app, and
many such apps have low latency requirements. To keep the
search latency low, the metadata server organizes files into
groups based on their feature similarity and structures the
groups using an enhanced decision tree model [16]. Instead

of searching through files one by one, CAFDS locates a few
groups where the required files are likely to be found, and
then searches in those groups.

The contributions of this paper are summarized as fol-
lows. (a) We designed CAFDS to effectively address the file
discovery problem for distributed mobile-cloud apps; (b) we
employed a modified decision tree for fast and accurate file
discovery; and (c) we implemented CAFDS in Android and
Linux, and tested its performance by replaying mobile file
traces. Our experiments show that CAFDS outperforms peer-
to-peer file systems such as Chord [17] and SPOON [14].

The rest of the paper is organized as follows. Section II
provides a brief introduction to distributed mobile-cloud apps
and platforms. Section III overviews the main concepts of the
CAFDS system. Section IV presents the detailed design and
implementation of CAFDS. Section V evaluates its perfor-
mance. Section VI discusses the related work, and Section VII
concludes the paper.

II. DISTRIBUTED MOBILE-CLOUD APPS AND PLATFORMS

Distributed mobile apps leverage data from collaborating
users to provide new and rich functionality for enhanced user
experience. Consider a scenario where multiple users take
photos in Time Square in New York City on New Year’s Eve.
Some people use an app (referred to as 3D model creation app)
that enhances photos and creates a 3D model of Time Square
from the photos. Other people use a face recognition app
(referred to as Person-finding app) to find people of interest
based on the same set of photos. Both apps need to process a
large number of images. The more photos they can access
and process, the better results they can deliver. Processing
a large number of photos requires high computing power
and consumes much energy, which mobile devices may not
have. Thus, techniques are developed to offload intensive data
processing workloads to the cloud. A number of mobile-cloud
platforms implement such techniques for distributed mobile-
cloud (DMC) apps [4], [5].

Although the concept of CAFDS is generic and can be
implemented on any mobile-cloud platform, we have im-
plemented it over our Avatar [6], [18] platform. In Avatar,
each user has a virtual machine (called avatar) in the cloud
working as the surrogate of her mobile device, which assists
the execution of the user’s DMC apps. Specifically, a DMC
app is executed on the set of mobile devices and avatars
belonging to the group of users collaborating within the app.
App components can be offloaded from mobiles to their
avatars to speed up execution and save battery power.

III. CAFDS OVERVIEW

A. The Problem

A challenging issue for DMC apps is how to quickly locate
the required files and access the files with low overhead. A
potential solution has to overcome three challenges.

Limited searching scope: For example, the 3D model
creation app can only search the files of the users who installed
the app on their mobile devices. However, there are other

Fig. 1: Architecture of CAFDS Ecosystem.
mobile users who have taken photos of Time Square and
shared them through the Person finding app.

Redundant coding and searching efforts: The searching
code and searching are done in each app redundantly, even
though the apps need to find the same set of files (e.g., the
photos taken in Time Square on New Year’s Eve for the two
aforementioned apps). It would be better to implement this
code as a system service used by all apps.

Potentially higher access latency: For instance, a user
takes a photo and then shares it with her friends, who upload it
to their clouds. When an app, such as the Person finding app,
needs to access the photo, since the computation is offloaded
to the cloud, accessing a copy from the same cloud incurs
lower latency than reading it from any mobile device or other
clouds. However, the app is not aware of all the existing copies
of the photos, even if the users are willing to share them.

B. CAFDS Functionality and Main Components

Our key idea is to use a common service layer running on
the devices and VMs of all the users who want to share their
files with others. This layer indexes the files to be shared and
their locations, and answers file search requests from apps. All
DMC apps use this service, as they do not need to implement
their own file search code. We name this layer Context-Aware
File Discovery Service (CAFDS).

CAFDS implements file search by running an instance of the
service within the mobile-cloud computing (MCC) middleware
on mobiles and VMs, as shown in Figure 1. These instances
accept requests from DMC apps to share and search for files
of interest. The metadata server is the core component of
CAFDS. It is responsible for managing the feature information
of the files and responding to search requests. The metadata
server does not store file contents, which remain at their
original locations, e.g., mobile phones and cloud storage. The
metadata server saves a File ID for each file, which is the
SHA-256 hash value of the file contents.

