
1536-1268/07/$25.00 © 2007 IEEE ■ Published by the IEEE Computer Society PERVASIVEcomputing 41

The Urbanet Revolution:
Sensor Power to the
People!

T
he Internet has become a great suc-
cess because its applications appeal
to regular people. This isn’t the case
with sensor networks, which are gen-
erally perceived as “something” re-

mote in the forest or on the battlefield. With few
exceptions, first-generation sensor networks ad-
dress application-specific, static-sensor deploy-
ments to accurately monitor the sensed environ-
ment in real time. Commonly, these networks

involve a centralized data-
collection point and no sharing
of data outside the organization
that owns it. Although this op-
erational model can accommo-
date many application scenarios,
it significantly deviates from the
pervasive computing vision of

ambient intelligence, where people seamlessly ac-
cess anytime, anywhere data produced by sensors
embedded in the surroundings.

Urban environments offer the elements to build
large-scale, people-centric sensing platforms. As
mobile devices become ubiquitous, they can begin
to serve purposes beyond email and Web access:

• acting as collaborating, multisensor devices
that provide sensing coverage across cities,

• becoming dynamic points for collecting and
sharing data produced by individual sensors or
public sensor networks, and

• ultimately enabling users to benefit from a
sensor-rich world through novel mobile appli-
cations.

In particular, smart phones and vehicular sys-
tems are becoming attractive, convenient mobile
sensor platforms. Compared to the tiny, energy-
constrained sensors of regular sensor networks,
smart phones can support more complex com-
putations, provide reasonable data storage, and
offer long-range communication. These phones
already have audio and video sensing capabili-
ties. In the near future, they will include other
sensors as well. However, energy remains a main
constraint for them. Vehicular systems, on the
other hand, don’t have energy restrictions. Addi-
tionally, they offer powerful processors, signifi-
cant memory, plenty of storage capacity, and
many types of sensors.

Spontaneous urban networks
We use the term Urbanet to define a new type

of spontaneous urban network composed of het-
erogeneous and potentially mobile sensors. In
Urbanets, sensor networks and mobile ad hoc
networks (MANETs) meet to create rich, open sens-
ing environments where people, municipalities,
and community organizations can share their
resources to give mobile users real-time access to
sensed data. Much of this data will be incorpo-
rated in novel applications running on our per-
sonal mobile devices. Urbanets differ from first-
generation sensor networks not only in their goal
to support concurrent people-centric sensing ap-
plications across cities but also in their hardware
and software heterogeneity, high volatility, and
very large scale. Although Urbanets will extend
sensing coverage and let developers incorporate

With mobile devices becoming ubiquitous, the time is ripe to bring sensor
data out of close-loop networks into the center of daily urban life.

B U I L D I N G A S E N S O R - R I C H W O R L D

Oriana Riva
Helsinki Institute
for Information Technology

Cristian Borcea
New Jersey Institute of Technology

sensed data in a large spectrum of mobile applications, they
aren’t expected to achieve the same sensing-fidelity level of sta-
tic sensor networks whose nodes are primarily dedicated to
sensing. Urbanets also differ fundamentally from MANETS in
terms of enabled applications. So far, most MANET applications
have focused on traditional file transfers. Instead, Urbanet appli-
cations acquire, process, and distribute real-time sensing infor-
mation from devices in proximity of regions, entities, or activ-
ities of interest. Figure 1 depicts several Urbanet scenarios.

Several recent projects confirm a growing interest in large-
scale people-centric sensor networks. For example, the “Related
Work” sidebar presents projects under way at Microsoft, the
Massachusetts Institute of Technology, Dartmouth University,
and the University of California, Los Angeles. Although we share
broad goals with these projects, our focus is on cooperative,
infrastructureless solutions for programming mobile sensing
applications in Urbanets. We present middleware platforms that
capitalize on spontaneously created sensing coverage provided
by Urbanets to enable applications running on mobile devices.
These platforms let applications collect real-time sensed data
each time they want to, even when Internet connectivity isn’t
available or is too expensive.

