Trusted Application-Centric Ad-Hoc Networks *

Gang Xu'3, Cristian Borcea?, and Liviu Iftode’

I Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA
2 Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
3 AT&T, 200 Laurel Ave, Middletown, NJ 07748, USA
{gxu, iftode} @cs.rutgers.edu, borcea@cs.njit.edu

Abstract

Nodes in MANETSs lack the protection offered by fire-
walls in infrastructure-based networks because malicious
nodes can roam into the vicinity of another node and start
launching attacks. This paper presents a distributed mecha-
nism that allows trusted nodes to create protected networks
in MANETS. A protected network is created to run a specific
application and enforce a common network access control
policy associated with that application. To become a mem-
ber in the protected network, a node has to demonstrate
its trustworthiness by proving its ability to enforce policies.
Attacks from untrusted nodes are impossible because these
nodes are not allowed to establish wireless links with mem-
ber nodes. Attacks from member nodes are stopped at the
originators by the network policy. The trusted execution of
all programs involved in policy enforcement is guaranteed
by a kernel agent. We demonstrate the correctness of our
solution through security analysis and its feasibility through
a prototype implementation tested over an IEEE 802.11 ad
hoc network.

1 Introduction

With the appearance of a large number of laptops, smart
phones and wireless-enabled vehicular systems, applica-
tions running over mobile ad hoc networks (MANETS)
can finally make their real-life debut [20, 1]. However,
many people are still reluctant to allow their devices to join
MANETS because current technologies can at most react to
attacks from malicious users after these attacks happened.
Unfortunately, they cannot prevent attacks from reaching
“good” nodes as firewalls do in infrastructure-based net-
works. Practically, the concept of protected networks,
shielded from external attacks by a firewall enforcing a net-
work access control policy, does not exist in MANETS. The

*This work was supported in part by the NSF grants CCR-0133366,
ANI-0121416, CNS-0520123 and CNS-0520033

1-4244-1455-5/07/$25.00 (©2007 IEEE

reason is that malicious nodes can simply roam into the
wireless transmission range of another node, establish a di-
rect wireless link, and start launching attacks.

As an example, let us consider a group of users who
run a peer-to-peer file sharing application across a MANET
composed of their smart phones. Through a direct wireless
link or ad hoc routing, a malicious user can attempt to ex-
ploit a vulnerability in this application to compromise other
nodes. Since there are no prior trust relationships between
the nodes, it is impossible to identify the untrusted nodes
and protect against them. Furthermore, even if these nodes
are known and the attacks launched from them are detected,
these attacks can still reach the trusted nodes causing deple-
tion of resources on smart phones (e.g., battery). To make
things even worse, given the relatively low network capac-
ity, a single attacker can flood the entire network and make
it unusable.

This paper presents a distributed mechanism to cre-
ate protected MANETs. Our solution is driven by an
application-centric view of MANETs. In most cases, a
group of nodes form such networks to execute a specific
application (e.g., a game, a peer-to-peer file sharing appli-
cation). Therefore, it is possible to define a common policy
agreed upon by all participants who want to benefit from the
application and foil attacks. The right policy and enforcing
software (referred to as enforcer) must be in place in order
to stop a specific attack. In their simplest forms, a policy
can be defined as a set of access control rules, and the en-
forcer can be a regular packet filter. Each participant must
obtain the policy before joining the protected network. The
initial nodes of the network obtain the policy through nego-
tiation or from the authority that deploys the network. New
participants can download it from other member nodes.

Our mechanism requires all member nodes to enforce the
common network access control policy, specific to the ap-
plication that triggered the formation of the network. A
node’s trustworthiness in enforcing the policy is verified
before it can establish link layer connectivity with the pro-
tected network. Attacks at the network or above layers from

untrusted external nodes are impossible because these nodes
cannot establish wireless links with any member node. At-
tacks from trusted ! member nodes are suppressed at the
originators by the common network policy. The trusted en-
forcement of the policy is guaranteed by a kernel agent,
which ensures that a node can communicate in the network
only if the execution of all programs involved in policy en-
forcement is not tampered with; otherwise, the agent tears
down the links of its node.

This mechanism is built on top of Satem [28], our trusted
computing system based on a low-end trusted hardware,
the Trusted Platform Module (TPM) [26], which guarantees
trusted execution for a set of software components. Due
to its low cost and broad support by computer makers, the
TPM has been already integrated in many laptops (e.g., HP
nc6020, Lenovo ThinkPad T43). In the near future, it will
also be installed on smaller mobile devices such as PDAs
and mobile phones [27], which makes the TPM-based ap-
proach usable for many types of ad hoc networks. We im-
plemented a prototype on Linux-based systems and tested
it over an IEEE 802.11-based ad hoc network. The experi-
mental results demonstrate the feasibility and low overhead
incurred by our system.

The paper is organized as follows. Section 2 gives a brief
overview of Satem, our trusted computing system. In Sec-
tions 3 and 4, we describe the system architecture and the
security protocols that support trusted policy enforcement
in ad hoc networks. We demonstrate the use of our method
through a case study in Section 5. Section 6 presents the
prototype implementation and its experimental evaluation.
Section 7 addresses issues regarding multiple applications,
policy update and mobility. Related work is discussed in
Section 8. Finally, the paper concludes in Section 9.

2 Satem: A Trusted Computing System

This section presents an overview of Satem [28], our
trusted computing system that was leveraged to build the
mechanism for creating and maintaining trusted ad hoc net-
works. Originally, we designed and implemented Satem to
ensure requesters of a remote network service that the ser-
vice executes only trusted code.

