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Abstract—The ever-evolving mobile applications need more
and more computing resources to smooth user experience and
sometimes meet delay requirements. Therefore, mobile devices
(MDs) are gradually having difficulties to complete all tasks in
time due to the limitations of computing power and battery
life. To cope with this problem, mobile edge computing (MEC)
systems were created to help with task processing for MDs at
nearby edge servers. Existing works have been devoted to solving
MEC task offloading problems, including those with simple
delay constraints, but most of them neglect the coexistence of
deadline-constrained and delay-sensitive tasks (i.e., the diverse
delay sensitivities of tasks). In this paper, we propose an actor-
critic based deep reinforcement learning (ADRL) model that
takes the diverse delay sensitivities into account and offloads
tasks adaptively to minimize the total penalty caused by deadline
misses of deadline-constrained tasks and the lateness of delay-
sensitive tasks. We train the ADRL model using a real data
set that consists of the diverse delay sensitivities of tasks. Our
simulation results show that the proposed solution outperforms
several heuristic algorithms in terms of total penalty, and it also
retains its performance gains under different system settings.

Index Terms—Mobile edge computing, task offloading, diverse
delay sensitivities, actor-critic method, deep reinforcement learn-
ing.

I. INTRODUCTION

The emergence of newly designed mobile applications
requires powerful computing resources to facilitate smooth
user experience. In spite of their resource increases, mobile
devices (MDs) are still constrained in terms of both comput-
ing power and battery life. Therefore, computation-intensive
and delay-sensitive tasks are difficult to be performed en-
tirely on MDs. To overcome these challenges, mobile edge
computing (MEC) [1]–[3] was proposed to enable MDs to
offload tasks to edge servers (ESs) that are deployed in the
vicinity. Compared with conventional cloud computing, MEC
not only offers lower latency and higher scalability, but also
reduces the amount of data traffic in the core network. Thanks
to these advantages, MEC becomes a promising platform to
help process tasks on behalf of MDs, thereby ensuring these
tasks can be completed on time.

Each MD may have applications that generate tasks with
different sensitivity levels toward task completion. To differ-
entiate tasks with diverse delay sensitivities, we categorize
them into two service classes1: deadline-constrained and

1Each service class can be further divided into multiple sub-classes to
support finer-grained delay sensitivities.

delay-sensitive. A deadline-constrained task (e.g., real-time
object detection in a safety application) has a task deadline
before which it should be finished; otherwise, the computa-
tion result is useless, which could affect adversely the user
experience. On the other hand, a delay-sensitive task (e.g.,
augmented reality gaming, non-real time video analytics)
does not have a task deadline to meet, but it is relatively
sensitive to the lateness of task completion time. Due to the
different sensitivity levels of tasks, it is therefore important
to offload tasks adaptively while tasks with the diverse delay
sensitivities coexist in MEC systems2.

Prior works have studied task offloading to satisfy delay
constraints. Wang et al. [8] aim to minimize the usage of
computing resources while ensuring that all computational
demands can be answered on time. Yin et al. [9] investigate
a multi-resource allocation problem where each task is asso-
ciated with a profit if it can be executed before its deadline.
Feng et al. [10] propose a framework with the purpose of
increasing the computational capabilities of vehicles with
deadlines. Tao et al. [11] introduce an opportunistic helper
to minimize energy consumption under delay constraints.
Pu et al. [12] propose a framework to minimize energy
consumption, while considering application deadlines and
vehicle incentives. All these works neglect the coexistence
of tasks with diverse delay sensitivities in MEC, which may
result in unsatisfactory user experience.

Finding an optimal task offloading strategy in MEC sys-
tems is in computationally prohibitive [13]. To address such
an intractable problem, several solutions can be found in
literature (e.g., queueing theory, combinatorial optimization,
or machine learning), among which deep reinforcement learn-
ing (DRL) has been lately regarded as a promising one.
Yu et al. [14] propose a deep supervised learning model to
minimize computation and offloading costs. Xu et al. [15]
develop a post-decision state-based RL algorithm to minimize
service delays and operational costs. Li et al. [16] aim to
minimize delay and energy consumption through Q-learning
and deep Q-network (DQN) schemes. Le et al. [17] propose
a DRL-based offloading algorithm to maximize user utility

2Task offloading can also be designed in accordance with energy har-
vesting [4], multiple connectivity [5], vehicles [6], or the availability of
both computing and radio resources [7]. In this paper, we focus on how
to intelligently offload tasks with diverse delay sensitivities.



while minimizing the incurred cost. Chen et al. [18] design
a double DQN-based RL algorithm to maximize long-term
utility. Although these works can guide us to learning-based
task offloading, it remains unclear how to leverage state-of-
the-art RL to offload tasks with diverse delay sensitivities.

