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Abstract— To ensure fair and secure communication in Mobile
Ad hoc Networks (MANETs), the applications running in these
networks must be regulated by proper communication policies.
However, enforcing policies in MANETs is challenging because
they lack the infrastructure and trusted entities encountered in
traditional distributed systems. This paper presents the design
and implementation of a policy enforcing mechanism based on
Satem, a kernel-level trusted execution monitor built on top
of the Trusted Platform Module. Under this mechanism, each
application or protocol has an associated policy. Two instances
of an application running on different nodes may engage in
communication only if these nodes enforce the same set of policies
for both the application and the underlying protocols used by
the application. In this way, nodes can form trusted application-
centric networks. Before allowing a node to join such a network,
Satem verifies its trustworthiness of enforcing the required set
of policies. Furthermore, Satem protects the policies and the
software enforcing these policies from being tampered with. If
any of them is compromised, Satem disconnects the node from the
network. We demonstrate the correctness of our solution through
security analysis, and its low overhead through performance
evaluation of two MANET applications.

Index Terms: Trusted computing, ad hoc networks, mobile
computing

I. I NTRODUCTION

With the maturity of short-range wireless technologies and
proliferation of mobile computing devices, building real-life
applications over mobile ad hoc networks (MANET) becomes
feasible. For instance, two potential applications are traffic mon-
itoring in vehicular networks and peer-to-peer file sharingin ad
hoc networks of smart phones. A key to the success of such
applications is a mechanism assuring secure communicationand
proper collaboration among all participant entities. To achieve this
goal, communication policies that govern the interactionsbetween
entities must be defined and enforced. For instance, in a traffic
monitoring application, the policy can guarantee that a caralways
forwards accident alerts to cars coming behind it. Similarly, in a
peer-to-peer application, the policy can guarantee that a smart
phone can post a query only if it has made several contributions
such as publishing files or forwarding other queries.

Mechanisms to define and evaluate security policies have been
well studied in traditional distributed system [1], [2]. While these
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methods provide sufficient expressive power to represent policies
for MANET applications, the challenge is how to enforce such
policies in MANETs. Most of the existing policy enforcement
solutions have focused on Internet-based systems [3], [4],[5],
[6]. Unfortunately, these solutions are not fit for MANET fortwo
reasons. First, they enforce policies on trusted “choke points”
(e.g., firewall or proxy), which do not exist in MANETs due to the
lack of infrastructure. Furthermore, determining where toplace a
choke point in a MANET is almost impossible because the paths
between nodes change frequently due to mobility [7]. Second,
existing methods aim to protect the servers from unauthorized
client accesses. In MANET, this distinction does not exist as every
node can be a server and a client at the same time, and no entity
can be trusted more than another.

A potential solution for such a peer-to-peer environment is
Law-Governed Interaction (LGI) [8], [9]. LGI governs the com-
munication between all nodes in the network by enforcing a
unified group policy on a set of middleware controllers. However,
LGI requires the controllers to be trusted, but does not provide
means of establishing the trust. Consequently, in practice, it can
only be applicable in controlled environments where the enforcers
can be deployed or elected, such as corporate intranet [10],[6]
and Internet P2P [11]. McCune et al [12] advanced another
step by developing a shared trusted reference monitor (Shamon)
across a coalition of nodes using remote attestation. Shamon
enforces communication policies at the virtual machine level
and requires that each node runs multiple virtual machines (one
for each application), which may not be practical for mobile
devices. Additionally, Shamon does not provide enough flexibility
to compose applications and policies. If an application depends
on others, then all of them together with their policies mustbe
isolated in one virtual machine.

Different than enforcing policies in the network, another ap-
proach is to allow only nodes owned by trusted principals to
participate in the network [13]. The method does not addressthe
case of anonymous nodes spontaneously establishing MANETs.
Furthermore, such methods provide insufficient level of secu-
rity because a known-to-be-trusted node is more likely to be
compromised and taken over by an attacker in MANETs than
in infrastructure-based networks, due to the lack of physical
protection.

This paper presents the design and implementation of a policy
enforcing mechanism based on a kernel-level trusted execution
monitor. Under this mechanism, each MANET application or
protocol has its own policy1. All nodes supporting a certain
application and enforcing its policy form a trusted application-
centric network. Since an application may depend on other
applications, our policy enforcing mechanism creates a trusted

1In the rest of the paper, we will use the terms application and protocol
interchangeably to denote a piece of software regulated by its own policy.
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multi-tier network. The member nodes in such a network must
enforce the policies associated with these applications aswell.
For instance, a peer-to-peer file sharing application may depend
on an on-demand routing protocol. In this case, the mechanism
creates a two-tier trusted file sharing network. It first establishes
a trusted routing tier, and hence a trusted network for routing,
comprising of all the nodes that enforce the routing policy.On
top of this tier, it then creates a file sharing tier, enforcing the file
sharing policy.

In our policy enforcing mechanism, nodes can be members of
multiple multi-tier networks simultaneously. For example, let us
consider that a vehicular traffic monitoring application uses the
same routing algorithm with the file sharing application. Nodes
in the aforementioned file sharing network can also establish a
traffic monitoring network by creating, on top of the routingtier,
a separate trusted tier enforcing the traffic monitoring policy. Two
nodes may communicate through an application if and only if they
enforce the same application tier policy and all the underlying tier
policies.

Our policy enforcing mechanism allows each node to uniformly
enforce the policies without assuming any prior trust with other
nodes. This is similar to the method of building trusted ad
hoc network we developed previously [14]. To ensure trusted
policy enforcement, we augment each node with atrusted agent,
which protects the policy enforcement components from being
compromised. When a node joins a trusted tier, its trusted
agent helps establish trust by proving the execution of a correct
trusted agent, a trustworthy policy enforcing software component
(referred to aspolicy enforcerhereafter), and the right policy.
Furthermore, it ensures that the integrity of the agent, theenforcer,
and the policy will not be compromised. This is possible because
the trusted agent is part of the operating system kernel and
guarantees the integrity of the kernel and all programs involved in
policy enforcement. Therefore, it can foil attacks, including those
launched by local users, to tamper with the enforcer or the policy
being enforced. If any of these components is compromised, the
trusted agent will disconnect the node from the trusted network.

The trusted agent is built on top of Satem [15], our trusted
execution monitor based on a low-end trusted hardware, Trusted
Platform Module (TPM) specified by the Trusted Computing
Group (TCG) [16]). Due to its low cost and broad support by
computer makers, the TCG TPM has been already integrated in
many laptops. In the near future, it will also be installed onsmaller
mobile devices such as PDAs and mobile phones [17], which
makes our TPM-based approach feasible for MANETs.

This mechanism provides a number of benefits, which make it
suitable for MANETs. First, policy enforcement in the multi-tier
networks is entirely distributed without relying on any central
trusted choke points. Second, the trusted networks are self-
organized. They can be established and managed spontaneously
without requiring pre-deployed trusted entities or centralized
management. Third, the multi-tier trust enables flexible enforce-
ment of complex policies, which can be defined across various
interdependent protocols and enforced independently, tier by
tier. Furthermore, nodes running multiple applications can join
multiple trusted networks, each enforcing policies for different
applications without interfering with each other.

We implemented a prototype of the policy enforcing mecha-
nism in Linux and tested it over an IEEE 802.11-based wireless
ad hoc network that is composed of TPM-enabled laptops. We

also ran NS-2 [18] simulations to evaluate the performance in
large scale MANETs. The experimental results demonstrate low
overall costs in application execution and network communication
despite high one-time initial cost in network establishment. The
simulation results reveal that nodes can join the trusted tiers
with high probability even if the underlying MANETs are highly
volatile. The overall communication overhead over long network
paths increases but still remains at low levels: less than 10% in
networks with infrequent connectivity loss and about 20% inhigh-
mobility networks where connectivity among nodes is unstable.