Distributed programming in Urbanets
The research community has been quite successful in design-

ing device platforms, protocols, and even network architectures
that can apply to Urbanets. However, programming people-
centric, mobile sensing applications has received just marginal
attention. As the Urbanet applications domain diversifies, pro-
gramming each application from scratch will be almost impos-
sible. So, we expect an increasing demand for a common dis-

tributed-computing platform to support
the development, deployment, and exe-
cution of such applications. Several ques-
tions drive our research: How do we

define a user application in Urbanets? What are the right pro-
gramming abstractions for Urbanets? What type of middle-
ware or runtime systems can support such programming
abstractions? What are the trade-offs between ease of pro-
gramming and efficiency? Or, in other words, how much of
the underlying network complexity can a platform hide from
programmers while still giving them enough flexibility in appli-
cation development?

Urbanets can’t be programmed using traditional distributed-
computing models, which assume underlying networks with
functionally homogeneous nodes, stable configurations, and
known delays. Conversely, Urbanets have functionally hetero-
geneous nodes, volatile configurations, and unknown delays;
they evolve unpredictably over time and space, making it hard
to know the exact number or location of their resources. Such
volatility requires more flexible programming models.

Furthermore, traditional models assume fixed bindings
between names and node addresses. This naming is too rigid
for Urbanets, where contextual properties—such as available
sensors, location, computational resources, or energy—deter-
mine the nodes of interest. Urbanet applications require data-
centric or property-based naming that sensor networks use.

To be useful, Urbanet applications can’t fail each time some-
thing goes wrong in the network. Also, the applications must
work even when confronted with highly variable sensor data
fidelity. This makes “best effort” semantics desirable—an
approach that can tolerate the network dynamics while pro-
viding applications a certain quality of results. An Urbanet mid-
dleware platform must let applications trade the quality of
results for network resources.

Unlike sensor network nodes, Urbanet nodes aren’t always

42 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

Local fog
patches!Tornado

approaching!

Free parking spot!

Helsingin
Messukeskus Highway

Shopping mall

Parking
area

50%
discount! II

I

I Infrastructure

Traffic jam!

Figure 1. Example Urbanet scenarios.
A network of cars and environmental
sensors cooperate to warn drivers about
upcoming traffic jams, recommend
alternative routes, and detect traffic
hazards such as fog patches. Smart
phones or vehicular systems can query
parking meters on streets adjacent to the
shopping mall and offer directions to free
spots. In the mall, smart phones read
product RFIDs, exchange product
information, and give users personalized
recommendations. Farther away, a
municipal weather-monitoring sensor
network alerts cars to an approaching
tornado.

fully dedicated to sensing applications. For example, phones are
used primarily to make and receive phone calls and only secon-
darily to support Urbanet applications. So, an Urbanet middle-
ware must dynamically optimize resource utilization to the sens-
ing activity, network conditions, and local resources.

Finally, Urbanets are distinguished from regular sensor net-
works in that they must support concurrent user applications.
Managing simultaneous user applications can generate large
data traffic in often resource-impoverished environments. An
Urbanet middleware must balance resource utilization across
multiple applications and limit the geographic scope of the con-
trol updates. The middleware should also aggregate data for
multiple applications when possible.

To introduce our middleware solutions to these Urbanet-
specific challenges, we’ll consider the design of a mobile applica-
tion that helps drivers detect traffic jams in a city. One possibility

is to instruct Urbanets to monitor vehicle speeds in the region of
interest; the middleware would periodically transfer these obser-
vations to the application, which subsequently computes the traf-
fic jam probability. A second possibility is to specify the region
of interest and dispatch a distributed task to execute on that
region’s nodes; the task then informs the user when it detects a
traffic jam. A third possibility is to register an interest with a traf-
fic jam service that’s executing in the region of interest; the ser-
vice collects local traffic observations, computes the traffic jam
probability, and alerts the client application when necessary.

According to these potential solutions, we present three mid-
dleware platforms that support three different programming
models:

• Contory1 (Contextfactory) supports a declarative program-
ming model that views Urbanets as a distributed-sensor

APRIL–JUNE 2007 PERVASIVEcomputing 43

U rbanets share the goal of building people-centric urban sen-

sor networks with several recent projects:

• SenseWeb (http://research.microsoft.com/nec/senseweb) aims

to provide a Web-based platform and tools that let people easily

publish and query sensor data. SenseWeb can use sensor meta-

data to dispatch and answer queries in real time.