Overview. Satem is composed of a trusted agent in the
OS kernel of the service platform and a trust evaluator on
the user platform. The service provider performs the attesta-
tion of the OS kernel (including the trusted agent) through a
trusted boot process using the TPM specified by the Trusted
Computing Group (TCG). Subsequently, the trusted agent
takes advantage of the service execution context to attest

IBy trusted node, we mean any node that can be trusted to enforce
the common network access control policy, independent of its trusted or
untrusted owner.

only the code loaded dynamically by the service. More im-
portantly, it ensures that the service executes only trusted
code by protecting the service execution in the OS kernel.

Central to Satem is the commitment protocol. Be-
fore starting a transaction with a service, users request the
trusted agent to provide the attestation of the OS kernel, a
kernel commitment, and a service commitment. The com-
mitments describe all the code files the kernel and the ser-
vice may execute in all circumstances (e.g., executables, li-
braries). The trusted agent enforces the kernel commitment
at boot time and the service commitment upon being started,
such that the kernel and the service are forbidden to load
any code files that are either undefined in the commitment
or tampered with. Therefore, if the requester verifies that
the kernel, the agent, and the commitments are trusted, it
is convinced that (1) the service has executed only trusted
code up to the time of attestation; and (2) the service will
continue to do so in the following phases due to the protec-
tion provided by the trusted agent.

Trusted System Initialization. In Satem, the first step
is to establish the trusted computing base that includes the
trusted agent and the entire OS kernel. This process in-
volves a trusted boot, in which each component in the boot
sequence, starting from the TPM, attests the next one before
handing over the control. For instance, on a Linux system
such as the one used for our prototype, TPM computes the
SHA1 hash over the BIOS image, BIOS computes the SHAL
hash over LILO, and LILO does the same for the OS ker-
nel. The attestation result is saved in a TPM internal register
and can be retrieved as a TPM report, which is signed with
a TPM internal private key to prove its genuineness. The
trusted agent is loaded along with the kernel. The user is
not allowed to disable the agent unless she reboots the ma-
chine. As a result, the TPM report containing the attestation
result saved in the TPM is sufficient to prove a genuine ker-
nel and trusted agent.

Commitment. Satem defines one kernel commitment
for the system and one service commitment for each service
that wants to use it (referred to as protected service). Each
piece of software described in the commitments is defined
by a combination of its identifier (e.g., name and version)
and the SHA1 hashes of all its code files. To verify the com-
mitment, the requester must have the correct SHA1 hashes
of all the code files defined in the commitment; but given
the wide variety of software, this is impractical. We solve
this problem by generating the commitment as a certificate
through cooperation with the service software vendors and
a third-party trusted certificate authority (CA). This process
consists of two steps:

1. Request code certificates. The service provider re-
quests each vendor to generate a self-signed code cer-
tificate in the same format as the commitment for its
code.

EIAP/ERAP

user space Connection Manager < > Connection Manager
Policy Trusted Link | Link Layer Connection Link Trusted Policy
kernel space | Enforcer Agent Driver | - " Driver Agent Enforcer
hardware TPM Wireless NIC Wireless NIC TPM

Figure 1. The Common Security Architecture at Nodes

2. Sign the commitment. The requester forwards all the
code certificates and the commitment to a third-party
trusted CA. The CA needs to verify the signatures of
all code certificates and compare the code hashes in the
commitment against the certificates. The CA signs the
commitment if and only if it verifies all code certifi-
cates and code hashes in the commitment.

Satem only guarantees the integrity and the authenticity
of the code, but not its correctness. The requester must have
a local trust policy that governs which kernel and services
are trusted. It takes two steps to verify whether a service is
trusted. First, it authenticates the kernel and service com-
mitment certificates and learns the identities of the kernel,
its modules, and the service 2. Second, it verifies the kernel
and the service against the trust policy.

Enforcement The agent enforces the kernel and ser-
vice commitments in the same way. It inserts check-
points in the kernel functions related to new code loading,
such as do_execve, sys_i ni t _-nodul e, do_r ead and
do_mmap, etc. Each checkpoint does the following:

1. checks if the current process belongs to the protected
service;

2. if positive, attests the code to be loaded and compares
the result with the commitment;

3. if they do not match, the attempted load is denied;

4. if they match, the trusted agent loads the code and pro-
tects it in memory by standard process isolation pro-
vided by the OS kernel. In particular, it disables direct
memory access from user space via / dev/ memand
/ dev/ kmem

3 Security Architecture

The essential idea of our mechanism is to allow only
nodes that can be trusted to enforce a common network pol-
icy to be part of the protected ad hoc network, regardless

2The commitment authentication is not trivial in ad hoc networks. Sec-
tion 3 presents our solution for such networks.

of whether the node is owned by a trusted entity or not. To
accomplish this goal, each node supports a modified ver-
sion of Satem (i.e., the trusted agent is modified for policy
enforcement) augmented with a connection manager and a
policy enforcer as illustrated in Figure 1. The connection
manager establishes the link layer connection and shares the
policy with other nodes. The policy is a set of access con-
trol rules, and the enforcer is a packet filter, such as Linux
netfilter, that can enforce the rules.