The paper is organized as follows. We motivate the research in
Section II through three examples. An overview of the multi-tier
network is presented in Section III, followed by the design of the
policy enforcing mechanism and the details of the trust establish-
ment protocols in Section IV. Section V describes the prototype
implementation. The experimental and simulation results are
analyzed in Section VI. The limitations of our method and related
work are discussed in Section VII and VIII, respectively. Finally,
the paper concludes in Section IX.

II. M OTIVATION

In this section, we illustrate the challenge of enforcing even
simple policies for three MANET applications. We will show
how to solve these problems using our approach in next section.

A. Example 1: Secure Routing

Consider a group of nodes supporting Ad hoc On Demand
Distance Vector(AODV) [19] routing protocol. AODV is known
to be vulnerable to wormhole attacks [20], in which an attacker
exploits a fast tunnel to attract all network traffic throughit. One
way to defeat this attack is to implement Packet Leashes [20].
For example, a geographical leash can ensure that the destination
node is within a certain distance from the source node. It is
implemented as follows:

The source noder checks for each AODV reply from the
destination nodes, dmax > ||p(s)−p(r)||+2(tr−ts)×v +
e, wheredmax is the max distance that the destination node
s is allowed from the source noder, p(s) is the position of
s at ts, the time of sending the AODV packet,p(r) is the
position ofr at tr, the time of receiving the AODV packet,
v is the maximum relative moving speed of the two nodes,
and e is the acceptable error. Replies that do not pass the
check are deemed as from wormholes and rejected.

We can directly translate the above leash into a routing policy
PR. However, the implementation of the above leash or enforce-
ment of the policyPR requires that noder and s be loosely
synchronized andr can authenticates. In general, this is non-
trivial in MANET due to the lack of a central time server. In case
of anonymous environment, this becomes more difficult sincethe
two nodes can not trust each other. The node has to rely on round-
trip delay to estimate the time needed for an AODV message
to reach the other. However, this method will accumulate large
errors with number of hops and distance between the two nodes
increasing. Therefore, the best place to detect the wormhole is
on the node that is close to either end of the tunnel. The further
away the node is, the less precise the estimate becomes, and the
higher false positives and negatives the method incurs. However,
this is infeasible since we do not know which node is close to the
tunnel and whether this node can be trusted to check the leash.
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Fig. 1. Policy Enforcement in Multi-tier Networks. Nodes 1, 3, 4, 6, 7, 8 and 9 establish an AODV routing tier. On top of it, nodes 1, 4 and 6
establish a file sharing tier and nodes 6, 8 and 9 establish a game tier. Hence, nodes 1, 4 and 6 form a trusted two-tier file sharing network enforcing
both the file sharing and routing policies. Nodes 6, 8 and 9 form a trusted two-tier game network enforcing both the game androuting policies.

B. Example 2: Unselfish Sharing

Consider cars on a highway forming a vehicular network to
obtain traffic information ahead of them [21]. Each node simul-
taneously posts queries, answer queries, receives responses, and
forwards queries for others. To benefit all cars in the network, it
is vital to ensure that enough cars respond to and relay the queries
posted by others. Similar concerns exist in other applications such
as a P2P file sharing network, where sufficient file providers are
desired. To achieve these goals, each node must abide by a policy
PF , like the following, before joining the network:

Every mobile node has to serve or relay at least 1 request
from others after posting 3 queries to the network.

Clearly, the only way to enforce the policy is to do it on every
node in the network. Due to the anonymous nature, any identity
based policy enforcement method, such as Peace [13], does not
apply.

C. Example 3: Fair Game

Consider a group of smart phones using a MANET to play an
online game. They are separated inton teams and each of them
chooses to join one of the teams at the beginning of the game.
To ensure each node can only take one role in the game, the
following game policyPG is defined:

Each gaming node is free to join any of then teams. But
once it joins one, it can not join another team without first
withdrawing from the current team.

The above policy is similar to Chinese Wall Policy [22].
Enforcing such a policy for Internet based applications hasbeen
addressed in literatures such as [9]. The existing methods rely on
the capability of differentiating one node from another. However,
due to Sybil attack [23], this is difficult in MANET.

It is difficult for existing methods to enforce any individual pol-
icy aforementioned. To make it more challenging, these policies
can be related. For example, secure routing may be prerequisite
to secure the file sharing and gaming applications. Therefore,
enforcing the file sharing or gaming policy requires that the
underlying routing policy have already been enforced. On the
other hand, a node may run the file sharing application side by
side with the gaming application. Enforcing the policy for one
should not interfere with the other. Since nodes can run these
applications in any combinations, it is critical to enforcetheir
associated policies flexibly and organically.

III. T RUSTEDMULTI -TIER NETWORKS

In this section, we first formally define the trusted multi-tier
networks. Then, we illustrate how to create the network through
an example.

A. Definition and Policy Enforcement

For some applicationS, we define the trusted policy enforcing
tier T0, as follows:

T0 =< N, S, P >

whereN are the set of nodes communicating throughS, andP

is the policy defined forS. To facilitate description, we use “.” to
represent “member of” relation, i.e.,T0.N means the set of nodes
in the tierT0.

AssumeS calls a set ofh independent protocols and each
protocol is associated with a policy, the nodes running these
applications and enforcing their associated policies formT0’s
underlying tiersT1, T2, ... Th. Similarly, each of these protocols
may also depend on other protocols and therefore has its own
underlying tiers. Assume that there are totallym direct and
indirect underlying tiers ofT0, thesem + 1 tiers form the trusted
multi-tier network ofS defined as follows:

N =<

m⋂

i=0

Ti.N,

m⋃

i=0

Ti.S,

m⋃

i=0

Ti.P >

Each policy is enforced at its associated trusted tier inde-
pendently. Each trusted tierTi ensures both compliance and
authenticity of the messages inTi.S as follows:

1) Compliance. For each member node ofTi to send a
message inTi.S, it must be permitted byTi.P .

2) Authenticity. For a message ofTi.S to be accepted by a
member node ofTi, it must be sent by another member
node.

Compliance ensures that all member nodes abide byTi.P in
communicating with each other throughTi.S. This is accom-
plished because only nodes that are trusted to enforceP can join
the trusted tier. Once the trust is established, the node’s underlying
trusted computing system ensures that it will not be compromised.
Otherwise, the node will lose its membership of the trusted tier.
We will discuss how these are accomplished in the next section.
Authenticity prevents a non-member node from creating and
injecting messages to the trusted tier. To achieve this, theenforcer
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Fig. 2. Multi-Tier Creation. Building the trusted 2-tier file sharing network demands creating the AODV tier TR followed by the file sharing tier
TF . To create the AODV routing tier TR, node 1 initiatesTR and invites its neighbor nodes (2 and 3) to join the tier. At step 2, node 2 joinsTR

and further invites its neighbors (node 4 and 5). Finally, node 6 joins the tier at step 3. The file sharingTF is then built similarly on top of the
AODV tier.

on the node attaches a Message Authentication Code (MAC) to
each messageX of S it sends out. The trusted tier keykT is used
to compute the MAC code e.g.,MT (X) = HMAC(kT , X). kT

is created whenT is established and shared by all member nodes
in T . We will discuss more on the trusted tier key in the following
sections.

B. Example: Two trusted two-tier networks

In order to understand the main idea of our solution, let us first
consider the example presented in Fig. 1. This example shows
a group of nodes using a MANET to run a file sharing and a
game application, denoted byF andG. Both applications rely on
AODV routing denoted byR. The nodes can build two trusted
two-tier networks: (1) a file sharing networkNF consisting of a
file sharing tierTF and a routing tierTR; and (2) a game network
NG consisting of a game tierTG and the same routing tierTR. A
node can join more than one multi-tier networks at the same time
(e.g., node 6 in this example). Nodes in each tier must enforce
the tier policy,PR for TR, PF for TF , andPG for TG. Formally,
NF andNG are defined as follows:

TR =< {1, 3, 4, 6, 7, 8, 9}, R, PR >

TF =< {1, 4, 6}, F, PF >

TG =< {6, 8, 9}, F, PG >

NF =< {1, 4, 6}, {R, F}, {PR, PF } >

NG =< {6, 8, 9}, {R, G}, {PR, PG} >

EnforcingPR, PF , andPG is no longer a problem inNF and
NG because they are enforced on every member node of them.
For PR, if there is a wormhole in the networks, the node closest
to the wormhole will check the leash and detect the existence
of the wormhole. EnforcingPF and PG is also straightforward
since the history of the node posting queries, serving requests and
registering its identity is available on this node.