• CarTel (http://cartel.csail.mit.edu) focuses on building a delay-

tolerant mobile sensing architecture based on opportunistic

communication. A continuous query processor running on a

central portal answers user queries.

• MetroSense (http://metrosense.cs.dartmouth.edu) proposes a

three-tier architecture for scalable support of concurrent people-

centric applications.

• Urban Sensing (http://research.cens.ucla.edu/projects/2006/

Systems/Urban_Sensing) seeks to build short-term, community-

oriented urban sensor networks.

These projects assume central collection points across the Internet

that perform data and task management and act as mediators be-

tween users and the network. Our proposed solutions present a com-

plementary, decentralized view for programming distributed sensing

applications; they don’t require servers or Internet connectivity.

Researchers have recently proposed several distributed-

programming abstractions and middleware for ubicomp envi-

ronments and sensor networks. Many existing ubicomp solutions

target more stable networks in schools or homes, sometimes as-

sume powerful servers, and lack the flexibility to work in highly

volatile, data-centric environments. Successful abstractions for

sensor networks are more appropriate for leveraging in Urbanet

programming models. We can categorize these abstractions ac-

cording to whether they focus on localized behavior—exposing

some network details to programmers—or on global behavior—

hiding the network details from programmers. State-centric pro-

gramming,1 Hood,2 and Abstract Regions3 belong to the first cat-

egory; TinyDB4 and Kairos5 belong to the second.

All our models provide global abstractions. Contory sees the

network as a database, Spatial Programming provides a virtual

naming across the network, and Migratory Services can execute

on any node satisfying the specified context rules. However, Spa-

tial Programming and Migratory Services applications often

exhibit localized behavior.

REFERENCES

1. J. Liu et al., “State-Centric Programming for Sensor-Actuator Network
Systems,” IEEE Pervasive Computing, vol. 2, no. 4, 2003, pp. 50–62.

2. K. Whitehouse et al., “Hood: A Neighborhood Abstraction for Sensor
Networks,” Proc. 2nd Int’l Conf. Mobile Systems, Applications, and
Services (MobiSys 04), ACM Press, 2004, pp. 99–110.

3. M. Welsh and G. Mainland, “Programming Sensor Networks Using
Abstract Regions,” Proc. 1st Usenix/ACM Symp. Networked Systems De-
sign and Implementation (NSDI 04), Usenix Assoc., 2004, pp. 29–42.

4. S.R. Madden et al., “TinyDB: An Acquisitional Query Processing System
for Sensor Networks,” ACM Trans. Database Systems, vol. 30, no. 1,
2005, pp. 122–173.

5. R. Gummadi, O. Gnawali, and R. Govindan, “Macroprogramming
Wireless Sensor Networks Using Kairos,” Proc. 1st IEEE Int’l Conf. Distrib-
uted Computing in Sensor Systems (DCOSS 05), LNCS 3560, Springer,
2005, pp. 126–140.

Related Work

database and exposes a simple SQL-like interface to
programmers.

• Spatial Programming2 supports an imperative programming
model that views an Urbanet as a single virtual name space
that applications use to access individual resources at nodes.

• Migratory Services3 supports a client-service model where
services migrate to different network nodes to maintain a
semantically correct and continuous interaction with clients.

We’ve implemented all these middleware platforms on top of
our Smart Messages distributed-computing platform,4 which pro-
vides naming, routing, and execution migration. In the follow-
ing, we use the traffic jam application as a reference example to
describe each middleware platform.

Contory
The Contory platform supports mobile applications that

must be aware of both their local context and the context of
remote entities or physical environments. A certain context is
expressed as a set of context items, consisting of type, sensed
data, sensor type, and other qualifying properties. Example
context items include spatial information, environmental con-
ditions, and network resource availability.

While other projects have demonstrated how well declarative
programming suits sensor networks,5 the question remained open
as to whether this model was adaptable to highly mobile, het-
erogeneous networks. To cope with Urbanet dynamism and, in
particular, sensor failures and resource constraints, Contory inte-

grates three alternative mechanisms for
context provisioning:

• local sensors integrated in or con-
nected to mobile devices,

• context infrastructures possibly avail-
able in the environment, and

• MANETs of sensing devices.