This paper investigates the problem of task offloading in
MEC systems while considering the diverse delay sensitivities
of tasks. We propose an actor-critic [19] based DRL (ADRL)
model to minimize the total penalty that is attributed to the
deadline misses of deadline-constrained tasks and the lateness
of delay-sensitive tasks. We train the ADRL model using a
real data set, from which we can observe the diverse delay
sensitivities of tasks. Our simulation results show that the
ADRL model outperforms several heuristic algorithms in
terms of total penalty, as it can offload deadline-aware and
delay-sensitive tasks differently. Even if the system is heavily
loaded or it does not have a lot of computing power at the
edge, the ADRL model can still reach low total penalty as it
can learn well from the environment.

The rest of this paper is organized as follows. Sec. II
presents the system model. Sec. III describes our solution,
ADRL. Sec. IV shows simulation results and analysis. The
paper concludes in Sec. V.

II. SYSTEM MODEL

A. Network Environment

We consider a MEC system that consists of a set U of MDs
generating tasks, the set of all tasks J , and a set N of ESs (as
depicted in Fig. 1). We assume ESs are either co-located with
the base stations (BSs) or close to the BSs, such that they can
interact with MDs with low latency. All these BSs connect to
an offloading controller which employs an offloading policy
to select an appropriate ES for each task. Both MDs and ESs
are capable of processing tasks. Each task generated by an
MD is indivisible, and it can be either processed locally or
offloaded to an ES in N .

Each time an MD generates a task, it sends this task to
the controller through a nearby BS. The controller collects
the state of each ES and makes offloading decisions: offload
this task to a specific ES or guide the MD to process the task
locally. After receiving the task from the controller, an ES
stores this task in its dedicated queue and process it according
to a scheduling policy. Although various scheduling policies
can be employed in a MEC system, here we choose the
first-come-first-served policy. We assume that each ES has a
limited capacity, and it can store at most l tasks in its queue.
The ES executes the tasks according to the scheduling policy
the task and sends the results back to MDs. For simplicity,
we do not allow ESs to migrate a task among them after
offloading.

B. Time Information of Tasks

Let trelj denote the release time of task j to indicate that the
hosting MD generates this task at time trelj . The uploading
delay tupjk and the downloading delay tdown

jk characterize the
effects of the wireless network quality between the hosting
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Fig. 1: In the considered MEC system, mobile devices
generate tasks with diverse delay sensitivities and the task
offloading controller manages the computing resources of
ESs, collects task information (through BSs), then makes
offloading decisions.

MD and the nearby BS, as well as the network delay between
the controller and ES k.

If task j is offloaded to ES k, ES k cannot start processing
task j before trelj +tupjk . On completion of the computation by
ES k, the hosting MD needs the additional time of tdown

jk to
get the result. If the hosting MD processes the task locally,
it can get the result right after the task completion.

The processing time for task j is denoted by tedgejk and tlocalj

for the edge computation at ES k and the local computation,
respectively. Generally, tedgejk is substantially lower than tlocalj

because ESs have more powerful computing resources than
MDs. We define the computability ratio ρk between ES k and
the MD: tlocalj = ρk · tedgejk .

All tasks must be processed either locally or through
offloading. If all the queues of ESs are full, a newly generated
task must be executed locally. We assume that uploading
and downloading a task do not consume any computation
resources at the ES. The completion time of a task j, tcomj ,
is defined as:

tcomj =

{
tlocalj , (locally)
tupjk + twait

jk + tedgejk + tdown
jk , (at ES k)

(1)

where twait
jk is the waiting time of task j at ES k.