For two nodes to communicate, they have to be in the same
multi-tier network. For example, in Fig. 1, node 1 cannot share
files with 3 because node 3 does not enforcePF and is not a
member of the trusted two-tier file sharing network. Neithercan
files be shared between node 1 and 2 as node 2 does not join the
underlying trusted routing tier. On the other hand, the two nodes
do not have to be neighbors, as the higher tier application traffic
can be routed by the trusted lower tier in a multi-hop fashion.

For example, node 1 and 4 can share files securely by routing
through node 3. Node 3 is trusted to enforcePR even though
it is not trusted to enforcePF . Nodes in any trusted multi-tier
network must have the trusted agent. Otherwise, they cannotjoin
any trusted tier, such as node 5.

C. Creating a Trusted Multi-tier Network

Building a trusted multi-tier network involves establishing all
the trusted tiers it is composed of in a bottom-up fashion. For
example, to build the file sharing multi-tier networkNF in Fig. 1,
the trusted AODV tierTR is first established followed by the
trusted file sharing tierTF . Fig. 2 illustrates this procedure.

A tier is created step-by-step. First, a node begins to enforce the
tier policy. It creates the tier key, which is used to authenticate in-
tier communications as discussed earlier. By doing so, it becomes
the first member of the tier, calledoriginator of the tier, e.g.
node 1 in Fig. 2. The originator then broadcasts an invitation
to its neighbors, e.g. node 2 and 3, to join the newly created
tier. Assume node 2 and 3 choose to join this tier. Since node 3
enforcesPR, it succeeds in joining the tier and receives the tier
key from node 1, but node 2 fails because it does not enforcePR.
Next, node 3 extends the tier one step further by inviting nodes 4
and 5. Similarly, node 4 joins and continues the process to include
node 6 in the tier. The tier originator controls the size of the tier
by setting a TTL parameter in the invitation message. Each node
decrements the TTL after joining the tier and stops forwarding
the invitation message once the TTL becomes 0. The joining
procedure is defined in JOIN protocol, which will be discussed
in details in next Section.

Once the routing tier is built, the upper-layer file sharing tier
can be built in a similar way. The difference is that the broadcast
is in a multi-hop manner. That said, a member node of the file
sharing tier broadcasts the invitation to its neighbors. Ifa neighbor
node decides to join the tier, it re-broadcasts the invitation in the
same way as in the routing tier creation. Even if the neighbor
node does not join the tier, it forwards the invitation message to its
neighbors and acts as a router for further communication between
the sender and other potential members of the new tier. In an ad
hoc network, the neighbor node may also choose not to forward
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the invitation. If all intermediary nodes are not cooperating, the
tier expansion stops.

Each tier application comes with a signed policy. When a node
installs an application, it installs its associated policyas well. Tier
policies are defined and enforced independently. The policyfor a
multi-tier network is composed automatically from the individual
tier policies based on the application dependencies. For example,
Node 1 in Fig. 1 is a member of the routing tier, which ensures
the packets sent and received at its file sharing tier are routed
through the trusted routing tier. On the other hand, the applications
may come with contradictory policies or may use different label
spaces. We do not address these issues in this paper.

The policies are enforced by each node in the multi-tier trusted
network rather than by a trusted central authority. Therefore, it is
critical to verify a node’s trustworthiness of enforcing every tier
policy. This is accomplished when the node joins the network
through two protocols: JOIN or MERGE. We will discuss them
in the next section.

IV. N ODE ARCHITECTURE ANDPROTOCOLS

In this section, we introduce the node architecture of our
method. As shown in Fig. 3, it consists of a trusted agent (Satem),
a tier manager and a number of enforcers, each of which enforces
a tier policy. We then discuss in details the two protocols: JOIN
and MERGE, followed by the analysis of their correctness.

A. Satem: The Foundation of Trust

We leveraged Satem [15] to build the trusted policy enforcing
mechanism. Originally, we designed and implemented Satem to
ensure requesters of a remote network service that the service
executes only trusted code. Satem is composed of atrusted agent
in the OS kernel of the service platform and atrust evaluatoron
the user platform. The service provider performs the attestation
of the OS kernel (including the trusted agent) through a trusted
boot process using the TPM specified by the Trusted Computing
Group (TCG). Subsequently, the trusted agent takes advantage
of the service execution context to only verify the integrity of
the code loaded dynamically by the service. More importantly, it
ensures that the service executes only trusted code by protecting
the service execution in the OS kernel.

Central to Satem is the commitment protocol. Before starting
a transaction with a service, requesters ask the trusted agent to
provide the integrity measurements of the OS kernel, asystem
commitment, and aservice commitment. The commitments are
certificates describing all the code files the kernel and the service
may execute in all circumstances (e.g., executables, libraries).
The system commitment includes the kernel binary and all the
modules it may load. The service commitment includes the entire
code stack of the service including the service applicationbinary,
shared libraries, other applications it calls during execution and
their shared libraries.

Each piece of software described in the commitments is defined
by a combination of its identifier (e.g., name and version) and
the SHA1 hashes of all its code files. It is the service provider’s
responsibility to create appropriate commitments. The service
provider uses static or runtime analysis to determine the code
base. Commitments for an application typically includes several
dozens of code hashes. For example, the system and service
commitments altogether for the P2P file sharing applicationrun-
ning Mute [24] include 47 code file hashes. The service provider
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Fig. 3. Node Architecture of the Trusted Multi-tier Network

collects the code hashes and generates the commitment certificate
as follows:

1) Request code certificates.The service provider requests
each vendor to generate a vendor-signed code certificate
in the same format as the commitment for its code.

2) Sign the commitment.The requester forwards all the code
certificates and the commitment to a third-party trusted
Certificate Authority (CA). The CA needs to verify the
signatures of all code certificates and compare the code
hashes in the commitment against the certificates. The CA
signs the commitment if and only if it verifies all code
certificates and code hashes in the commitment.

Satem only guarantees the integrity and the authenticity ofthe
code, but not its correctness. The requester must have a local
trust policy that governs which kernel and services are trusted.
It takes two steps to verify whether a service is trusted. First, it
authenticates the kernel and service commitment certificates and
learns the identities of the kernel, its modules, and the service
2. Second, it verifies the kernel and the service against the trust
policy.

In Satem, evaluating a commitment is reduced to authenticating
the certificate. In general, this is non-trivial in ad hoc networks
due to the lack of constant connection to the Internet and the
Public Key Infrastructure (PKI) [25]. A node may still be able
to authenticate a certificate if it locally holds the public key of
the signing certificate authority or a valid certificate chain to it.
However, it is unable to validate in real-time the certificate since it
has no access to the CA’s certificate revocation list. This issue can
be significantly alleviated given the special nature of the problem
we aim to solve. As discussed in [26], although nodes do not
have persistent Internet connectivity, they can still get on-line
from time to time. For example, a user may be off-line on an
inter-city train most of the time, but get online when the train
enters a train station. Furthermore, a Satem commitment only
states that a code file has a certain correspondingSHA1 digest.
This fact is invariant under any circumstance. Lastly, since the
ad hoc network is formed for a specific task and only lasts for
a relatively short period of time, the likelihood of revoking a
certificate is negligible.