The middleware at each entity serves as the interface
between app instances and the metadata server. For file search,
it translates API calls into a set of operations and interacts with
the metadata server to finish the search. File search allows
apps to search based on file features (context, content, and
traditional file metadata), and it potentially returns multiple
files. Apps can also search for a specific file using the hash
value of the file. In this case, the middleware monitors the file

operations (e.g., open and read calls) of the app instances, and
it contacts the metadata sever for the cloud location of a file
with the same content. For the files that mobile users want to
share, the middleware marks them as searchable and collects
the information needed for file discovery.

C. File Features and File Contexts

CAFDS uses file features as a key concept. Apps use
features to describe what files they need, and the metadata
server uses features to organize file information. Features are
based on facts about the files. Examples of valid features based
on the location where files were created are: “the location is
Time Square” and “the location is not Europe”. When an app
performs a file search, it needs to first provide a set of features.
For simplicity, we refer to a set of file features as a file context.
For example, in the Person finding app, the requested files
need to have the following features: 1) file type is image, 2)
creation location is Time Square, 3) creation time is New Year
Eve, and 4) the file contains faces.

Apps can use pre-defined file features and may also define
new features. In CAFDS, some file features are pre-defined
based on the file metadata (e.g., size is larger than 1MB, type
is JPEG, files created in July 2018, etc.). However, apps might
be interested in additional features. Thus, CAFDS allows apps
to define their own features.

CAFDS provides two methods for apps to define new
features. If a new feature is based on file metadata, an app
can call CAFDS API to specify what matadata (e.g., file size,
type, etc.) should be examined, and the criteria for selecting a
file (e.g., feature greater than a threshold or being of a specific
type). If a new feature is based on file content (e.g., whether
a photo contains faces), an app must provide the code to run
on participants’ mobile devices in order to extract the required
file features from the file content.

When an app defines a new feature, it must register the
feature at the metadata server. The metadata server periodically
updates the file features for classifying files based on registered
new features, to improve the quality of classification.

D. Execution Flow of File Search

A file search request from an app is forwarded along with
the file context through the middleware to the metadata server.
The metadata server then identifies a group of files and their
locations. The metadata server uses a set of file features to
classify files into groups in order to speed up the search. Files
in the same group have similar features. When the files and
their locations have been found, the metadata server forwards
the requests to the middleware instances located at the mobiles
or VMs that have the requested files. The middleware instances
are in charge of sending the files to the requester.

IV. CAFDS DESIGN AND IMPLEMENTATION

A. CAFDS Instances and API

As shown in Figure 1, an instance of CAFDS runs on the
mobile and VM of each user who wants to use the CAFDS
service. A CAFDS instance consists of two layers. The upper

Fig. 2: Example of a decision tree for a group of files in CAFDS.

layer is embedded in each app through either compilation (for
lower overhead) or AspectJ [19] (for increased compatibility).
It exposes the CAFDS API to the app that requires CAFDS file
search support and intercepts file I/O operations to generate in-
dividual file search requests. The lower layer is an independent
system service. It 1) forwards requests to the metadata server,
2) extracts features from local files for easier search, 3) sends
files to other instances to satisfy their requests, and 4) receives
files and forwards them to apps to satisfy app requests.

As summarized in the Table I, CAFDS exposes a set of
API functions to support the query and management of file
features and to perform file search. The API follows an event-
driven and callback-based asynchronous design. The first eight
API functions are for creating and managing file features;
createMetadata() is to create the file context; and the last
function is to search based on the file context.

B. Metadata Server Design

The metadata server is a cloud component for processing file
requests submitted by apps. The core of the metadata server
is the data structure used to manage metadata and to support
searches. The metadata server uses a hash table to manage file
metadata with each entry being the metadata of a file and the
key being the file ID (e.g., the hash value of the file content).