We adapt Satem to ensure trusted execution of all code
involved in the policy enforcement. First, according to
Satem, the OS kernel (including the trusted agent, the pol-
icy enforcer, and the link layer driver) is attested by default.
Second, we define a link commitment, which includes the
connection manager in its protection scope. Third, we mod-
ify Satem’s service-oriented commitment protocol and inte-
grate it into the link layer access control protocols. This part
of the design will be detailed in Section 4.

Commitment Evaluation. In Satem, evaluating a com-
mitment is reduced to authenticating the certificate. In gen-
eral, this is non-trivial in ad hoc networks due to the lack
of constant connection to the Internet and PKI. A node may
still be able to authenticate a certificate if it locally holds
the public key of the signing certificate authority or a valid
certificate chain to it. However, it is unable to validate in
real-time the certificate since it has no access to the CA’s
certificate revocation list.

The above issue can be significantly alleviated given the
special nature of the problem we aim to solve. As discussed
in [10], although nodes do not have persistent Internet con-
nectivity, they can still get online from time to time. For ex-
ample, a user may be off-line on an inter-city train most of
the time, but get online when the train enters a train station.
Furthermore, a Satem commitment only states that a code
file has a certain corresponding SHAL1 digest. This fact is
invariant under any circumstance. Lastly, since the ad hoc
network is formed for a specific task and only lasts for a
relatively short period of time, the likelihood of revoking a
certificate is negligible.

Based on the above observations, we introduce a short-
life certificate to authenticate the commitment. When being
connected to the Internet, each node obtains a regular long-

UP: Uncontrolled Port

CP: Controlled Port Network
Services
IAL
Connection Connection —;\
Manager Manager 1
Network A A
Layer ' :
Wireless smfeime Authentication Only. ___ 2o |_cp
Link Layer -
Link Driver Any traffic Link Driver

Figure 2. Dual Port Access Control

life commitment certificate C'7,, a short-life commitment
certificate C's and the authority’s certificate C'4. When los-
ing Internet connectivity, the node can still use the C'4 to
authenticate C's of other nodes. Since this certificate is only
good for a short period of time, there is no need to be con-
cerned about revocation. After C's expires, the node needs
to regain Internet access to renew it using its C'r,. The CA
verifies the C, using PKI and grants the renewal request
without re-authenticating it from scratch.

Policy Creation. If a MANET is deployed by an au-
thority, this authority is responsible for defining and up-
dating the policy. To ensure its authenticity, the authority
signs the policy and preloads its public key on each node.
If the MANET is created spontaneously by a set of nodes
(referred to as the creators of the network hereafter), the
creators negotiate the policy using existing links. A typical
scenario is that the node that initiates the network, drafts
the policy and proposes it to the others. The policy can
be signed using threshold based methods such as [16, 29].
When the policy is defined, all creators drop the existing
wireless links with each other. These peers then rejoin the
network by running the secure protocol described in Sec-
tion 4.

In spontaneously-created MANET, there is no assump-
tion about the correctness or trustworthiness of the policy.
All the creators may be malicious, and they form the net-
work just to attract innocent nodes. Therefore, a node may
need to evaluate the policy independently based on its own
need and capability of enforcing the policy. Since all nodes
intending to join the network have the goal of executing a
common application, they are motivated to accept a reason-
able common access control policy to benefit from the ap-
plication and protect themselves from attacks.

Each node may already have a local policy to protect it-
self from malicious nodes. There may be a conflict between
the local policy and the network policy. Policy rule con-
flict discovery and resolution has been extensively studied
and many methods are available [9, 18]. In this paper, we
assume the enforcer is able to use one of these methods.

4 Protocols

Our approach requires that the link layer have the fol-
lowing properties:

P1: dual port access control;

P2: secure link association;

The concept of dual port access control is defined in IEEE
802.1x [4], which is supported by IEEE 802.11 (e.g., Win-
dows XP and Linux provide such support). The link layer
of a network node has two access ports, uncontrolled and
controlled, as shown in Figure 2. The controlled port has
full access to the link layer, while the uncontrolled port is
used only for authentication. Any node in the transmission
range can connect to the uncontrolled port in order to au-
thenticate itself. Only after a successful authentication and
authorization by the peer node, the initiator can connect to
the controlled port.

Once a connection is established, the link layer must en-
sure that it cannot be hijacked. This is addressed by secure
link association. In practice, P2 is accomplished using link
layer encryption (i.e., all frames transmitted over the link
are encrypted). Consequently, a node with a single wireless
card can be part of only one protected MANET at a time.

We define two protocols that allow a node to join a
protected network: Enforcement Initial Activation Protocol
(EIAP) and Enforcement Re-Activation Protocol (ERAP).
Both protocols perform three tasks: (1) verifying the mu-
tual trustworthiness of nodes, (2) sharing the link layer key,
and (3) distributing the network policy. EIAP is used to join
a network for the first time, while ERAP is used to re-join a
network; their main difference is the verification method.

Assuming that a new node N, wants to join a trusted
ad hoc network AN by initiating a link layer connection
request to a member node of AN, N,,, the high-level view
of our security protocols is as follows:

1. N, calls its connection manager to establish a link
layer connection to N,,,. The connection manager of
N,,, grants the connection only to its uncontrolled port.

2. The connection manager of N, calls the trusted agent
to attest the capability and trustworthiness of enforcing
AN’s policy.

3. The connection manager of NV,,, verifies the attestation,
attests itself and pushes AN’s policy P and the link
layer key k to N.. It then grants N, full access to its
controlled port.

4. After verifying N,,’s attestation, the connection man-
ager of N, invokes the policy enforcer to enforce P
and finalizes the connection with the link layer key k.
Note that the enforcer must be already loaded in the
OS kernel.