Based on the above observations, we introduce a short-life
certificate to authenticate the commitment. Each node obtains a
regular long-life commitment certificateCL, a short-life commit-
ment certificateCS , and the authority’s certificateCA when being
connected to the Internet. When losing Internet connectivity, it
can still use theCA to authenticateCS of other nodes. Since
this certificate is only good for a short period of time, thereis

2The commitment authentication is not trivial in ad hoc networks. We will
presents our solution for such networks later in this section.
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Fig. 4. JOIN Protocol. Node 1 joins the tier by conducting the JOIN protocol with node 2 that is already in the tier.

no need to be concerned about revocation. AfterCS expires, the
node needs to regain Internet access to renew it using itsCL.
The CA verifies theCL using PKI and grants the renewal request
without re-authenticating it from scratch.

The trusted agent enforces the system commitment at boot
time and the service commitment upon being started such that
the kernel and the service are forbidden to load any code files
that are either undefined in the commitment or tampered with.
Therefore, if the requester verifies that the kernel, the agent,
and the commitments are trusted, it is convinced that (1) the
service has executed only trusted code up to the time of integrity
measurement; and (2) the service will continue to do so in
the following phases due to the protection provided by the
trusted agent. We will discuss more implementation detailson
commitment enforcement in Section V.

B. Tier Manager and Enforcer

The tier manager is an application that allows the node to
create, join and merge into a tier. When the user decides to
create a new tier, she calls the tier manager to create the tier
key and start the tier creation procedure. Then, the tier manager
communicates with the tier managers on other nodes through
the JOIN or MERGE protocol. The node may join multiple tiers
and thereby, run multiple enforcers. An enforcer is any software
that can enforce the tier policy. In the simplest form, the tier
application itself has built-in capabilities of enforcingcertain
policies and can be the enforcer. Both the tier manager and the
enforcer must be trusted. This is achieved by defining the code
base of the tier manager in the system commitment and the code
base of each enforcer in a service commitment (called enforcer
commitment in this paper). Consequently, Satem enforces these
commitments to prevent the tier manager and the tier enforcers
from being tampered with.

Before creating or joining a tier, the user first registers the
tier enforcer with the tier manager. As explained later in JOIN
protocol, this enables the tier manage to deliver the correct
enforcer commitment. Moreover, at the end of the JOIN and
MERGE protocols, the tier manager receives the tier key. Then,
the tier manager can deliver the key to the right enforcer that has
been protected by the trusted agent.

C. Joining a Tier

The JOIN protocol is used when a node wants to join a trusted
tier for the first time. The new node communicates with a member
node of the trusted tier. The member node has to verify that the

new node is trustworthy to enforce the tier policy. At the same
time, the new node must also verify the trustworthiness of the
member node. Fig. 4 illustrates the JOIN protocol. In the figure,
we assume that Node 2 is already a member of a trusted tier and
Node 1 wants to join this trusted tier. In this example, we also
assume that each application comes with an associated policy,
which is stored on each node together with the application3.

1) Request to join.As illustrated in steps 1-2 of Fig. 4. Node 1
sends a join request to Node 2 by specifying the application
identity (e.g., the IP address and port number) and receives
a request for a guarantee of trusted enforcement of the tier
policy.

2) Deliver the commitment. This is done by steps 3-6 of
Fig. 4. Node 1 first evaluates whether the policy can be
enforced. Then, it calls the trusted agent to generate a Satem
report including (a) its system commitment, (b) the enforcer
commitment (i.e. the service commitment defined for the
enforcer), and (c) the integrity measurement of booting.
Finally, Node 1 sends the Satem report to Node 2 for
evaluation.

3) Evaluate the commitment.This is step 7 of Fig. 4. Node
2 first authenticates and verifies the integrity of the com-
mitments and attestation. Then, it verifies the system com-
mitment, the enforcer commitment, and the boot attestation
in the Satem report against the local trust policy before
accepting Node 1 to the tier. From the boot attestation,
the member node learns that the requesting node has been
booted into a trusted Satem kernel. Knowing the system
commitment convinces the member node that the kernel of
the requesting node will not load untrusted modules, which
protects the trusted agent from being tampered with. Know-
ing the enforcer commitment convinces it that the enforcer
software execution stack on the requesting node is trusted
because the trusted agent will enforce the commitment to
prevent untrusted code from being loaded by the enforcer.

4) Grant the join permission. As shown in step 8-10 of
Fig. 4, Node 2 accepts the join request and sends the trusted
tier key along with its own Satem report to Node 1. Node
1 then verifies the report the same as Node 2 did at step 7.
After it sets the tier key and enforces the tier policy, Node 1
becomes a member of the tier and can not exchanged with
other nodes in the same tier using the tier key.

3Policy distribution is discussed in more details later in this section
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D. Security Analysis of JOIN Protocol.

Attacker model. Let us consider a local attacker on Node 1
(the analysis holds if the attacker is on Node 2). We assume
that the attacker cannot break the TPM or launch hardware
based attacks, and in particular, cannot use direct memory access
(DMA). We further assume that the attacker is unable to bypass
the node operating system to gain access to system resources, such
as memory, CPU, network card, and disk. To achieve this, direct
memory access from user space via /dev/mem and /dev/kmem is
disabled in Satem implementation. Other than these restrictions,
the attacker can have full control of the software system, including
root privilege.

• Disable enforcement of the tier policy.The most direct
attack is to disable the enforcement of the tier policy
after obtaining the connectivity. The attacker can do so by
disabling the policy enforcer. This requires removing the
policy enforcer’s kernel module. The trusted agent intercepts
the removal request and clears the tier key before removing
the module. Thus, the attacker has to first disable the trusted
agent (Satem). The attacker may choose not to enable the
trusted agent. However, this will make the node fail to join
the tier at step 7. Alternatively, the attacker may want to
disable the trusted agent after being accepted to the trusted
tier. However, the only way to turn off the trusted agent is
to reboot the system, which will wipe out all tier keys and
force the node to rejoin the tier.

• Modify the policy. The attacker may attempt to modify
the current policy at runtime. The trusted agent secures the
memory space holding the policy such that only the tier
manager has write permission to it. Additionally, the tier
manager is protected by the trusted agent. The attacker may
try to run a malicious tier manager. But this will make the
node fail to pass evaluation at step 7.

• Steal the tier key. The attacker may attempt to steal the
session key on the node. One of the creators was selected
to generate the key, which became the first node in the
tier. Which node was selected is irrelevant since the key
is secured by the trusted agent in memory and accessible
only to the tier manager and the tier policy enforcer. The
tier manager and the enforcer are not allowed to disclose it
to any other program or save it to disk. Violating enforcers
will either be stopped due to the enforcer commitment or
revealed to the member node, thus causing the join request
to fail. The protocol ensures secure distribution of the keyby
establishing mutual trust between the joining node (Node 1)
and the member node (Node 2). On one hand, the member
node (key owner) will not distribute the key to any untrusted
node (step 8). On the other hand, the joining node will not
accept the key from a member node unless the member node
has been verified to be trusted (step 9). Consequently, an
untrusted node cannot create a key and fool others to accept
it.

• Hijack the key. The attacker may try to steal the tier
key in distribution by intercepting it at step 8. To ensure
secure distribution of the key, the tier manager on Node 1
dynamically creates a public-private key pair (PK1, SK1)
when it is loaded to run. The public keyPK1 is passed to
Node 2 along with the TPM report at step 4 which is used by
Node 2 to encrypt the tier key at step 8. Node 1 then decrypts
the encrypted tier key using the correpsonding private key

SK1. The private key is cached in the tier manager’s memory
and never disclosed to any other processes or saved to disk.
The trusted agent protects the key from being disclosed to
any process other than the tier manager. In case of system
suspension, all tier keys are wiped out. When the system
resumes operation, it has to re-join the previous tiers. Hence,
the attacker is unable to acquireSK1 to decrypt the tier key
intercepted at step 8.

• Play man-in-the-middle. The attacker may want to replay
a valid TPM report and exploit it to gain trust from Node 2.
The protocol foils the attacker by including a nonce in the
attestation report. The attacker may also attempt to play a
man-in-the-middle attack by creating her own public-private
key pair (P̃K1, S̃K1) and replacing the aforementioned
(PK1, SK1) with them in order to decrypt tier key with
S̃K1.