Accordingly, Contory’s software archi-
tecture (see figure 2) integrates three types
of ContextProvider modules: LocalCxt-
Provider, AdHocCxtProvider, and Infra-
CxtProvider. ContextProviders aren’t
bound to a single network technology
and can therefore provide more adapt-
ability to changing network conditions
(similar to Haggle’s approach6). In par-
ticular, AdHocCxtProviders support one-
hop context provisioning over Bluetooth
and multihop context provisioning over

Wi-Fi. Additional architectural components are Facade mod-
ules to coordinate the access to context providers, Context-
Repository to support context data storage, ContextPublisher
to make local context data available to external entities, and
QueryManager to manage query assignment and optimization.

The query language is specialized to address the concurrent
requirements of different applications. Each application can
specify which data to collect and how to combine and summa-
rize it. Contory uses standardized attributes to qualify sensor
data of interest and filter a subset of it. Example attributes are
data freshness, accuracy, and correctness. Furthermore, the query
must specify space and time requirements. For instance, a region-
bound query collects sensor data in a specified geographic region
without a priori knowledge of the mobile sensors that dynami-
cally join and leave the region. Finally, Contory supports long-
running queries, such as event-based and periodic queries.

The following example shows a query sent to collect accu-
rate speed values of all nodes found in remote_region:

SELECT speed
FROM adHocNetwork (all, remote_region)
WHERE accurate = true
DURATION 1 hour
EVENT AVG(speed)<min_speed

Contory returns results when the average speed drops below
min_speed. To compute the probability of a traffic jam, the appli-
cation combines these data with the number of collected sam-

44 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

Context
publisher

Mobile ad hoc networks Local sensors Infrastructure

Query
manager

Context factory

cxtQuery

Context
repository

Ad hoc
facade

Local
facade

Infra
facade

AdHocCxt-
Provider

LocalCxt-
Provider

InfraCxt-
Provider

Smart phone

cxtItem

Application

O E P O E P O E P

On-demand query
Event-based query
Periodic query

O
E
P

Figure 2. Contory architecture.

ples (that is, density of cars), past obser-
vations, and possibly knowledge of road
topology.

The FROM clause offers three ways to
specify the context source types, one for
each provisioning mechanism: sensors,
infrastructures, and ad hoc networks.
Programmers can also leave this clause
unspecified, and Contory will decide which context sources
to employ. The provisioning mechanism is selected on the basis
of present operating conditions, estimated resource con-
sumption for query processing, and quality of the expected
results. The initial query assignment can change at runtime
multiple times. For example, if Contory detects a malfunction
in a sensor connected to the phone, it discovers a new sensor
source in the network.

Currently, Contory performs multiquery optimization only
among queries submitted by the same device, but we plan to
extend it to merge queries from different devices that have selec-
tion predicates with overlapping attribute ranges. We also plan
to investigate mechanisms for in-network data aggregation that
work in the presence of mobility. For instance, mobility can
lead to situations where Contory aggregates a certain context
item multiple times at different nodes, thus negatively impact-
ing the result quality.

We’ve implemented Contory using Java 2 Platform Micro
Edition (J2ME). Currently, two implementations exist: one for
Connected Limited Device Configuration 1.0 and Mobile Infor-
mation Device Profile 2.0 APIs, and one for Connected Device
Configuration (CDC) 1.0. We performed all software devel-
opment using Nokia Series 60 and Nokia Series 80 phones.

We’ve used Contory to implement a WeatherWatcher appli-
cation (see figure 3), which retrieves weather-related sensed
data from user-specified regions. For example, the Weather-
Watcher running on a car driver’s personal phone can query
sensors integrated in neighboring cars or available along the
highway, analyze the data, and possibly alert the driver about
upcoming fog patches.

Spatial Programming
The declarative programming model proposed by Contory

has the advantage of simplicity for application programmers.
However, as several programming abstractions proposed for sen-
sor networks have shown,7–9 it’s not a panacea for every task.
Imperative programming can be more appropriate for complex

tasks that go beyond data collection, especially tasks with algo-
rithmic details that can’t be left to a common middleware. Addi-
tionally, powerful nodes such as smart phones, vehicular sys-
tems, or intelligent video cameras can be programmed more
effectively when applications have fine-grained control over indi-
vidual node resources.