1. CREQ

2. noncen
3. R((SHA1(nonce, | C.| PKy), C., PK., nonce.
K 4. Ru((SHAL(nonce, ICy | kI P)), Cr, ENC(PK., k), P
5. CONNECT

Figure 3. The Enforcement Initial Activation
Protocol (EIAP)

In the rest of the section, we present the two protocols in
detail, followed by a discussion of the limitations of our
approach.

4.1 Enforcement Initial Activation Proto-
col (EIAP)

When a node N, that has never connected to any node of
AN attempts to connect to a member of AN, N, (we say
N, connects to AN via N,,,), N,,, activates the enforcement
of AN’s policy P on N, through the EIAP protocol. The
protocol is illustrated in Figure 3.

1. The connection manager of N, initiates a wireless con-
nection request CREQ) to N,,.

2. The connection manager of N,, grants access to its
uncontrolled port and replies with a random number,
NONCE,.

3. The connection manager of N, attests itself and de-
livers the commitments to N,,. To attest itself, the
connection manager of N, calls the trusted agent to
generate a TPM report (R.) of the kernel attestation
results with SH Al(nonce,,|C.|PK,) as the param-
eter (| means concatenation). C. represents the link
commitment and the kernel commitment. PK,. is
the public key generated by the connection manager.
The TPM signs both the parameter and the attestation
results. N then generates another random number
nonce, and sends R, C., nonce., and PK, to N,,

4. The connection manager of N,, activates the en-
forcement of P on N.. The connection manager of
N,,, validates R. to make sure it is generated by a
valid TPM. Then, it validates the parameter by re-
computing the hash using its stored nonce,, and the
newly received C, and PK,.. Next, it generates a
TPM report in the same way as N, with a param-
eter SHAl(nonce|Cp,|k|P), where Cy, represents
the link and kernel commitments of NV,,,, k is the link
layer session key, and P is the network access control

policy. Finally, the connection manager encrypts the
link layer session key k with PK,, ENC(PK,,k)
and sends it with R,,, C,,, and P to N.. Then, N,,
grants IV, full access to its controlled port.

5. N, establishes a full connection with N,,. N, vali-
dates R,, the same way as IV, did. Then, it evaluates
P before accepting it. Once P is accepted, it is pushed
to the policy enforcer, which starts enforcing it imme-
diately. Finally, N, decrypts k using the correspond-
ing private key S K., enables link layer encryption, and
obtains full connectivity to N,;,’s controlled port.

The EIAP protocol enables the two nodes to mutually
verify trustworthiness in enforcing the policy. This is nec-
essary because the link to be established is bi-directional
and both nodes need to protect themselves from each other.

Security Analysis. Let us consider a local attacker on
N, (the analysis holds if the attacker is on N,,,). We assume
that the attacker cannot break the TPM or launch hardware
based attacks, and in particular, cannot use direct memory
access (DMA). We further assume that the attacker is un-
able to bypass the node operating system to gain access to
system resources such as memory, CPU, network card, and
disk. Other than these restrictions, the attacker can have full
control of the software system, including superuser privi-
leges.

Disable enforcement of P. The most direct attack is to
disable the enforcement of P after obtaining the connec-
tivity. The attacker can do so by disabling the policy en-
forcer. This requires removing the policy enforcer’s kernel
module. The trusted agent intercepts the removal request,
clears k, and tears down the link before removing the mod-
ule. Thus, the attacker has to first disable the trusted agent.
As we discussed earlier, once being turned on, the trusted
agent cannot be turned off until next reboot.

Modify P. The attacker may attempt to modify the cur-
rent policy P at runtime. The trusted agent secures the
memory space holding P such that only the connection
manager have write permissions to it. Additionally, the con-
nection manager is protected by the trusted agent. The at-
tacker may try to run a malicious connection manager. This
is allowed only if it is described in the link commitment,
which means the link commitment is also untrusted. N,
will receive the commitment at step 3 and refuse to trust the
malicious connection manager.

Steal k. The attacker may attempt to steal the session key
k on the node. The key is secured by the trusted agent in
memory and accessible only to the connection manager and
the link driver 3. The protocol ensures secure distribution
of the key. On one hand, the key owner will not distribute
the key to any untrusted node (step 4). On the other hand,

3Some drivers provide simple user space utilities for users to read the
link layer session key. In our method, these utilities will fail.

a node that joins the network will not accept the key from a
member node unless the member node has been verified to
be trusted (step 5). Consequently, an untrusted node cannot
create a key and fool others to accept it.

Hijack k. The attacker may try to steal k& in distribution.
The public-private key pair is dynamically generated, and
the private key SK. is saved in the connection manager’s
memory and never disclosed to any other processes. The
trusted agent protects the key from being disclosed to any
process other than the connection manager. Hence, the at-
tacker is unable to acquire S K. to decrypt k intercepted at
step 4.

Play man-in-the-middle. The attacker may attempt to
play a man-in-the-middle attack by replacing P K. with her
own PK, in order to decrypt k& with the private key SK,
she owns. Although P K, is not authenticated in the proto-
col, it is attested in the report I2.. The TPM report certifies
that the public key PK . belongs to the system attested by
the TPM. Therefore, unless the attacker’s system is fully
trusted, which makes it impossible to launch attacks, N,,
will detect this and refuse to distribute k. The attacker may
want to replay a valid TPM report and exploit it to gain
trust from V,,,. The protocol foils the attacker by including
nonce, and nonce,, in the attestation reports.