C. Diverse Delay Sensitivities

The diverse delay sensitivities indicate the coexistence of
deadline-constrained and delay-sensitive tasks. For simplicity,
we partition J into two disjoint sets J dc and J ds, which
represent the sets of deadline-constrained and delay-sensitive
tasks, respectively.

• For each deadline-constrained task, the goal is to com-
plete the task within its predefined deadline, and hence
the resulting penalty can be expressed as

fj =

{
wDj , if tcomj ≥ Dj ,

0, otherwise,
∀j ∈ J dc, (2)

where Dj is the deadline of task j and wDj is the penalty
for missing this deadline, which is typically set to a large
constant value.
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Fig. 2: The basic ADRL model.

• For each delay-sensitive task, there is no predefined
deadline to meet, but the service satisfaction decreases
with the task completion time. Without loss of generality,
we write the penalty as

fj = gj(t
com
j ), ∀j ∈ J ds, (3)

where gj is a monotonically increasing function (which
is often modeled as a linear or a convex function).

III. ADRL MODEL

A. Introduction to DRL

Reinforcement learning (RL) [20] is an approach to learn
how to map states to actions in order to maximize a numerical
reward. An RL agent interacts with an environment over time.
At each time step t, the agent first observes the state st of
the environment in a state space S, and selects an action at
in an action space A based on a policy π. After selecting
the action, the state of the environment transitions to the next
state st+1, and the agent receives a reward rt according to the
environment dynamics. The state transition probabilities and
rewards are stochastic and are assumed to have the Markov
property, namely they depend only on the previous state of the
environment and the action taken by the agent. This process
continues until the agent reaches a terminal state. The return
Rt =

∑∞
k=0 γ

krt+k is the accumulated discounted reward
with the discount factor γ ∈ (0, 1], which determines the
present value of future rewards. The agent aims to maximize
the expectation of R.

In most problems of practical interest, the state space is
enormous, and there are too many possible state-action pairs.
Hence, it is not viable to store the policy π entirely in a tabular
form and yield an optimal policy in a short time. Therefore,
our alternative goal is to find a good function approximation
of π using limited computing resources.

In many forms of function approximations, deep neural
networks (DNNs) have recently been used successfully to
solve large-scale RL problems [21], also known as deep
reinforcement learning (DRL) [22]. In this method, the
learning algorithm adjusts the parameters θ of a DNN over
the entire state space. Hence, we represent the policy as
π(a|s; θ), which means the agent adopts a policy determined
by parameters θ.

B. Asynchronous Advantage Actor-Critic (A3C) Algorithm

Fig. 2 shows our ADRL model, which uses A3C, a state-
of-the-art actor-critic RL algorithm [19]. The agent will train
two neural networks: a critic estimates the value function
V (st; θv) that measures how good a certain state is to be in;
an actor maintains a policy π(at|st; θ) that controls how RL
agent behaves.

Instead of learning the policy that maps states to actions
π(at|st; θ) directly, the RL agent uses the estimate of value
function to update the policy more intelligently than tradi-
tional policy gradient methods.

The A3C algorithm updates parameters via

∆θ = α︸︷︷︸
learning rate

·∇θ log π(at|st; θ)︸ ︷︷ ︸
policy gradient

·A(st, at; θ, θv)︸ ︷︷ ︸
estimated advantage function

, (4)

where α is the learning rate that controls how much we
adjust the weights of our DNN with respect to the gradient,
∇θ log π(at|st; θ) gives the direction on how to change the
policy parameters, and A(st, at; θ, θv) is an estimate of the
advantage function given by Rt−V (st; θv) which tells the RL
agent how much better or worse the accumulated discounted
reward turned out to be than expected. Here, the accumulated
discounted reward Rt can be seen as an estimate of expected
return for selecting action at in state st and following policy
π.

A3C utilizes multiple incarnations of the above RL agent
to learn more efficiently. Each RL agent in A3C has its
own network parameters regarding the global network. Each
of these RL agents interacts with its own copy of the
environment at the same time with the other agents. The
experience of each RL agent is different from the others;
hence, the overall experience available for training becomes
more diverse.

C. ADRL Formulation

The controller runs a trained RL agent to make offloading
decisions, and the whole MEC system can be seen as the
environment of the ADRL model. The problem of making
an offloading decision for MDs is formulated as a Markov
Decision Process (MDP), and the main goal of the system is
to find the optimal policy π which minimizes the total penalty
of all tasks.