Although PK1 is not authenticated in the protocol, it
is attested in the TPM report. When the TPM report is
generated, the tier manager computes the hash value ofPK1

and passes it as a parameter to the TPM. By evaluating the
TPM report, Node 2 knows that the public key belongs to
the node that generates the report. Since the joining node is
trusted because of the report and is the only one that has
the corresponding private key to decrypt the tier key, the
member node is assured that tier key is distributed to a node
that is trusted to enforce the policy.

Our method was originally developed in Satem [15]
and is similar to [27]. It is orthogonal to identity based
authentication and can be used in combination with any
existing MANET key authentication methods such as [28],
[29], [30], [31], [32].

E. Merging Tiers

Two tiers enforcing the same policy but using different keys
can be united by the MERGE protocol. Every node has an
equal opportunity to establish a trusted tier. To prevent multiple
nodes from establishing the same trusted tier at the same time,
the originator may first query its neighborhood for the existing
tier. However, this method does not work if two nodes are not
reachable from each other. As a result, they will create two trusted
tiers running the same application and enforcing the same policy,
but holding different trusted tier keys. When later connectivity
becomes available between them, they cannot communicate with
each other. In this case, the two trusted tiers can be merged by
unifying the two tier keys into one common key. This procedure
starts when a node (Node 1) in a tier (tier A) learns the existence
of another tier (tier B) nearby. For instance, it may receive
a message from Node 2 that it cannot authenticate. This may
indicate that Node 2 is running the same application but having
a different key. To verify whether tier B is enforcing the same
policy, Node 1 exchanges its policy with Node 2. If the policies
are the same, Node 1 starts the MERGE protocol to unify the
key. Fig.5 shows the steps of the MERGE protocol, which can
be categorized in two phases.

1) Change membership.
This is the steps 1 and 2 in Fig.5. Nodes 1 and 2 first
negotiate the new key to be used by the merged trusted
tier. They compute a hash of their own keys and select the
key with greater hash value as the new trusted tier key.
Assume the key of Node 2,knew is chosen, then Node 1



8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. MERGE Invitation 

4. Authenticate old tier membership  

Node 1 Node3 

New Tier 

Node 2 

kold 1. Negotiation 

2. JOIN  

knew,kold 

Old Tier Old Tier 

knew kold 

5. Deliver the new key and authenticate  old tier membership  
knew,kold 

Fig. 5. Merge Protocol. The old tier and the new tier enforce the same policy but were created separately and have differenttier keys. Node 1 in
the old tier joins the new tier by conducting the JOIN protocol with Node 2. Then, Node 1 calls for other nodes (e.g. Node 3) inthe old tier to
merge into the new tier through the MERGE protocol.

joins Node 2’s tier through the JOIN protocol mentioned
above. After receiving the key, Node 1 verifies it against
the hash received in the previous step. It still keeps the old
key, kold, for a certain period of time. The old key will be
used to authenticate other member nodes in the old tier.

2) Convert membership.
This is the steps 3-5 in Fig.5. Node 1 broadcasts a MERGE
message to its neighbor nodes in its old tier with a nonce.
A neighbor node, Node 3, and Node 1 then mutually
authenticate to each other by exchanging a nonce and a
message authentication code (MAC) computed using their
old tier key, kold. Successful authentication of the MACs
verify both nodes’ membership of the old tier. Finally, the
new tier key is encrypted withkold and delivered to Node
3.

Similar to the tier creation procedure, the MERGE is broadcast
in a multi-hop manner. For instance, the MERGE message of the
file sharing tier can be delivered to other nodes in the old tier
through a series of AODV router nodes that are not in either of
the new and old file sharing tier. The MERGE protocol does not
guarantee two trusted tiers to be merged completely in one run. In
fact, merging is driven by the need of facilitating communication.
As a result, it only aims to merge the nodes which interact with
each other. In practice, a TTL can be used in MERGE messages
to limit the scope of merging in the same way as trusted tier
establishment. Nodes beyond the coverage of the TTL may later
merge into the trusted tier when they need to interact with nodes
in the trusted tier. In this way, merging is carried out on-demand
step by step.

F. Security Analysis of MERGE Protocol

As discussed in JOIN, the attacker is unable to break the
tier manager, the policy enforcer, or the trusted agent. As a
result, she cannot obtain the tier key without enforcing thepolicy.
Additionally, she cannot modify the policy or steal tier keys on
the machine either. Therefore, the new key distributed at step 5
is safe.

Except for initial membership change (e.g. merging Node 1
into the new tier), verifying the trustworthiness of the nodes in
the old tier is reduced to simply tier key authentication. This is
because these nodes must have been verified before they were
allowed to join the old tier for the first time. Owning an old
key implies it has been protected by the trusted agent and is
still protected by Satem. Otherwise, if any program defined in

the commitments was compromised since last JOIN, the trusted
agent would have wiped out the key. This property helps simplify
the trust verification process in the MERGE protocol. Since
computing the MAC code is much cheaper than the Satem report,
the performance is greatly improved.

V. I MPLEMENTATION

We implemented the policy enforcing mechanism prototype
under the Linux 2.6.12 kernel. It consists of the Satem based
trusted agent and the tier manager. To evaluate the performance,
we also implemented enforcers for two MANET applications:
AODV (user-level daemon) [33] for ad hoc routing and Mute [24]
for P2P file sharing.

A. Satem Trusted Agent

The focus of the trusted agent is to provide a fail-stop protection
mechanisms to enforce commitments. Our implementation is inte-
grated into the OS kernel in many places by inserting checkpoints
to kernel calls such asdo execve, sys init module, and
sys open to intercept new code execution invoked by protected
processes. We add these modifications by patching the original
Linux kernel.

Trusted System Initialization. In Satem, the first step is to
establish the trusted computing base that includes the trusted agent
and the entire OS kernel. This process involves a trusted boot,
in which each component in the boot sequence, starting from
the TPM, measures the integrity of the next one before handing
over the control. In our case, the TPM measures the integrity
of the BIOS image by computing theSHA1 hash over it and
then transfers control to the BIOS. Next, the BIOS calls TPM
to computeSHA1 hash over the OS loader (e.g., LILO), and the
latter does the same over the OS kernel image, denoted asOSK.
The measurement is saved in a PCR register (PCR0), which is
an internal configuration register of TPM. As a result, afterthe
OS kernel is loaded,

PCR0 = SHA1(SHA1(SHA1(0|BIOS)|
LILO)|
OSK)

assumingPCR0 = 0 initially.
The SHA1 hash is computed in a chained fashion using the

TPM API TPM Extend, which is the only way to change
the content of a PCR. As a result, all the components can be
measured using a single PCR. More important, this prevents the
PCR content from being reset (i.e., the attacker can change the
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measurement value, but it cannot set it to an arbitrary predeter-
mined one). The content of selected PCRs is reported via the
TPM Quote API, which signs the content with a TPM internal
key. We assume that the TPM is unbreakable and, therefore, we
consider that the integrity measurement it makes and the report it
produces cannot be tampered with4. As a result, the TPM report
containing the measurement result saved in the TPM is sufficient
to prove a genuine kernel and trusted agent.

Commitment Enforcement. Before a policy enforcer is
started, the user needs to associate the commitments with the sys-
tem and enforcer executables such that the trusted agent canload
the right commitment when executing the enforcer. To do so, the
user defines a list of enforcers in a configuration file, which maps
the enforcer binary to its commitment. Once the enforcer starts,
the trusted agent locates the commitment from the configuration
file. The trusted agent then associates a protection flag withall
processes executed by the enforcer, memory regions mapped by
these processes, and code files opened by them. The trusted agent
enforces the commitment in each checkpoint only if the flag is
present. The only exception is modifications to the kernel. Satem
always enforces system commitments regardless which process
attempts to load the kernel modules. The checkpoints used by
our method to enforce system and enforcer commitments are the
following:

1) Loading. When the enforcere is executed, the trusted
agent intercepts system calls such asdo execve and
loads the pre-configured enforcer commitment. Then, it
computesSHA1(e) and verifies its integrity against the
enforcement commitment. Besides, it marks the current
process executinge as protected. Whenever a protected
process loads a code filec, the trusted agent will verify
c’s integrity against the enforcer commitment.