4.2 Enforcement Re-Activation Protocol
(ERAP)

EIAP addresses the scenario where an external node N,
connects to AN via N,, € AN for the first time. In
MANETS, the connectivity between nodes and the network
topology may change constantly. For instance, N, may
roam out of the wireless transmission range of N,,, and
thereby, it will lose the previously established connection.
Subsequently, it may approach another node N;, € AN and
re-establish connection to AN via Nj,. This brings up two
issues, which make the use of EIAP unsuitable for connec-
tion re-establishment.

First, the network policy may be updated to accommo-
date certain changes in the network, which causes the lo-
cal copies on Ny and N, to be inconsistent. We need to
ensure that only the most recent version of P is enforced.
This problem can be solved by assigning a version num-
ber v to P, which is incremented every time P is updated.
Second, the nodes enforcing old policies should be discon-
nected from the network. This can be done by having the
nodes enforcing the new policy update their link layer ses-
sion key. As a result, when the node rejoins the network, it
has to request the new key to re-establish the connectivity.

EIAP can solve the above problems, but it is too costly
due to the need to generate the TPM report and transmit
large data via a partial link. Therefore, it is desirable to op-
timize the protocol for the link re-establishment scenario.

Pe. ke 1. CREQ(V,, honce.)

2. nonce,, Py

3. HMAC(k., nonce, | Pn)

4. ENC(k. , kn). HMAC(k., nonce. | ky | Py)

Ph. ke ke
5. CONNECT

Figure 4. The Enforcement Re-Activation Pro-
tocol (ERAP)

We observe that both /N, and V;, must have been verified
before they were allowed to connect to AN for the first
time. Owning an old key implies that it has been protected
by the trusted agent. Otherwise, if any program defined in
the commitments was compromised since last connection,
the trusted agent would have wiped out the key. Therefore,
we can let each node hold the past V' keys and use them to
compute a keyed message authentication code (HMAC) to
prove its trustworthiness. Figure 4 illustrates the Enforce-
ment Re-Activation Protocol (ERAP) assuming N}, has the
latest policy.

1. N, sends a request to [V, to establish a full link. N,
includes its policy version v, and a random number
nonce, in the request. N, cannot lie about its v, since
it will be verified later by NVp,.

2. Ny, grants access to its uncontrolled port. N}, replies
with another random number nonce;. It also com-
pares its policy version v, with v, and includes the
latest policy Py, in the reply if v, > ve.

3. N, authenticates to N;. If N, authenticates P, it
learns that its policy needs to be updated. It computes
HMAC (k.,noncep,|Py) and sends it back to Np,.

4. Ny verifies N, and distributes k;, to N.. Verify-
ing HM AC(ke,noncep|Py) proves that N, holds
ke and Pj. N;, then encrypts kp with k.
(ENC'(ke,kp)) and sends the encrypted key with
HMAC (ke,noncee|kp|Pr).

5. N, verifies Ny, and establishes a full link with /Vy,. Ver-
ifying HM AC (k., nonce.|ky|Pr) convinces N, that
Ny, holds k. and enforces P,,. N, overwrites P, with
Py, received at step 2. N, then decrypts ENC'(ke, kp,)
and obtains k. It can now enable link layer encryption
and establish full connectivity with N,.

In case of v, < wve, the roles of N, and N}, are just
swapped. N}, sends vy, instead of P, at step 2. N, sends P,
at step 3 with HM AC(kyp,, noncey|P.). The rest is similar.

Ph, ko, Ko

Security Analysis. As discussed in EIAP, the attacker is
unable to break the connection manager, the policy enforcer,
or the trusted agent. As a result, she cannot obtain the link
layer session key without enforcing the policy. Addition-
ally, she cannot modify the policy or steal the link layer ses-
sion keys on the machine either. So the new key distributed
at step 4 is safe.

The number of old keys kept on each node, V/, is a design
parameter. If a node has missed too many policy updates, it
cannot re-connect to the network through ERAP since none
of the nodes enforcing the latest policy hold the old keys
any more. In this case, it has to join as a new node through
EIAP.

4.3 Limitations

Runtime intrusion. The security of our method largely
depends on the security of the underlying trusted system,
which only prevents untrusted code from being loaded from
the disk. Therefore, our approach is unable to tackle run-
time intrusion exploiting code vulnerabilities such as buffer
overflows. This problem is mitigated because the attestation
may reveal the code that has known vulnerabilities. Hence,
the user can avoid trusting the vulnerable code. Further-
more, a successful intrusion is usually followed by invoking
other local programs. Our method restricts the attacker’s ca-
pability to run arbitrary local code because any code run by
the protected service must be defined in the commitment.

Attacking the uncontrolled port. Neither EIAP nor
ERAP prevents the attacker from sending link layer frames
to the uncontrolled port of its one-hop away neighbor. The
attacker can leverage this weakness to flood its neighbor
nodes. We address this weakness from two perspectives.
First, flooding the uncontrolled link layer port is by far less
effective than flooding the network layer. This is because
in the former case the attacker can only target a small num-
ber of nodes in her one-hop vicinity. In the latter case, she
can target any node in the network and exploit widely dis-
tributed denial-of-service slaves to dramatically amplify the
damage. Hence, our method addresses the main and most
severe threat. Second, this weakness can be effectively ad-
dressed by host based countermeasures [11]. For instance,
limiting the rate of accepting connection requests can foil
resource depletion attacks.