Spatial Programming is a runtime system that offers a loca-
tion-aware programming model. SP enables Urbanet nodes to
perform collaborative tasks by abstracting an Urbanet as a sin-
gle virtual name space (similar to Kairos’ global name space10).
An application written under the SP model is a sequential pro-
gram that transparently reads and writes virtual names mapped
to network resources as if they were local variables. In this way,
SP shields application programmers from the distributed, volatile
nature of Urbanets. This high-level network view is similar to
the way shared-virtual-memory systems shield programmers
from message-passing communication while offering a shared
virtual address space for distributed applications. A major dif-
ference, however, is that shared virtual memory works over a sta-
ble, robust network with an acceptable upper bound for mem-
ory access time, whereas SP must tolerate dynamic network
configurations with unknown time bounds for accessing
resources at nodes. Figure 4 illustrates this analogy and the sim-
ple abstractions SP defines to support programming in Urba-
nets—namely, space regions and spatial references.

SP defines a spatial reference as a {space:tag[index], timeout} tuple,
which it maps to an Urbanet node. Space is a name associated
with a region that represents the node’s geographical scope. Tag
is the name of a property the node provides. Index differentiates
among nodes with the same space-tag pair referenced in the
same application. SP requires application programmers to rea-
son about the possibility of not reaching a node by imposing a
time-out on each spatial reference. If the application can’t reach
a node in the specified time interval, the SP runtime system throws
a time-out exception; the application catches the exception and
decides further actions. SP guarantees reference consistency: each
time an application uses a certain spatial reference, it accesses

APRIL–JUNE 2007 PERVASIVEcomputing 45

Figure 3. WeatherWatcher using
Contory: (a) the user inputs a location of
interest. Then WeatherWatcher collects
meteorologic observations around this
location and (b) displays the infrared
weather conditions.

(a) (b)

the same node as long as the node remains in its original space.
The following code excerpt shows a simplified implemen-

tation of the traffic jam application (for instance, we didn’t
include the timeout in spatial references):

int i=0, tjam_p=0;
while(NOT_DONE){
try{

Neighbors []n = {remote_region:car[i]}.neighbors;
int speed = 0;
for(int j=0; j<n.length; j++)

speed += n[j].speed;
speed = speed/n.length;
tjam_p = computeTJamProbability(speed, n.length);
if (tjam_p>MAX_PROB)

{driver_region:driver_name[0]}.tjam=true;
}catch(SpaceViolationException e){

i++;
}

}

The application uses the spatial reference {remote_region:car[i]} to
access the list of one-hop neighbors on that node. We assume
that each car provides this list together with its neighbors’ speeds.
When the probability of a traffic jam exceeds a certain threshold,
the application informs the driver identified by {driver_region:driver
name[0]}. The application continues to use the same spatial refer-
ence for a car in the desired region as long as this reference is
semantically acceptable—that is, the car remains in the region
of interest. If the car moves out of the region, SP triggers an excep-
tion and looks for a new car in that region.

The example demonstrates how programmers can use spa-
tial references to access individual Urbanet resources in the same
way they use variables to access memory locations in a con-
ventional programming model. Similar to a conventional com-

puter’s mappings from virtual to physical memory, SP maintains
mappings between spatial references and nodes in the physical
space. These mappings are maintained in a per-application map-
ping table and are persistent during the SP program execution.
SP creates a mapping when an application first accesses a re-
source. The SP runtime system takes care of name resolution,
routing, and access to resources.

We implemented this runtime system on top of the Smart Mes-
sages platform. Under this implementation, SP applications are
Java programs, and each access to a network resource is trans-
lated into a Smart Messages migration. We used this implemen-
tation to prototype a simple intrusion-detection application using
a Wi-Fi-based ad hoc network of Hewlett-Packard iPAQs, their
associated light sensors, and an attached video camera.2

Migratory Services
The client-service model is another well-understood, sim-

ple programming model. To support it in Urbanets, we need
to consider two issues. First, rapidly changing operating con-
ditions can often lead to situations where a node providing a
certain service suddenly interrupts the interaction. For exam-
ple, the target of an object-tracking service can move out of its
video camera’s sensing range. Second, many scenarios must
deal with context changes at the client side: users operate in
highly dynamic environments, so request parameters are sub-
ject to frequent context-induced changes. For instance, if a dri-
ver wishes to be continuously informed about traffic condi-
tions in a region 10 miles ahead of her location, the service
must continuously adapt to the user’s movement. To summa-
rize, a node might become unsuitable to host a service when
context changes occur at either the service or client side.