2) Binding. If the program is a service, it needs to bind a
network socket upon being loaded. Thesys bind system
call traps into the kernel. The trusted agent links the socket
to the commitment associated with the process;

3) Module Inserting.When a kernel module is loaded, the
trusted agent interceptssys init module and verifies its
integrity against the system commitment without checking
the calling process’s protection flag.

4) Mapping. Modern OSes map rather than load code files,
including shared libraries, into memory. When a protected
process maps a segment of a code filec into its memory
regionr, the trusted agent marksr as protected, computes
SHA1(c) and verifies its integrity against the commitment.
Additionally, it partitions r into a series of page-sized
chunksr1, r2, ..., rk, computes everySHA1(ri) (i ∈ [1..k]),
and saves them in kernel memory.

5) Paging. When a mapped code chunkri of a protected
memory region is loaded into memory via kernel calls like
file nopage, the trusted agent computesSHA1(ri) and
verifies its integrity with the values previously computed in
the mapping.

6) Forking. When a protected processp forks a child process
p′, the trusted agent marksp′ as protected.

Satem exploits a lazy integrity measurement to minimize
overhead. It measures the code file page by page and caches the

4The current TPM specifications use SHA1, which has been foundbreak-
able [34]. We expect future releases of TPM to be upgraded with a stronger
one-way hash function such as SHA256.

results. When the code file is executed subsequently, Satem does
not measure it again if the associated commitment has not been
changed. Instead, it verifies each of the loaded chunks against
the cached measurement results. Satem will re-measure the entire
code file only if the execution loads a chunk that has not been
loaded before.

The commitments are maintained in the kernel memory as a
table. The trusted agent uses the file name as the key to look up
the corresponding hash value. The trusted trusted agent maintains
the list ofSHA1 hashes for the mapped binaries of each protected
program at page level. We use the Linux kernel crypto API to
implement theSHA1 functions.
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Fig. 6. The Example Policies.PR implements the secure routing policy
PR for AODV tier, which requires that each node check the packet leash.
PF is the unselfish sharing policy for Mute tier, which ensures that nodes
in the file sharing network serve at least one file download request from
other nodes after posting 3 requests.

B. Policies and Enforcers

We define the policy for Mute,PF , and the policy for AODV,
PR, as illustrated in Fig. 6. These policies address the security
issues for the routing and file sharing described in Section II. In
PR, when node i receives an AODV reply messageRREP(o,d)
to a previous query originating ato for destinationd, it must
compute and check the geographical leash. The route is accepted
if and only if the leash is valid. In the evaluation, the max distance
dmax and runtime distance between the two nodesd(i, d) are
constant and pre-defined.td and ti are the local time on node
d and i respectively. InPF , each node is given 3 credits in the
beginning. The credits are deducted by 1 every time the node
rejects a request for a file it owns or requests a file from other
nodes, and added by 3 every times the node serves a request. The
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node must maintain positive credits to be able to request newfiles
from others.

The enforcers can be any software that understands and en-
forces the policies. In general, users need to provide the right
enforcers for the applications as external components. Forevalu-
ation purpose, we implemented simplified enforcers for the above
Mute and AODV policies by modifying the applications’ source
code and hard coding enforcement of the policies. Hence, the
applications are also the enforcers of themselves and must be
trusted. This is done by having them included in the enforcer
commitments and protected by Satem.

C. Tier Manager

The tier manager is a service application. It implements thetier
creation, JOIN and MERGE protocols. In addition, it provides
the registration service for the user to register tier enforcers
by providing the server port that the enforcer listens on. Since
Satem maintains the mapping between the application port and
its commitment, the tier manager can use the port number to
retrieve the commitment of the enforcer during JOIN protocol.
Therefore, when the tier manager receives the tier key at theend
of JOIN or MERGE protocol, it delivers the key to the registered
enforcer that has been verified.

VI. EVALUATION

To evaluate the performance of our mechanism, we ran proto-
type experiments and simulations. In the experimental evaluation,
we created a 2-tier trusted ad hoc network over 3 laptops
and measured the overhead incurred by our policy enforcing
mechanism in application execution and communication. To un-
derstand the performance overhead of network creation and policy
enforcement in large MANETs, we also ran simulations in various
mobility scenarios using NS-2 [18].

A. Experimental Evaluation

Our method impacts system performance by adding latency
to (1) the kernel call execution due to enforcing the Satem
commitment, (2) joining the trusted network due to verifying
trustworthiness during JOIN and MERGE protocols, and (3)
the network communication due to enforcing the policy and
computing and verifying the MAC for application messages.

1) Methodology:
We created an 802.11g ad hoc network consisting of three laptops
(IBM T43 with a 1.7Ghz Pentium M CPU, 512M RAM, and
Atheros wireless card). In order to test multi-hop communication,
the network was configured with a line-like logic topology (i.e.,
the direct link between laptop 1 and 3 was disabled, but they could
still communicate with each other through laptop 2 as a router).
This was achieved by enabling MAC filtering usingiptables
[35] on each laptop.

Each laptop ran two applications: AODV (user-level dae-
mon) [33] for ad hoc routing and Mute [24] for P2P file sharing.
We usedPR and PF defined in Fig. 6 and created a two-
tier trusted network consisting of a file sharing tier enforcing
PF and an underlying routing tier enforcingPR. We used a
simplified method to implement the Mute and AODV enforcers by
directly modifying the applications’ source code and adding the
policy enforcement functionality. As a result, the two applications
themselves are trusted and attested by the enforcer commitments.

Scenario Latency (in seconds)

Join 2.54
Merge 0.38

TABLE I

Tier Joining and Merging Delay

2) Results:
Kernel call cost. The overhead in kernel calls was incurred
by the Satem trusted agent, which enforces the system and
enforcer commitments. We measured it in terms of extra CPU
cycles needed to complete these calls. Fig. 7 shows the overhead
in four kernel calls:do execve, do mmap, sys open, and
filemap nopage. We measured the cost of these functions in
enforcement ofPF in Mute enforcer. All functions are measured
in two cases: in the original Linux 2.6.12 kernel and in the Satem
kernel. For each function, we measured its overhead for the first
call (the left two columns in the figures) and the overhead for
subsequent calls (the right two columns in the figures).

The graphs show that the impact of Satem on the first time
function call is significant 5 . For do execve and do mmap,
the cost is dramatically increased because of the by-page integrity
measurement for mapped code files. Forfilemap nopage,
by contrast, the cost is significantly reduced. This is because
Satem needs to load every mapped page into the page cache
when it measures a protected memory region. As a result, when
a page fault occurs, it is very likely that the page is still in
the cache. Furthermore, the costs of the subsequent calls inthe
Satem kernel are significantly reduced. This is because of the
lazy integrity measurement mechanism in Satem. Cost of the
subsequentdo execve calls is still large compared with the
original kernel, but the impact on the system is limited since it
is only one-time cost.

Joining latency. We measured the joining latency as the delay
between the time a node starts joining or merging into a tier
and the time it is accepted as shown in Table I. Both protocols
incur significant latency. The high overhead is mitigated from
two perspectives. First, JOIN is only used once for the initial
connection. Cost of reconnection is greatly reduced by MERGE
protocol. Second, if a node loses wireless connectivity to others
just for a short period of time, it is unlikely the trust tier the
node belongs to will update its policy or merge with other tiers.
Therefore, once the node regains the wireless connectivity, it
can simply reconnect to the tier without running either JOIN
or MERGE protocols. With that said, even MERGE protocol is
rarely needed.

The latency of JOIN protocol is largely due to the time the
TPM takes to generate signatures, which varies dramatically by
the TPM models and vendors. The TPM we used in the test were
manufactured by National Semiconductors. TPMs with higher
performance are already available [36]. JOIN latency between
machines equipped with these TPMs is expected to be much
lower.