Attacking the connection manager. The attacker may
flood the connection manager of the protected node with
overwhelming connection requests. To mitigate the prob-
lem, the protected node can limit the rate of handling the
connection requests to bound the resources spent on EIAP
and ERAP processing. In addition, EIAP and ERAP require
the connection requester to do the attestation first at step 3.
Since attestation is much more costly than verification, the
difficulty of the attack is increased. The attacker has to ei-

ther use a high-end computer or control a large number of
low-end computers.

Kernel update. During the time the node maintains a
link with the network, loading new kernel modules is lim-
ited by the kernel commitment. For instance, if the node
obtains a new driver, which is not defined in the kernel com-
mitment, it cannot load the driver until it reboots the system.

5 Case Study

To illustrate our mechanism, let us consider a simple ad
hoc network created for a peer-to-peer file sharing applica-
tion, namely Mute [5]. For instance, a group of students
on-campus can use their 802.11-enabled smart phones to
create such a network. The students do not know each other
and want to protect themselves from being attacked by ma-
licious peers. Since the network is formed for a specific
application (i.e., Mute), the network access control policy
must deny any other connection request from different ap-
plications. Additionally, even though Mute connections are
accepted, the policy must protect the nodes against attacks
that target Mute such as flooding.

Figure 5 shows an example of a policy for this applica-
tion expressed in pseudo netfilter rules. We assumed that
Mute runs on TCP port 5000. Furthermore, to allow multi-
hop communication the network runs the AODV [21] rout-
ing protocol on UDP port 654. Each computer uses inter-
face wi f i O to join the ad hoc network.

IN
R®1 Mark=1 TCP from anyt o wifi0 !Local_IP:5000

OUT

®2 Al ow TCP SESSI ON fromwifiO t 0 any:5000

R3 Al l ow TCP SYN fromwifi0 t 0 any:5000 | i mi t 3/s
R4 Al ow UDP fromwifi0t o any:654 |imt 10/s

R®5 Allow TCP fromwifi0 t 0 any:5000 Mar k==1

®6 Drop TCP or UDP fromwifi0t o any

FORWARD
®7 Drop fromanyt o wifi0

Figure 5. The Policy for File Sharing Network

The rules R2—6 allow only Mute and AODV traffic to be
sent from each node. Hence, attacks to other services (e.g.,
default services such as net bi 0s) are impossible. The at-
tacker could try to exploit one of the allowed services: Mute
and AODV. A direct attack is to flood Mute, but this is sig-
nificantly limited by R3 which allows a node to initiate at
most 3 TCP connections per second. Once a session has
been established, R2 allows packets to be sent at any rate.
Similar to R3, R4 protects AODV from being flooded. All

these attacks are stopped at their originators without hav-
ing any impact on the target node or the network. This is
impossible through receiver side protection.

R1 and R5 enforce hop-by-hop packet forwarding for
Mute traffic. Per R1, the node marks an incoming (pre-
routing) Mute packet of which it is not the destination. This
means another node uses it as a router. Per R 5, the marked
packets are allowed to be forwarded. In a more complicated
scenario, some protected nodes may have multiple wireless
network cards and be in multiple networks. The attacker
may leverage this fact to launch attacks from an unprotected
network to nodes in the protected network. R7 stops this
attack by forbidding packet forwarding across different net-
works.

Policies such as the one described in this section can be
enforced by built-in kernel filters (e.g., netfilter). These fil-
ters can easily be extended by adding modules and thereby
can support more complicated policies. For example, if the
application is vulnerable to a buffer overflow attack and the
attack signature is known, one can implement an extended
module to check the specific signature in the packet and stop
the attack at the originator. Consequently, our method is
flexible and extensible.

6 Prototype I mplementation and Evaluation

To show the feasibility of our mechanism, we imple-
mented and evaluated a prototype that works over IEEE
802.11-based networks. We implemented the Satem pro-
totype under the Linux 2.6.12 kernel [28]. The core
of the prototype is the trusted agent, which is small
but integrated in many places in the OS kernel, in-
cluding system and kernel calls such as do_execve,
do_mmap, sys.init _nodul e, sys_open, dofork,
fil e.nopage, etc. We patched the official Linux kernel
to add these modifications.

The EIAP and ERAP protocols are implemented in the
connection manager as extensions of IEEE 802.1x. To im-
plement the connection manager, we modify xsuppl i -
cant [6], an open source 802.1x client and host apd [3],
an open source 802.1x server. The two connection man-
agers conduct the protocol negotiation via the EAPOL pro-
tocol [8]. We used the built-in netfilter as the enforcer.

To simplify the implementation, we used 802.11
WEP [2] to encrypt the link. Extensive research studies
showed that WEP is insufficient to guarantee secure asso-
ciation [12]. Other types of stronger encryption such as
WPA [2] can be used to replace WEP. For instance, integra-
tion with WPA is straightforward, but more configuration
work in xsuppl i cant and host apd is needed.

Our method incurs a certain latency for link layer con-
nection establishment and data communication. To measure
them, we used two nodes that create an IEEE 802.11b ad

Scenario | Latency (in seconds) |

802.11 WEP 1.2
EIAP 3.1
ERAP 1.9

Table 1. Connection Establishment Latency

| Scenario | Download Speed (KB/second) |
Open 235.23
WEP 230.57

Our Solution 229.42

Table 2. Data Communication Per formance

hoc network for the application described in Section 5. The
source node Ng is an IBM R40 laptop with a 1.3Ghz Pen-
tium M CPU, 512M RAM, an Intel IPW2100 wireless card,
and an Atmel TPM. The destination node Np is an IBM
T43 laptop with a 1.7Ghz Pentium M CPU, 512M RAM,
and an Atheros wireless card.