A simple solution is to pass the problem to the client and
require it to discover a similar service on another node. How-
ever, this approach would lose any state associated with the old
interaction, thus seriously affecting long-term stateful client-ser-

46 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

Variable
access

Application

Virtual address
space

Page table

Physical
memory

Variable
access

Spatial
reference

Urbanet
distributed
application

Space region

Spatial Programming
runtime

Systems embedded
in physical space

(c)(a)

Distributed
application

Shared virtual
address space

Page table and
message passing

Physical
memories

(b)

Figure 4. An analogy between two traditional programming models—(a) conventional computer system and (b) shared virtual
memory—and (c) Spatial Programming.

vice interactions. Additionally, another
node providing that service might not
exist in the Urbanet.

To address these issues, we propose
Migratory Services, a new client-service
model for Urbanets. Under this model, ser-
vices can migrate to different network
nodes to effectively accomplish their task.
They execute on a certain node as long as
they can provide semantically correct re-
sults. When this becomes impossible, they
migrate until they find a new node where
they can resume execution. As figure 5
shows, the Migratory Services model pro-
vides transparent service migration and
maintains a continuous client-service in-
teraction. Although a migratory service is
physically located on different nodes over
time, it constantly presents a single virtual
end-point to the client. This concept is sim-
ilar to virtual mobile nodes.11

The Migratory Services model involves
three main mechanisms supported by the
development and execution Migratory
Services Framework (MSF), shown in fig-
ure 6. The first mechanism monitors inter-
acting entities’ dynamism by assessing con-
text parameters that characterize their
environment and available resources. The
second uses rules to specify how the ser-
vice execution should adapt to context
parameter variations. The third makes the
service capable of migrating from node to
node and of resuming its execution once
migrated. We call this process context-aware service migration
because it’s triggered by context changes.

To exemplify these concepts, we consider again the appli-
cation for detecting traffic jams. The client uses MSF to issue
a request for a traffic jam (Tjam) service in a remote region:

Request req = new Request(client_id, remote_region);
MSF.sendRequest(Tjam, req);

A Tjam service available in the network receives the request
and starts the computation. This service must register with the
hosting node and specify its context rules. A context rule con-
sists of (condition, action) pairs. For example, the following rule
states that when the node moves out of the region specified by
the client, MSF must trigger a service migration to resume exe-

cution on a node in that region:

CtxRule rule = new CxtRule(service_id);
rule.setCondition(OutOfRegion, remote_region);
rule.setAction(MIGRATE);
MSF.registerCtxRule(rule);

During service execution, MSF constantly verifies the reg-
istered context rules and acts on them. The service computes
the probability of a traffic jam, and when the probability
exceeds a certain threshold, it sends an alert to the client:

int speed=0, tjam_p=0; Neighbors []n;
for(j=0; j<n.length; j++)

speed + = n[j].getSpeed();

APRIL–JUNE 2007 PERVASIVEcomputing 47

Migratory
service

Migratory
service

Service
migration

Code
State

Client

Migratory service migration
Virtual client-service interaction
Physical client-service interaction

Code
State

Figure 5.The Migratory Services model.

Context
manager Validator

Communication manager

Smart Messages platform

Operating system, wireless communication, and sensors

MonitoredCxt

Client application/service

 Reliability manager

CxtRules

Figure 6. The Migratory Services Framework. The Smart Messages platform provides
execution migration, naming, routing, and admission control. On top of the Smart
Messages layer, the framework provides context provisioning, context rules validation,
client-service communication, and service reliability.

speed = speed/n.length;
tjam_p= computeTJamProbability(speed, n.length);
if(tjam_p>MAX_PROB)

MSF.sendAlert(client_id, tjam_p);

Migration isn’t part of the service code—the framework trig-
gers it when necessary.

We implemented this framework in Java and tested the traf-
fic jam application over a WiFi-based network of Hewlett-
Packard iPAQs. Recently, we extended the implementation to
J2ME CDC and tested it on Nokia 9500 phones.