1) State space: The state space S of this system consists
of the current state of all queues and the information of the
task waiting for offloading, and it is represented as

S =
{
(xj , Q(trelj ))

}
, (5)

where Q(trelj ) is the state of all ESs’ queues (defined below)
at time trelj , and xj is time information of the current task j.
xj is defined as

xj =
(
tupj , tdown

j , tlocalj , tedgej , class
)
, (6)

where class indicates which delay sensitivity task j has,
tupj = (tupj1 , . . . , t

up
j|N |), tdown

j = (tdown
j1 , . . . , tdown

j|N | ), and
tedgej = (tedgej1 , . . . , tedgej|N |) are uploading delays from the



hosting MD to all ESs, downloading delays from ESs to MD,
and edge processing time at each ES, respectively.

The state of all queues is defined as

Q(t) =
(
q1(t), q2(t), . . . , q|N |(t)

)
, (7)

where qk(t) = ((τupk1 (t), τ
proc
k1 (t)), . . . , (τupkl (t), τ

proc
kl (t)))

refers to the state of the queue of ES k at time t. To
characterize the queueing behaviors of tasks in each ES ek,
we use τupki (t) and τprocki (t) to represent the residual uploading
and processing time of the i-th scheduled task at time t,
respectively, which can be expressed as

τupki (t) = max
(
trelσi

k
+ tup

σi
kk

− t, 0
)
, (8)

τprocki (t) = max
(
trelσi

k
+ tup

σi
kk

+ twait
σi
kk

+ tedge
σi
kk

− t, 0
)
, (9)

where σi
k corresponds to the actual task that is scheduled as

the i-th task in ES ek.
2) Action space: The action space is defined as:

A = {a ∈ {0, 1, 2, ..., |N |}} , (10)

where a = 0 is to execute this task locally, and a = k > 0
indicates to offload this task to ES k. Our system only chooses
valid actions, i.e., it can only offload the task to the ESs where
the queues are not full. If all the queues are full, the controller
can only choose the action a = 0.

3) Reward: The objective of the system is to minimize the
total penalty

∑
j∈J fj , which is equivalent to maximizing the

total reward of the ADRL model. Therefore, we can simply
set the reward at each step to −fj for each task j in the
ADRL model.

4) Training method: We use a variable time step size
learning method to train our ADRL model instead of slicing
the time into uniform time slices. This means our approach
only makes offloading decisions when an MD generates a
task rather than at each time slice.

IV. PERFORMANCE EVALUATION

This section compares the performance of our ADRL
model with several heuristic algorithms, and then shows how
the achieved performance varies with system settings.

A. Simulation Settings

The default parameter settings (unless stated otherwise) for
our system and the ADRL model are shown in TABLE I, and
the detailed task settings are described below.

TABLE I: Simulation Settings

Parameters Symbols Values
Number of MDs |U| 500

Number of ESs |N | 4

Maximum queue length l 8

Uploading delay tup Unif(0.03, 0.2) [s]
Downloading delay tdown Unif(0.01, 0.1) [s]
Computability ratio ρk 4.0

Deadline Dj 1.0 [s]
Penalty (h=0) wDj

20

Penalty (h=1) gj 1.0 · tcomj

Penalty (h=2) gj 0.1 · tcomj
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(a) The diversity of task delay sensitivities.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F h=0

h=1

h=2

All

(b) The cumulative distribution of task inter-arrival
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(c) The cumulative distribution of task processing
time.

Fig. 3: Task modeling.

Fig. 4: The accumulated discounted reward over iterations.

1) Data set: To have more realistic simulation results, we
use a real data set, Google Cluster [23], instead of ideal
stochastic processes. From this data set, we collect 344,954
tasks and uniformly map them into 1,000 groups, each of
which represents the set of tasks generated by an MD. In the
following, we will randomly pick up |U| groups and use the
corresponding sets of tasks.