The link establishment latency is shown in Table 1.
Compared to the link layer connection establishment in the
standard 802.11b with 104 bit WEP authentication, EIAP
incurs a high overhead in the initial link establishment. This
is mainly due to the cost of collecting attestation reports and
the negotiations over EAPOL. As expected, the overhead of
ERAP is significantly reduced because it does not perform
the costly trust verification. We believe that these results are
acceptable, especially because the high overhead imposed
by EIAP is just a one-time cost. After that, the typical over-
head is reduced through the use of ERAP for reconnections.

The overhead of joining is insignificant for the over-
all wireless communication performance because connec-
tion establishment happens only once in a while even in a
volatile network. The cost that dominates the overall net-
work performance is the latency of data communication.
To quantify this cost, we measured the download speed of
Mute in three networks: standard open 802.11b, standard
802.11b with WEP, and a trusted network that enforces the
policy presented in Figure 5. Since we measured the cost
when the link was fully established, this cost is relatively
fixed per packet (i.e., policy enforcement). Therefore, us-
ing large files increases the accuracy of the cost estimation.
In the test, we let node Ng download 256M files from Np.

As Table 2 shows, our method incurs small performance
degradation compared to both the open 802.11b (2.47%)
and WEP-based 802.11b (0.5%). This result is due to
the fact that our method does not incur any costs besides
WEP encryption and packet filtering, which are very light-
weighted. Another reason is the simplicity of the policy
being enforced.

7 Discussion

Users in MANETSs may want to update the network pol-
icy dynamically or to run multiple applications. Further-
more, mobility could lead to broken links between members
of a protected network. This section discusses the behavior
of our method when such situations happen.

Policy update In relative static ad hoc networks, there
may be a need of updating the policy after a while; this is-
sue can hardly appear in highly mobile networks which are
short-lived by definition. The process of generating the new
policy is the same as creating the first policy discussed in
Section 3. When a node N; updates its current policy with
the new policy, it also replaces its old link layer key with
the new key. If NV; is connected to IV; that has not updated
its policy, the link is dropped. NN; can re-establish the link
with IV; using ERAP protocol, causing N;’s policy to be
updated. Therefore, updating the policy is the same as cre-
ating a new protected MANET. The only difference is that
nodes join the new MANET through the much lightweight
ERAP protocol.

Dropping the link will break any established application
sessions. To mitigate this problem, we introduce a “non-
disturbance” flag to the connection manager. The user can
turn it on to defer policy update.

Execution of multiple applications. When the nodes
of a protected MANET want to run a new application in
addition to their existing applications, they need to update
their current policy to cover the new application as well.
By doing so, these nodes form a new protected MANET
and disconnect themselves from other nodes in the existing
protected MANET that refuse to update the existing policy.

The users may want to regulate each application. For
example, nodes communicating through a file sharing ap-
plication want to ensure that everyone provides a fair ser-
vice (e.g., allowing other nodes to download files from them
rather than just downloading from others). This requires
defining a policy specific to each application and enforcing
all policies simultaneously. Our method lacks this capabil-
ity. Currently, we are investigating how to extend the idea of
trusted MANET to multiple applications and develop a pol-
icy enforcing framework to support dynamic composition
of trusted application networks.

M obility. Mobility of nodes has negative impact on our
method during link establishment phase. It may make the
EIAP or ERAP protocol incomplete due to loss of physical
connectivity. Hence, in order to join a trusted network, a
node may have to try multiple nodes until it can complete
the protocol with one of them. Once the trusted network
is fully established, mobility does not affect our method.
In this case, the overhead incurred from re-routing and re-
transmission is increased because of higher chance of bro-
ken links. However, since all nodes have the network key,

they can establish a link between each other without going
through our protocols. Hence, the only cost of our method
in communication is enforcing the policy, which is deter-
mined by the total volume of traffic and the complexity of
the policy.

8 Redated Work

Our work leverages previous research on trusted com-
puting and distributed policy enforcement.

Trusted Computing. Both hardware and software based
methods have been proposed to ensure trusted software ex-
ecution. The hardware approaches such as IBM 4758 [7],
Dyad [30], and XOM [17] demand high-end hardware,
which is unlikely to be ubiquitously deployed. Pure soft-
ware methods such as [15], SWATT [25], and Pioneer [24]
challenge the target system to attest its software stack within
a time limit. These methods assume knowledge about the
target system’s clock speed and a noticeable delay caused
by forging the same checksum. Neither of them holds in ad
hoc networks computing.

As an emerging trend, Terra [13], Microsoft
NGSCB [19], and IBM TCGLinux [23] balance be-
tween the hardware and software approaches. These
approaches leverage a low-end trusted hardware like
TPM [26] to boost trust on a set of software components,
which further ensures trustworthiness of the execution of
target programs. Satem differs from them in the scope and
persistence of protection. First, our method only focuses
on the code that the target programs depend on. Thus, it
can catch every attempt to compromise the execution of the
protected programs without false positives since irrelevant
changes in the system will not be monitored. Second, by
enforcing the commitments, our method guarantees the
trustworthiness of the target programs not only at the time
of attestation, but also for future executions.