Network communication delay. We measured the routing

5The cost of the functions of the first and subsequent invocations may be
dramatically different. In order to compare them in one figure,we use a re-
duced scale to plot the following figures: first call todo execve at 1/10, first
call todo mmap in the Satem kernel at 1/200, first call tofilemap nopage
in original kernel at 1/400, and first call tofilemap nopage in the Satem
kernel at 1/40.
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latency indirectly. We ran the AODV daemons on all three laptops
and pinged laptop 3 from laptop 1. Then, we measured the round
trip time (RTT), which includes both packet transmission latency
and the routing cost. Since all packets are at the same size and
enforcement ofPR has no impact on the ICMP protocol, the cost
of transmitting each packet is the same. The routing cost varies
with the change of the network state. In one extreme, the routing
cost is high when laptop 1 has to build a full route from scratch
since all 3 laptops have no routes to the others. The overhead
of enforcing PR is also high in this case because enforcement
is performed on all nodes on the route. In the other extreme,
the routing cost is 0 once the route is established and remains
valid; laptop 1 can keep sending packets via the route. Therefore,
the enforcer is not invoked and the enforcement overhead also
becomes 0. To test the different cases, we randomly invalidated
the existing routes on each laptop by blocking and unblocking
the wireless network interfaces. The enforcement overheadis
determined by the probability distribution of these scenarios.

Fig. 8 compares the probability distributions of ping latency in
the trusted network withPR being enforced (called in-network)
and in the original network withPR not being enforced. Clearly,
the latency in the two cases are nearly identical, indicating little
impact of enforcingPR on the routing latency. In both scenarios,
the majority (over 85%) of routing efforts incurred low delay(less
than 1ms). This was because our route invalidation is infrequent
and most of the time, laptop 1 had a valid route to laptop 3 and
the enforcer was not invoked. Hence, the mean overhead is low
(less than 5%).

To measure the overhead of enforcingPF , we compared the
downloading speed of Mute application in three cases (1) run
Mute in the original network with no policy enforcement, (2)run
Mute in the 1-tier network with onlyTF tier enforcingPF , (3)

run Mute in the 2-tier network withTF and TR tiers enforcing
PF and PR respectively. We measured the download latency in
case (1) as the baseline and measure the percentage of increased
delay in case (2) and (3). The results are summarized in Fig. 9.

Compared with no enforcement, the enforcement overhead in
both case decreases with the size of the file being transferred
increasing. This is because the overall costs consist of theinitial
cost of enforcing the policy in handling file download requests
plus the ongoing cost of computing or verifying the MAC code
for each Mute message being sent out or received. With the file
size increasing, network transmission and routing cost becomes
more significant, making the policy enforcement cost relatively
small. However, the policy enforcement overhead does not vanish.
Instead, it levels off at around6%. The overhead is mainly due to
the commitment enforcement by the trusted agent and the MAC
generation and verification by the tier enforcers. The cost of
enforcing the policy set{PR, PF } demonstrates similar pattern
with high level of overhead due to the extra cost of enforcing
PR. One important difference is that the cost of enforcingPR

increases with the length of the route between the two nodes,
while the cost of enforcingPF does not. This is due to the fact
that PR is enforced by all nodes on the route, whilePF is only
enforced by the two endpoints. We will show in the simulation
that this difference causes the overhead of routing to increase
dramatically in complex dynamic networks.

B. Evaluation through simulations

In the simulation, we used the NS-2 simulator to evaluate
how the overhead in creating the trusted multi-tier networkand
enforcing the policies varies in complex MANETs with different
mobility scenarios.
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1) Methodology:
The simulation includes three types of mobility models: highway
vehicular network, city vehicular network and a network with
nodes moving randomly at walking speeds. We leveraged our
vehicular simulation tool [37] to generate the highway and city
networks. The highway scenarios simulated is a 10 mile segment
of New Jersey Turnpike with 200 nodes (cars) moving at a
speed from 45 miles per hour (20 m/s) to 72 miles per hour (32
m/s). The city scenarios is a 1.2x1 miles region of Los Angeles
with 100 nodes moving up to 40 miles per hour (18 m/s). We
also modified Carnegie Mellon Universitysetdest [38] utility to
generate random waypoint mobility models with 100 nodes in a
1x1 miles region, moving at walking speeds. In our simulations,
we set the node density to be around 6-8 neighbors per node to
avoid connectivity failure due to sparse networks or too much
contention in over-crowded networks. In all scenarios, we ran the
simulations for 300 seconds.

Since the cost of cryptographic operations associated with
JOIN, MERGE, and enforcement cannot be ignored but NS-2
does not account for execution time, we add a certain latency
for these operations. Specifically, these additional latencies are
modeled as normal random variables with standard deviation
equal to 10% of its mean. The mean latencies are: 1150ms for
JOIN, 180ms for MERGE, and 0.15ms for enforcement. These
numbers were obtained from the previous experimental results.

2) Results:
Cost of network creation. We measured the cost of network
creation in terms of both successful ratio of JOIN and MERGE
operations and the latency it takes for a node to join the network.
The completion ratio of JOIN (or MERGE) is defined as the total
number of nodes that successfully join (or merge into) the network
against the number of nodes that apply to join (or merge into)the
network. To test MERGE, we first set all nodes in the network to
be the members of the old tier. We randomly selected one node
and updated its membership to become the first node of the new
tier. Then, this node automatically started the MERGE process
with other nodes.

As illustrated in Fig. 10, in most cases we achieved a comple-
tion of over 80% for both JOIN and MERGE. The ratio is lowest
in the city scenario. This is mainly because nodes exit the region
when they reach the boundary of the map. This problem does not
exist in the random walking scenarios and is less of a problemin
the highway scenario since most cars stay in lanes without exiting
the highway.

The latency for a node to join the network is measured as
follows:

joining latency =
ti − t0

disti
(1)

where we denoteti as the time nodei joins the network,t0 as the
time the originator initiates the network, anddisti as the number
of steps the join invitation message has traversed before reaching
nodei. In another words, we measured the latency per hop. The
reason to do so is because obviously the more number of hops
a node is away from the network originator, the longer it takes
for it to join the tier. We do not count nodes that fail to join the
network since the latency for these nodes is infinite.

Fig. 11 and 12 show that both vehicular networks incurred
less latency in joining and merging into the trusted network.
This result can be explained by the broadcast storm problem [39]
in tier creation. In the random waypoint scenarios, the number

of broadcast messages increases exponentially with the network
expanding neighborhood by neighborhood, which leads to many
packet losses due to contention. By contrast, in the vehicular
network scenarios, messages have to propagate along the road
unless the sending cars are at the road intersections. This means
that most of the time the number of messages that are being
broadcast in the network does not grow. Therefore, latency is
low in this case.

Enforcement overhead in AODV. We measured the enforce-
ment overhead in AODV in the same way as we did in the previ-
ous subsection. We randomly selected the source and destination
nodes and let the sources repetitively ping the destinations. We
measured the per-hop RTT by dividing the round-trip time by the
number of hops traversed. We denote BRTT as the basic per-hop
RTT measured whenPR was not enforced and ERTT whenPR

was enforced. We computed the overhead as

overhead =
ERTT − BRTT

BRTT
× 100% (2)

As Fig. 13 reveals, the overhead is higher than in the simple
prototype experiments (Fig. 8), but they still remain under20%
in all cases. The main reason for the overall increase is thatthe
network is highly dynamic and the established routes do not last
long. Frequent broken routes trigger route repairs, which involve
policy enforcement. In the prototype experiments, the route re-
establishment was far less frequent.

The worst case is the city scenario because it is the most
dynamic network. The overhead is small in the highway scenario.
This is because the relative positions between most nodes donot
change compared to other networks though each node itself moves
at highest speed.