2) Diverse delay sensitivities: Every task in the data set
is associated with a specific value h ∈ {0, 1, 2} that indicates
the delay sensitivity of the task, where 0 and 2 are the
highest and lowest delay sensitivities, respectively. Let J dc,
J ds
1 and J ds

2 be the sets of tasks labeled as h = 0, 1 and
2, respectively. From Fig. 3a, we see that there are a large
number of tasks in every delay sensitivity, revealing that tasks
with the diverse delay sensitivities indeed take place in real
world.
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Fig. 5: The impact of deadlines.
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Fig. 6: The impact of the system load.
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Fig. 7: The impact of the edge computability.

3) Task arrival: The arrival time information of the data
set can be used to characterize the release time of tasks. From
Fig. 3b, we see that up to 90% of the tasks have inter-arrival
time below 0.5 seconds. This observation shows that the tasks
are generated frequently and thus motivates MDs to offload.

4) Task processing: Each ES schedules tasks in a first-
come-first-served fashion. The processing time of a task on an
ES is set to the values shown in Fig. 3c, where we see that the
deadline-constrained tasks have shorter processing time than
the delay-sensitive tasks. This observation also conforms with
the intuition that the processing time of deadline-constrained
tasks is typically short, so that all of them can hopefully be
completed on time.

5) Training for the ADRL model: We use two DNNs
(each of them is a three-layer fully connected NN with a
Relu activation function Relu(x) = max(x, 0)) to set up the
ADRL model. The optimization model is implemented with

the Adam gradient descent optimization algorithm [24] for
training the agent. For convergence, we set the discount factor
to 0.99. In each iteration, we use 80% of the task data for
training and the rest for testing.

B. Heuristic Algorithms

For performance comparison, we use the following heuris-
tic algorithms.

• Local: all tasks are processed locally.
• Greedy: each task will be processed by an ES that

minimizes its completion time.
• Greedy+: each task will be processed by a machine

(MD or ES) that minimizes its completion time.
• DC: each deadline-constrained task will be processed

by an ES that minimizes its completion time, while all
delay-sensitive tasks are processed locally.



C. Simulation Results

1) The convergence of training: It is essential to under-
stand how the training of the proposed solution converges
over iterations. We see in Fig. 4 that the accumulated
discounted reward increases steadily with the number of
iterations. In addition, the performance boosts rapidly in the
first 100 iterations and soon becomes stable in later iterations.

2) The impact of deadlines: Fig. 5 depicts how the system
performance varies with deadlines. We see in Fig. 5a that
ADRL achieves the lowest total penalty, since it properly
controls offloading ratios as compared with other algorithms
(see Fig. 5b). As the deadline increases, delay-sensitive tasks
achieve shorter completion time at the price of slightly longer
completion time for deadline-constrained tasks (see Fig. 5c).
This is because there is no penalty for deadline-constrained
tasks as long as no deadline misses take place.

3) The impact of the system load: Fig. 6 shows how the
number of MDs influences the system performance. We see in
Fig. 6a that ADRL retains the lowest total penalty, revealing
that it is robust to the system load. Even with a large number
of MDs, ADRL can still keep the offloading ratio of deadline-
constrained tasks stable by decreasing the total offloading
ratio (see Fig. 6b), while slightly sacrificing the completion
time of delay-sensitive tasks (see Fig. 6c).

4) The impact of the edge computing power: Fig. 7 depicts
how the number of ESs affects the system performance. We
see in Fig. 7a that ADRL can better utilize the abundant
computing resources to keep the total penalty low, thanks to
its appropriate offloading ratio for each delay sensitivity class
(see Fig. 7b). Furthermore, the higher the number of ESs, the
lower the completion time of both deadline-constrained and
delay-sensitive tasks (see Fig. 7c).

V. CONCLUSION

The performance of task offloading, and implicitly of
task scheduling, is key to the success of MEC systems.
Task offloading is challenging when taking the diverse delay
sensitivities of tasks into account. To address this problem,
we propose the ADRL model to optimize the scheduling of
all tasks by minimizing their total penalty. ADRL is trained
using a real data set that consists of deadline-constrained and
delay-sensitive tasks. Our simulation results demonstrate that
the ADRL model outperforms other heuristic algorithms in
that it intelligently controls the offloading rates and balances
the offloading ratios between deadline-constrained and delay-
sensitive tasks. When the system load increases or the edge
computing power decreases, the ADRL model can still keep
the total penalty low as it provides better protection to
deadline-constrained tasks, at the price of longer completion
time for delay-sensitive tasks.
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