The metadata server classifies files into groups based on
their features. The classification is done to significantly reduce
search complexity, since the number of files can be huge
and it is not realistic to go through all the files one by one.
After classification, the files in the same group are roughly
homogeneous when evaluated with various searching criteria
(i.e., file contexts). Thus, instead of checking all the files
one by one, searching is done much more efficiently by first
locating file groups and then examining the files in the groups.

There are two key concerns with this method. The first
concern is how to classify the files. A few facts make it
challenging: 1) there are various types of features; 2) the
value sets of some features (e.g., file sizes, creation time, and
location of origin) have huge cardinalities; and 3) searching
criteria are highly diverse. The second concern is how to
organize and search file groups efficiently. This is important
since the number of file groups can be large.

TABLE I: CAFDS API
Method Description
getFeatureTemplateList() Returns a list of all possible feature templates.
getAllDefinedFeatures() Returns a list of all defined features based on feature templates from the metadata manager.
getFeatureTemplate(FeatureID fid) Returns an object containing feature template from the metadata manager.
getFileFeature(FeatureID fid) Returns an object containing feature definition from the metadata manager.
onRegisterFileFeature(AppID aid,
List<FeatureID> featureList)

Method for registering features from a list, featureList to app with id, aid.

createFileFeature(FeatureID fid, Feature fea-
ture)

Method for creating new file feature with ID fid and feature values values. The definition of the feature,
definition is registered at the metadata manager.

updateFileFeature(FeatureID fid, Feature up-
datedFeature)

Method for updating an existing file features with ID fid. It replaces the current feature with an updated
feature updatedFeature

removeFileFeature(FeatureID fid) Removes a file feature with ID fid.
createMetadata(FileID fileId, Map
<FeatureID, FeatureValue> fileContext)

Creates and returns metadata of a file with Id fileId, which is hash of the content, and file context, i.e., a
collection of file features, and their respected values presented in fileContext

locateAndRetrieveFile(FileMetadata
metadata)

Sends a file search request to the metadata server to locate a file and waits for the requested file. The search
is performed using file metadata, metadata If the fid is not included in the metadata, CAFDS performs
a search based on features defined in fileContext. Otherwise, a search for a specific file is performed.

We address the above concerns using a decision tree, as
illustrated in Figure 2. The root of the decision tree represents
the whole set of files. Each child node represents a subset
of the files of the parent node, classified using a certain file
feature. For example, in the figure, the first child of the root
represents the files classified using the file feature “file type is
image”. The leaf nodes of the decision tree contain pointers
to the file entries in the hash table, such that the information
of the files can be located.

The selection of file features used to construct the decision
tree has a great impact on the efficiency and quality of the
search. CAFDS uses the ID3 algorithm [16] to select features
and construct the decision tree. The ID3 algorithm employs
a top-down, greedy method to search through the space of
possible features with no backtracking using Entropy as a
metric. Entropy measures the homogeneity of the file groups
represented by the leaf nodes. A lower Entropy means that the
files in each group are more homogeneous. The ID3 algorithm
constructs the decision tree in a way that minimizes Entropy.

After the decision tree is constructed, CAFDS uses it to
locate file groups when answering search requests. However,
the file contexts used in searches may change over time,
and thus the Entropy of the file groups on the decision tree
may also change. CAFDS needs to monitor the Entropy and
reconstruct the decision tree when it becomes too high. Since
calculating the Entropy is costly, we use a simpler method to
detect when the decision tree should be reconstructed. CAFDS
monitors the success rate of recent requests and reconstruct the
tree when the rate drops below a threshold, Th. The success
rate is the ratio between the number of files found and the total
number of files in the file groups located during the searches.

V. PERFORMANCE EVALUATION

We have implemented a prototype of CAFDS in Android
and Linux, and compared its performance against Chord [17]
and SPOON [14]. Although Chord is not new, we use it to
compare the performance of CAFDS against the class of DHT-
based P2P schemes. SPOON is a newer P2P system focused
on mobile users, and its lookup scheme has some similarity
to CAFDS. We also compared CAFDS with OFS [20], an
overlay file system for mobile-cloud computing. OFS gives us
a baseline performance to measure improvements.