VII. L IMITATIONS AND FUTURE WORK

We leveraged static root of trust to establish trust on the trusted
agent. In practice, this approach is known to be susceptibleto a
number of attacks due to bugs in implementations of boot loader,
BIOS and TPM [40]. These vulnerabilities may be mitigated by
the dynamic root of trust feature of new processors [41]. Another
limitation is that Satem only measures and protects the codethat
the application depends on. As pointed out in [42], [43], the
trustworthiness of the application also depends on the dynamic
data it uses. Roti [43] provides a solution to this problem.

Satem only ensures that a protected service can not load
untrusted code from the disk. It is unable to tackle attacks,
like buffer overflow, that can cause the protected service to
run arbitrary code without changing its disk image. Satem only
mitigates the problem in two aspects. First, Satem may reveal the
code that has known buffer overflow vulnerabilities by attesting
it to the user. Hence, the user can avoid trusting the vulnerable
code. Second, in the case of a successful buffer overflow attack,
the attacker runs her own code on the service stack without being
caught by Satem. But due to the limited size of the stack, the
attacker’s code typically has to call other local programs on the
service provider to make the attack meaningful. Satem restricts
the attacker’s capability of launching arbitrary local code (i.e.,
any code launched by the protected service must be defined in
the commitment).

The tier keys are protected in memory. However, a recent
study [44], [45] demonstrates the possibility of retrieving the keys
directly from DRAM, since DRAM still retains the content even
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Fig. 10. JOIN and MERGE completion ratio
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Fig. 11. JOIN latency per hop
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Fig. 12. MERGE latency per hop
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Fig. 13. AODV Policy Enforcement Overhead in Ping RTT

after being pulled out from the motherboard. Fully addressing
this vulnerability may require architectural changes to DRAM to
make it lose memory faster.

Satem kernel code is not modularized due to the need of
inserting integrity check points at various places in the kernel.
This makes the code difficult to port and modify. We are ex-
ploring other methods such as Linux Security Module [46] for
improvement.

In the current prototype, we implemented the enforcer by hard
coding the policy enforcing function in the application source
code. This is inflexible since changing the policy may require
modifying the application. In the future, we plan to implement a
standalone enforcer as the transparent application proxy.In this
way, the application request is redirected to its local enforcer,
which communicates with the application on the remote node.
One way to achieve this is to establish the mapping between the
application and its enforcer when the enforcer registers with the
tier manager. To do so, the user provides the tier manager with
the TCP or UDP port number on which the applicationS listens,
pS and the port number on which the enforcer listens,pE . The
manager then maintains the mapping between the applicationport
pS and the enforcer portpE in the kernel by using Linux built-
in kernel hooksNF IP LOCAL OUT andNF IP PRE ROUTING
[35] as follows:

1) NF IP LOCAL OUT
When the local nodenl sends a message toS on a remote
nodenr, the kernel maps destination portnr : pS to nl :

pE . This causes the message to be redirected to the local
enforcer.E computes and attaches the MAC code for the
application message.

2) NF IP PRE ROUTING
When the local nodenl receives a message forS from
a remote nodenr, the kernel maps destination portpS to
pE , which causes the message to be redirected to the local
enforcer. The local enforcer first verify that the attached
MAC code is correct. Otherwise, it drops the message. Next,
it strips off the MAC code and forwards the message to the
application.

VIII. R ELATED WORK

Our work leverages previous research on trusted computing and
distributed policy enforcement.

Distributed Policy Enforcement. The idea of trusted policy
enforcement on each network node can retrospect to our earlier
work in [14]. In that paper, we developed a Satem-based method
to implement network access control in ad hoc networks. This
paper further extends the idea in two fronts. First, the nodes
can now verify the trustworthiness of each other at any layer
and for any application rather than just at link layer as in
[14]. This enhancement enables finer grained control of network
establishment. Second, the policies can be associated withany
applications rather than just with the network layer. This makes
it possible to regulate the communication in any application
protocol.

Much of research on security policies focuses on policy rep-
resentation and evaluation [1], [2] or building security mecha-
nisms based on specific policies [47] without addressing policy
enforcement. McDaniel et al. implemented Antigone [48], a
general-purpose policy enforcement mechanism. However, it is
only concerned with providing API’s to integrate various policy
enforcing software components.

Enforcement of access control policies can be implemented by
use of reference monitors. Conventionally, the reference monitors
are managed by a trusted entity in a centralized way, such as in
[3], [4], which is suitable for enterprise computing ratherthan
ad hoc environments. Recent research efforts have been seento
distribute the monitors [5], [6]. However, the methods are in
essence still server-centric and rely on trusted servers tohost the
monitors, while our method is application-centric and doesnot
assume any pre-existing trusted nodes.

Minsky et al. developed Law-Governed Interaction [9], [8]
to govern the communication between a group of nodes by
a unified group policy. By implementing policy enforcement
through middleware controllers, LGI can support more flexible
and complicated policies, which can not be done in previous
enforcement mechanisms. Our method is similar to LGI in thatthe
policy enforcement is performed in the entire network. Moreover,
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our method supports any policy that can be expressed in the law
of LGI.

The major difference between our method and LGI is the lack
of the dependence on pre-existing trusted nodes. LGI requires that
controllers be trusted but does not provide means of establishing
the trust. Consequently, in practice, it can only be applicable in
controlled environments where the enforcers can be deployed or
elected, such as corporate intranet [10], [6] and Internet P2P
[11]. Our method enables trust to be built dynamically basedon
node’s trustworthiness of enforcing the policy without assuming
pre-existing trust relationships between nodes. As a result, it is
suitable for uncontrolled environment, such as spontaneous ad hoc
networks. In addition, instead of just supporting policiesdefined
for a specific protocol, our multi-tier network can enforce more
complex policies defined across various interdependent protocols.

Sailer et al. [49] developed a TPM based fine grained policy
enforcement mechanism for corporations to control their VPN
clients. Compared with our work, the method relies on the fixed
infrastructure and a trusted policy owner and distributor,which
is the corporate VPN server. Neither exists in ad hoc computing.

Trusted Computing. Both hardware and software based meth-
ods have been proposed to ensure trusted software execution. In
the hardware approach, the trusted software is executed on ahigh-
end trusted processor or co-processor such as IBM 4758 [50],
Citadel [51], Dyad [52], Cerium [53], and XOM [54]. Due to the
high cost, the hardware is unlikely to be ubiquitously deployed,
which makes these solutions unsuitable for ordinary nodes in ad
hoc networks.

The pure software methods, such as [55], SWATT [56], and
Pioneer [57], challenges the target system with the requirement of
computing a checksum within a certain time limit. These methods
assume sufficient knowledge about target system’s hardwareand
a noticeable delay of forging the checksum. Neither of them holds
in ad hoc networks computing.

Terra [58], Microsoft NGSCB [59], IBM TCGLinux [60],
and Bind [61] leverage a low-end trusted hardware like TCG
TPM [16] to boost trust on a set of software components, which
further ensures trustworthiness of the execution of targetpro-
grams. Our method differs from them in the scope and persistence
of protection. First, it ensures that all the code the targetprograms
load and depend on is trusted. This property enables our method to
catch every attempt to compromise the execution of the protected
programs and be immune to false positives, since irrelevant
changes in the system will not be monitored. Second, it guarantees
the trustworthiness of the target programs not only at the time of
integrity measurement, but also for future executions. This is done
through the commitment protocol.

IX. CONCLUSION

This paper presented a mechanism for MANETs to enforce
application communication policies. Under this mechanism, nodes
supporting the same set of applications and enforcing the same
policies construct a trusted multi-tier application-centric network.
Each tier of the network runs one application and enforces its
associated policy. The application of the upper tier depends on
the applications of the lower tiers to communicate. Only trusted
nodes are allowed to join the network. Moreover, communication
between them is regulated by the policies at every tier. To ensure
trusted policy enforcement, we augment each node with a trusted
kernel agent based on the TCG TPM. We evaluated the method

through a prototype based on an IEEE 802.11 ad hoc network
and through network simulations. The results demonstrate the
feasibility of the proposed method as well as its low overhead.
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