Distributed Policy Enforcement. The distributed fire-
wall concept originally proposed by Bellovin was imple-
mented in [14]. In this approach, the firewall function is
distributed on all protected hosts, each of which enforces
the access control policy. This approach is a receiver side
defense and does not prevent attacks from reaching the vic-
tims.

Our method is close to [22], which enables network
access policies to be enforced on each VPN client. This
method targets clients owned by legitimate users but im-
properly configured. As an attestation-only approach, it is
insufficient to ensure trusted enforcement of the policy in
face of malicious host owners. Our method, on the other
hand, works even if the node is controlled by attackers. Fur-
thermore, due to the ad hoc network nature, our method ad-
dresses unique issues such as policy synchronization, mo-
bility, reconnections, and link layer integration, which do

not exist in corporate VPN applications.

9 Conclusions

This paper presented a mechanism for creating protected
ad hoc networks. The creation of such networks is triggered
by users that want to run a common application. Our mech-
anism does not allow untrusted nodes to establish wireless
links with nodes in the protected networks. Furthermore,
it enforces a common network access control policy in the
network; this policy is associated with the application run-
ning in the network. Attacks from member nodes are sup-
pressed locally by the common network policy. To ensure
trusted enforcement of the policy, we augmented every node
with a trusted kernel agent based on the TPM. We evaluated
the method through a prototype based on an IEEE 802.11
ad hoc network. The results demonstrate the feasibility of
the proposed method as well as its low overhead.

References

[1] http://ww. et 2. tu- harburg. de/fl eetnet/.
[2] 802.11 protocols. htt p: / / www. i eee802. org/ 11/.
[3] Hostapd. http:// hostap.epitest.fi/.

[4] IEEE 802.1X Port-based Network Access Control. In IEEE
Standard 802.1X, 2001 Edition.

[5] Mute. htt p: // mut e- net . sour cef orge. net/.

[6] Openlx. http://openlx. sourceforge. net.

[7] Building a high-performance, programmable secure copro-
cessor. Comput. Networks, 31(9), 1999.

[8] Extensible Authentication Protocol Over Lan. In |EEE San-
dard EAPOL, 2000.

[9] E. Al-Shaer and H. Hamed. Discovery of policy anomalies
in distributed firewalls. In Proceedings of Joint Conference
of the IEEE Computer and Communications Societies (IN-
FOCOM'’ 04), 2004.

[10] W. Bagga, S. Crosta, P. Michiardi, and R. Molva. Establish-
ment of ad-hoc communities through policy-based cryptog-
raphy. In the Proceedings of Workshop on Cryptography for
Ad hoc Networks (WCAN' 06), 2006.

[11] J. Bellardo and S. Savage. 802.11 denial-of-service attacks:
Real vulnerabilities and practical solutions. In Proceedings
of the 8th USENIX Security Syposium (Security’ 03), 2003.

[12] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key
scheduling algorithm of RC4. Lecture Notes in Computer
Science, 2259, 2001.

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP'03), 2003.

[14] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith. Im-
plementing a distributed firewall. In Proceedings of the
ACM Conference on Computer and Communications Secu-
rity (CCS 00), 2000.

[15] R. Kennell and L. H. Jamieson. Establishing the genuinity
of remote computer systems. In Proceedings of USENIX
Security Symposium (Security’ 03), 2003.

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Provid-
ing robust and ubiquitous security support for mobile ad-hoc
networks. In the Proceedings of the 9th |EEE International
Conference on Network Protocols (ICNP’01), 2001.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. In Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS 00), 2000.

A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analy-
sis engine. In Proceedings of |EEE Symposium on Security
and Privacy (S&P’00), 2000.

Microsoft Corp. Next generation secure computing
base. http://ww. i crosoft.com resources/
ngsch.

T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode. Traf-
ficview: traffic data dissemination using car-to-car commu-
nication. SGMOBILE Mob. Comput. Commun. Rev., 8(3),
2004.

C. E. Perkins, E. Royer, and S. R. Das. Ad hoc on demand
Distance Vector(AODV) routing. In 2nd |EEE Workshop on
Mobile Computing Systems and Applications (WMCSA' 99),
1999.

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based policy enforcement for remote access. In
Proceedings of ACM Conference on Computer and Commu-
nications Security (CCS 04), 2004.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and implementation of a TCG-based integrity measurement
architecture. In Proceedings of USENIX Security Sympo-
sium (Security’ 04), 2004.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. V. Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing ex-
ecution of code on legacy platforms. In Proceedings of ACM
Symposium on Operating Systems Principles (SOSP’05),
2005.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT:Software-based attestation for embedded devices.
In Proceedings of |EEE Symposium on Security and Privacy
(S&P’04), 2004.

Trusted Computing Group. TCG 1.1b Specifications.
https://www.trustedcomputinggroup.org/home.

Trusted Computing Group - Mobile Phone Working Group.
Use Case Scenarios - v 2.7.

G. Xu, C. Borcea, and L. Iftode. Satem: A Service-aware
Attestation Method Toward Trusted Service Transaction. In
the Proceedings of |EEE Symposium on Reliable Distributed
Systems (SRDS 06), 2006.

G. Xu and L. Iftode. Locality driven key management for
mobile ad-hoc networks. In the Proceedings of the 1th |IEEE
International Conference on Mobile Ad-hoc Networks and
Sensor Systems (MASS 04), 2004.

B. Yee. Using secure co-processors. Technical report,
Carnegie Mellon University, 1994. PH.D Thesis.