Discussion
Routing, localization, cooperation incentives, security, pri-

vacy, and trust are all significant Urbanet challenges. We believe
that many proposed solutions for sensor networks and MANETS

can be adapted for Urbanets. Trust issues are more critical than
in traditional sensor networks because of the Urbanets’ spon-
taneous, people-centric nature. We’re investigating how to cre-
ate trusted ad hoc networks using a trusted execution monitor
built as a kernel module on top of a Trusted Platform Module.
In terms of localization, GPS or systems based on signals from
existing Wi-Fi access points or cellular base stations can pro-
vide cheap, reasonably accurate solutions.

Our experiences with these middleware platforms in small-
scale ad hoc networks of HP iPAQs and smart phones have
been promising. Besides typical interference problems in places
where wireless devices are dense, energy remains the most con-
straining technical factor. Because most applications must be
aware of their location, we quantified the lifetime of a phone
running a modified fingerprinting version of Intel’s Place lab.

The phone computed its location and sent it as a SOAP mes-
sage to another node over Wi-Fi at intervals from 10 seconds
to 1 minute. The phone lifetime varied from 4 to 6 hours.

We designed our solutions to work despite Urbanet het-
erogeneity. The underlying Smart Messages platform provides
a common execution environment across heterogeneous
devices, and its design for resource-constrained devices such

as smart phones offers flexible property-based naming and
routing support. However, tiny sensors such as motes won’t
run our middleware. Running the middleware on more pow-
erful devices allows access to tiny sensors either directly
through queries (for example, iMotes over Bluetooth) or indi-
rectly through a base station.

Each middleware copes with network volatility in different
ways. When Contory detects that a certain context provider
becomes unavailable, it dynamically selects an alternative avail-
able provider. In SP, programmers associate time-outs with each
resource access, and the runtime raises exceptions when the
access isn’t successful during the specified time-out. This mech-
anism lets applications dynamically adjust their requirements
to the network conditions (for example, they can accept lower-
quality results that are still semantically correct). Migratory
Services respond to volatility by migrating the execution to suit-
able nodes every time the execution context changes beyond
specified limits. In addition, they also maintain a backup ser-
vice that takes over in case of service failure or network parti-
tions. To ensure that the service can resume, the backup ser-
vice can also reside at the client node.

T
he choice of which middleware to employ depends
on the application’s semantics. With Contory, intel-
ligence is mostly in the middleware; applications
receive a very simple programming interface to col-

lect sensor data. Contory provides high transparency by
adapting to changing operating conditions while also letting
applications assess the results quality through qualifying
attributes. However, it offers limited flexibility to program

complex distributed applications. For these
applications, Spatial Programming pro-
vides the necessary fine-grained access to
network resources while maintaining a rel-
atively simple programming interface. In
Spatial Programming, the middleware is
thin, and most of the complex logic resides
in the application. The Migratory Services
middleware presents an intermediate solu-
tion: client applications are very simple,
services are more complex, and the mid-

dleware provides significant help by automatically adapting
to the operating context. It’s particularly useful for long-run-
ning and stateful end-to-end interactions in highly volatile
conditions.

Of course, the ultimate validation of our platforms will
come from experiences in larger scale networks with real
mobile users.

48 PERVASIVEcomputing www.computer.org/pervasive

B U I L D I N G A S E N S O R - R I C H W O R L D

The Smart Messages platform provides a

common execution environment for our

Urbanet middleware solutions, and its design for

resource-constrained devices offers flexible,

property-based naming and routing support.

ACKNOWLEDGMENTS
We thank Liviu Iftode for his contribution to the design of Spatial Programming
and Migratory Services. We also thank the anonymous reviewers for their use-
ful comments. This work has been supported in part by US National Science
Foundation grants CNS-0520033, CNS-0454081, and IIS-0534520, and in
part by the Finland’s National Technology Agency (TEKES) Dynamos project and
the Nokia Foundation.

REFERENCES

1. O. Riva, “Contory, A Middleware for the Provisioning of Context
Information on Smart Phones,” Proc. 7th ACM Int’l Middleware
Conf. (Middleware 06), LNCS 4290, Springer, 2006, pp. 219–239.

2. C. Borcea et al., “Spatial Programming Using Smart Messages: Design
and Implementation,” Proc. 24th Int’l Conf. Distributed Comput-
ing Systems (ICDCS 04), IEEE CS Press, 2004, pp. 690–699.