Fig. 3: Decomposition of average end-to-end latency.

A. Experimental Settings

The experiments were conducted on a Nexus 6 smartphone
running Android 7 and Android x86 VMs running Android 6.
The phone was used as the mobile device where apps are first
launched. The Android x86 VMs are hosted in an OpenStack-
based cloud. CAFDS instances are installed on both the mobile
device and the VMs. The metadata server runs directly on the
Linux OS of a physical machine.

To drive CAFDS, we generate synthetic traces, play the
traces on the VMs, and measure the end-to-end latency of
file searches. The traces include 50,000 file requests from
18 different apps for 50 different users within 24 hours. To
support the requests, we populated the metadata server with
the information of 2,500 files of 4 file types (text, image, video,
and audio files). The types of files used by the aforementioned
apps are generated based on the related information from
BIOtrace [21]. In addition to 7 conventional file features, such
as file name, size, location and time of file creation, etc., we
also included 16 different types of file information, which
include image context, quality, photo tag, histogram, presence
of an object/face for images and video, speaker, and user tags
for text files. We generated the files with random content and
distributed them randomly on the VMs.

B. Experimental Results

Figure 3 shows the decomposition of the end-to-end latency
for CAFDS, Chord, SPOON and OFS. From the figure it
is clear that the end-to-end latency for searching a file in

Fig. 4: Effect of update algorithm with
different thresholds on end-to-end latency
and total overhead

(a) Increasing number of files (b) Increasing number of file requests
Fig. 5: Effect of different number of files and file requests on average end-to-end latency: (a)
increasing number of files, (b) increasing number of file requests.

CAFDS is substantially lower than that of other systems.
Chord, SPOON and OFS have 1.6x, 1.9x and 2.9x higher
end-to-end latency than CAFDS. The figure also shows that the
time spent on network communication contributes a major part
in the total latency, which consists of three major components:
latency to send the file request from VM to metadata server
(CAFDS) or VM to first node in the lookup scheme (Chord)
or community leader (SPOON) (labeled as “VM to Metadata
Server” in the figure), latency for the file request and metadata
processing (labeled as “Overhead for file request and metadata
processing” in the figure), and latency for fetching the file from
its current source (labeled as “Network latency for fetching
the file” in the figure). As expected the DHT-based lookup
scheme Chord spends the least amount of time on computation
(labeled as “Identifying correct user group” in the figure)
but the highest amount of time on communication since it
needs multiple network hops to locate the required files. The
amount of time spend by SPOON on computation is lower
than CAFDS because of its relatively simple lookup scheme.
However, due to its complex paths for forwarding search
requests and retrieving files, the time spent on processing
requests and the time spent on fetching files are both higher
than those with CAFDS. OFS fetches files directly from
mobile device. Therefore, its latency is the highest, and is
dominated by network communication (i.e., WiFi latency is
higher than latency within the cloud data center).

The metadata server reconstructs the tree when the success
rate of recent request drops below a threshold Th. The results
in Figure 4 show that increasing the threshold reduces end-
to-end latency, but also increases total overhead. For example,
increasing the threshold value from 75% to 95%, decreases
end-to-end latency by 11% because the classification with
the updated tree fits the searching criteria better. However, it
causes an increase of 27% in overhead, because the tree needs
to be reconstructed more frequently.

Instead of reconstructing the tree completely, an alternative
approach is to incrementally update it in the background when
new searching criteria are observed. We compared this ap-
proach with the reconstruction approach. On average, with the
update approach, the end-to-end delay is slightly lower (9%),
and the overhead is 20% higher compared the reconstruction
approach due to the extra overhead incurred by updates.

Finally, to test the scalability of the design, we perform
two tests. First, we increased the number of files present in
the system while keeping the number of users to 36 and the
number of file requests to approximately 46,000. Then we
increase the total number of search requests over the course of
each experiment (3.5 hours) while keeping the number of users
and files to 36 and 2,500, respectively. For each experiment,
we show the average end-to-end delay for CAFDS, Chord and
SPOON in Figure 5.

Figure 5(a) shows that, with the increase in the number of
files, the average end-to-end latency increases for all systems.
The latency increases by 8%, 5% and 11% on average for
CAFDS, Chord, and SPOON, respectively. As the files are
distributed over a large number of nodes, Chord requires
higher network overhead to locate the files. However, due
to its DHT-based lookup scheme, it has the lowest overhead
increase. In SPOON, users are organized in super-peers. With
the increasing number of files, the number of files to be fetched
from other super-peers is increased. This results in an increase
in average latency. CAFDS organizes the files into groups
based on their similarity. Therefore, even though the number of
files is increased, the number of file groups does not increase
as much. Thus, the increase of average latency in CAFDS is
lower than that of SPOON.

With an increasing number of file requests in each exper-
iment, the end-to-end latency is increased by 27%, 11% and
16% on average for CAFDS, Chord, and SPOON, respectively,
as shown in Figure 5(b). Chord distributes the requests over
a large number of users which causes it to have the lowest
increase of average latency. In SPOON, the local super-peer
handles a large number of additional requests. Due to requests
to other super-peers, the average latency is higher in this case.
In CAFDS, each VM and the metadata server need to process
a larger number of requests. This causes it to increase the
average latency.

To increase the scalability of CAFDS, we split the decision
tree into multiple chunks, with each chunk responsible for a
number of requests. These chunks are placed onto different
machines for faster processing. Also, if more than one VM
stores the same file, we implemented a round-robin method
to select a VM to respond the request. This scalable design
is implemented with both the decision tree reconstruction and

the aforementioned decision tree update approach. As shown
in Figure 5(b), the scalable design of CAFDS improves the
average latency by 19% and 13% respectively.

VI. RELATED WORK

This paper addresses the issue of file discovery in distributed
mobile-cloud (DMC) computing based on a variety of file
features that include file context and file content. Traditional
file search engines like Google Files Go [7] and Apple
Spotlight [8] or web search engines cannot be used because
they locate files using simple features such as file name,
keywords or tags. Also, they are not designed to serve as a
discovery and retrieval service for DMC apps, which run on
multiple mobile devices and VMs.

Systems [9]–[13] proposed to search files in distributed
and large scale file systems are not optimized for distributed
processing on mobile-cloud platforms. Propeller [10] creates
file indexes based on access sequences, and use them for
search. VSFS [11] uses namespace-based queries to locate
appropriate files. Glance [9] uses approximate processing of
aggregation and top k-queries on a small file sample for file
search. As file generation is highly dependent on user behavior
and file features may be defined/modified by different apps,
these systems are too restrictive for our requirements.

Systems such as Spyglass [13] and SmartStore [12] use
metadata search for locating appropriate files. In our scenario,
the definition of the metadata may be updated frequently by
different apps. Therefore, it can take a considerable amount
of time to update the existing metadata. Also, many of these
systems are dependent on existing file directories to optimize
the file search, which may be difficult to implement in our
distributed mobile-cloud environment.

Many P2P file systems, where file search is possible, can
also be applied to our scenario. Earlier P2P systems [17], [22]
were usually implemented on a single structure like DHTs [17]
or structuring points in d-dimensional space [22]. Compared
to CAFDS, their lookup schemes involve multiple network
hops which cause an increase in the file access latency. To
address this issue, newer systems [14], [15] employ multi-layer
P2P overlays. These systems divide users into interest groups,
which can later be used for searching the files. While these
systems support interest based groups, they do not support
complex app-defined features for search, and thus cannot be
easily used in our scenario.

VII. CONCLUSION

This paper proposed the Context-Aware File Discovery
System (CAFDS) for distributed mobile-cloud (DMC) apps.
CAFDS expands the file searching scope beyond a single app
to the mobile devices and VMs of all users willing to share
files. CAFDS is implemented as a service within a mobile-
cloud middleware that enables apps to perform seamless file
searching. A prototype of CAFDS was implemented and
validated in Android and Linux. By using a simple machine
learning technique, i.e., a modified decision tree, CAFDS
provides lower latency file access than traditional peer-to-peer

techniques. Therefore, CAFDS is expected to support novel,
data-intensive DMC apps, with low-latency requirements.