3. O. Riva et al., “Context-Aware Migratory Services in Ad Hoc Net-
works,” to be published in IEEE Trans. on Mobile Computing, 2007.

4. P. Kang et al., “Smart Messages: A Distributed Computing Platform
for Networks of Embedded Systems,” Computer J., vol. 47, no. 4,
2004, pp. 475–494.

5. S.R. Madden et al., “TinyDB: An Acquisitional Query Processing
System for Sensor Networks,” ACM Trans. Database Systems, vol.
30, no. 1, 2005, pp. 122–173.

6. J. Scott et al., “Haggle: A Networking Architecture Designed around
Mobile Users,” Proc. 3rd Ann. Conf. Wireless On-Demand Network
Systems and Services (WONS 06), INRIA, 2006, pp. 78–86.

7. J. Liu et al., “State-Centric Programming for Sensor-Actuator Net-
work Systems,” IEEE Pervasive Computing, vol. 2, no. 4, 2003, pp.
50–62.

8. M. Welsh and G. Mainland, “Programming Sensor Networks Using
Abstract Regions,” Proc. 1st Usenix/ACM Symp. Networked Sys-
tems Design and Implementation (NSDI 04), Usenix Assoc., 2004, pp.
29–42.

9. K. Whitehouse et al., “Hood: A Neighborhood Abstraction for Sen-
sor Networks,” Proc. 2nd Int’l Conf. Mobile Systems, Applications,
and Services (MobiSys 04), ACM Press, 2004, pp. 99–110.

10. R. Gummadi, O. Gnawali, and R. Govindan, “Macroprogramming
Wireless Sensor Networks Using Kairos,” Proc. 1st IEEE Int’l Conf.
Distributed Computing in Sensor Systems (DCOSS 05), LNCS 3560,
Springer, 2005, pp. 126–140.

11. S. Dolev et al., “Virtual Mobile Nodes for Mobile Ad Hoc Networks,”
Proc. 23rd Ann. ACM Symp. Principles of Distributed Computing
(PODC 04), ACM Press, 2004, p. 385.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

APRIL–JUNE 2007 PERVASIVEcomputing 49

the AUTHORS
Oriana Riva is a researcher at the Helsinki Institute for
Information Technology and a doctoral student in com-
puter science at the University of Helsinki. Her research
interests include middleware for pervasive systems, ad
hoc networking, and context-aware computing. She
received her MSc in telecommunication engineering
from Politecnico di Milano. Contact her at the Dept. of
Computer Science, PO Box 68, FIN-00014, Univ. of
Helsinki, Finland; oriana.riva@cs.helsinki.fi.

Cristian Borcea is an assistant professor in the New Jer-
sey Institute of Technology’s Department of Computer
Science. His research interests include mobile comput-
ing, middleware for ubiquitous networked systems,
vehicular networks, and sensor networks. He received
his PhD in computer science from Rutgers University.
He’s a member of the IEEE, ACM, and Usenix. Contact
him at the Dept. of Computer Science, New Jersey Inst.
of Technology, University Heights, Newark, NJ 07102;
borcea@cs.njit.edu.

Writers
For detailed information on sub-
mitting articles, write for our Edi-
torial Guidelines (pervasive@
computer.org) or access
www.computer.org/
pervasive/author.htm.

Letters to the Editor
Send letters to

Shani Murray, Lead Editor
IEEE Pervasive Computing
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
pervasive@computer.org

Please provide an email
address or daytime phone
number with your letter.

On the Web
Access www.computer.org/
pervasive or http://dsonline.
computer.org for information
about IEEE Pervasive
Computing.

Subscription Change
of Address
Send change-of-address
requests for magazine

subscriptions to address.
change@ieee.org. Be sure to
specify IEEE Pervasive
Computing.

Membership Change
of Address
Send change-of-address
requests for the membership
directory to directory.
updates@computer.org.

Missing or Damaged
Copies
If you are missing an issue or
you received a damaged copy,
contact membership@
computer.org.

Reprints of Articles
For price information or to
order reprints, send email to
pervasive@computer.org or fax
+1 714 821 4010.

Reprint Permission
To obtain permission to reprint
an article, contact William
Hagen, IEEE Copyrights and
Trademarks Manager, at
copyrights@ieee.org.

How to Reach Us