ACKNOWLEDGMENT

This research was supported by the NSF under Grants
No. CNS 1409523, CNS 1801430, SHF 1617749, and DGE
1565478.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 20162021 white paper,” https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html, [Online; accessed 02-Mar-2018].

[2] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in MobiSys ’10, 2010, pp. 49–62.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in EuroSys 2011,
2011, pp. 301–314.

[4] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Transactions
on Services Computing, pp. 1–1, 2018.

[5] H. Debnath, G. Gezzi, A. Corradi, N. Gehani, X. Ding, R. Curtmola,
and C. Borcea, “Collaborative offloading for distributed mobile-cloud
apps,” in IEEE MobileCloud ’18, 2018, pp. 87–94.

[6] M. A. Khan, H. Debnath, N. R. Paiker, N. Gehani, X. Ding, R. Curtmola,
and C. Borcea, “Moitree: A middleware for cloud-assisted mobile
distributed apps,” in MobileCloud ’16, 2016.

[7] Google, “Files go,” https://filesgo.google.com/, [Online; accessed 14-
Jul-2018].

[8] A. Inc., “Introduction to spotlight,” https://developer.apple.com/
library/content/documentation/Carbon/Conceptual/MetadataIntro/
MetadataIntro.html, [Online; accessed 14-Jul-2018].

[9] H. H. Huang, N. Zhang, W. Wang, G. Das, and A. S. Szalay, “Just-in-
time analytics on large file systems,” IEEE Trans. on Computers, vol. 61,
no. 11, pp. 1651–1664, 2012.

[10] L. Xu, H. Jiang, L. Tian, and Z. Huang, “Propeller: A scalable real-time
file-search service in distributed systems,” in ICDCS’14, 2014.

[11] L. Xu, Z. Huang, H. Jiang, L. Tian, and D. Swanson, “VSFS: A
searchable distributed file system,” in PDSW’14, Nov 2014, pp. 25–30.

[12] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “Smartstore: A
new metadata organization paradigm with semantic-awareness for next-
generation file systems,” in SC ’09, 2009, pp. 10:1–10:12.

[13] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller, “Spy-
glass: Fast, scalable metadata search for large-scale storage systems,” in
FAST’09, 2009, pp. 153–166.

[14] K. Chen, H. Shen, and H. Zhang, “Leveraging social networks for P2P
content-based file sharing in disconnected MANETs,” IEEE Transac-
tions on Mobile Computing, vol. 13, no. 2, pp. 235–249, Feb 2014.

[15] S. Brienza, S. E. Cebeci, S. S. Masoumzadeh, H. Hlavacs, O. Özkasap,
and G. Anastasi, “A survey on energy efficiency in p2p systems: File
distribution, content streaming, and epidemics,” ACM Comput. Surv.,
vol. 48, no. 3, pp. 36:1–36:37, 2015.

[16] “ID3 algorithm,” https://en.wikipedia.org/wiki/ID3 algorithm, [Online;
accessed 14-Jul-2018].

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of the ACM SIGCOMM, 2001, pp. 149–160.

[18] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. Khan, and H. Debnath,
“Avatar: Mobile distributed computing in the cloud,” in MobileCloud
’15, 2015, pp. 151–156.

[19] “AspectJ,” https://eclipse.org/aspectj/, [Online; accessed 14-Jul-2018].
[20] N. R. Paiker, J. Shan, C. Borcea, N. Gehani, R. Curtmola, and X. Ding,

“Design and implementation of an overlay file system for cloud-assisted
mobile apps,” IEEE Tran. on Cloud Computing, 2017.

[21] D. Zhou, W. Pan, W. Wang, and T. Xie, “I/O characteristics of smart-
phone applications and their implications for eMMC design,” in IEEE
Int. Symp. on Workload Characterization, Oct 2015, pp. 12–21.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” ACM SIGCOMM Comput.
Commun. Rev., vol. 31, no. 4, pp. 161–172, 2001.

