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Abstract— To ensure fair and secure communication in Mobile methods provide sufficient expressive power to represelitie®
Ad hoc Networks (MANETS), the applications running in these for MANET applications, the challenge is how to enforce such
networks must be regulated by proper communication policies. policies in MANETSs. Most of the existing policy enforcement
However, enforcing policies in MANETSs is challenging because solutions have focused on Internet-based systems [3],[54],

they lack the infrastructure and trusted entities encountered in . i
traditional distributed systems. This paper presents the design [6]. Unfortunately, these solutions are not fit for MANET fiovo

and implementation of a policy enforcing mechanism based on reasons. First, they enforce policies on trusted “chokentpdi
Satem, a kernel-level trusted execution monitor built on top (e.g., firewall or proxy), which do not exist in MANETS due teet

of the Trusted Platform Module. Under this mechanism, each lack of infrastructure. Furthermore, determining wherglace a
application or protocol has an associated policy. Two instances choke point in a MANET is almost impossible because the paths
of an spicaon uming on dfernt odes ey S19898 1 between nodes change el e mobiy (7], Sesond
for both the application and the underlying protocols used by e>_<|st|ng methods aim to prot_ect_th_e ;ervers from uqautbdnz
the application. In this way, nodes can form trusted application- Clientaccesses. In MANET, this distinction does not existeery
centric networks. Before allowing a node to join such a network, Nnode can be a server and a client at the same time, and no entity
Satem verifies its trustworthiness of enforcing the required set can be trusted more than another.

of policies. Furthermore, Satem protects the policies and the A potential solution for such a peer-to-peer environment is
software enforcing these policies from being tampered with. If | 3\y_Governed Interaction (LGI) [8], [9]. LGI governs there

any of them is compromised, Satem disconnects the node from themunication between all nodes in the network by enforcing a

network. We demonstrate the correctness of our solution throgh . . .

security analysis, and its low overhead through performance Unified group policy on a set of middleware controllers. Hoerg

evaluation of two MANET applications. LGI requires the controllers to be trusted, but does not ipdev

means of establishing the trust. Consequently, in praciiicgan

' only be applicable in controlled environments where th@rrs

computing can be deployed or elected, such as corporate intranet [g]0],
and Internet P2P [11]. McCune et al [12] advanced another

I. INTRODUCTION step by developing a shared trusted reference monitor (8tmam

With the maturity of short-range wireless technologies arff'0SS @ coalition of nodes using remote attestation. Shamo
proliferation of mobile computing devices, building rdifd enforces communication policies at the virtual machineellev

applications over mobile ad hoc networks (MANET) become®d requires that each node runs multiple virtual machioes (
feasible. For instance, two potential applications arfficranon- for _each appl_lcatlon), which may not be practlcal for r_n(_)b|le
itoring in vehicular networks and peer-to-peer file sharingad 9€Vices. Additionally, Shamon does not provide enoughlilés

hoc networks of smart phones. A key to the success of sulthCompose applications and policies. If an applicationedels

applications is a mechanism assuring secure communicatidn On ©thers, then all of them together with their policies mipst

proper collaboration among all participant entities. Thiave this 1S0lated in one virtual machine.
goal, communication policies that govern the interactiosisveen ~ Différent than enforcing policies in the network, another a
entities must be defined and enforced. For instance, in fictrafProach is to allow only nodes owned by trusted principals to
monitoring application, the policy can guarantee that aabasys participate in the network [13]. The method does _noF addiiess
forwards accident alerts to cars coming behind it. Simjldrl a €aS€ of anonymous nodes spontaneously establishing MANETS
peer-to-peer application, the policy can guarantee thamarts Furthermore, such methods provide insufficient level ofusec
phone can post a query only if it has made several contribsitioy because a known-to-be-trusted node is more likely to be
such as publishing files or forwarding other queries. _cor_nprom|sed and taken over by an attacker in MANETSs than
Mechanisms to define and evaluate security policies have bd@ infrastructure-based networks, due to the lack of pfyfsic

well studied in traditional distributed system [1], [2]. iththese ~Protection. _ _ _ _
This paper presents the design and implementation of aypolic
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multi-tier network. The member nodes in such a network muatso ran NS-2 [18] simulations to evaluate the performamce i
enforce the policies associated with these applicationwels large scale MANETS. The experimental results demonstmate |
For instance, a peer-to-peer file sharing application maeneé overall costs in application execution and network comroaitibn
on an on-demand routing protocol. In this case, the mectmaniglespite high one-time initial cost in network establishindine
creates a two-tier trusted file sharing network. It first elishes simulation results reveal that nodes can join the trusteds ti
a trusted routing tier, and hence a trusted network for mguti with high probability even if the underlying MANETS are high
comprising of all the nodes that enforce the routing poloy volatile. The overall communication overhead over longuoek
top of this tier, it then creates a file sharing tier, enfogcihe file paths increases but still remains at low levels: less th&nh &0
sharing policy. networks with infrequent connectivity loss and about 20%igh-

In our policy enforcing mechanism, nodes can be membersobbility networks where connectivity among nodes is urlstab
multiple multi-tier networks simultaneously. For exampiet us The paper is organized as follows. We motivate the research i
consider that a vehicular traffic monitoring applicatioresighe Section Il through three examples. An overview of the miigi-
same routing algorithm with the file sharing application.dds network is presented in Section IlI, followed by the desidthe
in the aforementioned file sharing network can also estalgis policy enforcing mechanism and the details of the trustidista:
traffic monitoring network by creating, on top of the routitigr, ment protocols in Section IV. Section V describes the pyqet
a separate trusted tier enforcing the traffic monitoringogyofwo  implementation. The experimental and simulation resulls a
nodes may communicate through an application if and onlygft analyzed in Section VI. The limitations of our method ancied
enforce the same application tier policy and all the undieglyier work are discussed in Section VIl and VIII, respectivelyndly,

policies. the paper concludes in Section IX.
Our policy enforcing mechanism allows each node to unifgrml
enforce the policies without assuming any prior trust witheo Il. MOTIVATION

nodes. This is similar to the method of building trusted ad |, this section, we illustrate the challenge of enforcingrev

hoc network we developed previously [14]. To ensure trust@sqﬂme policies for three MANET applications. We will show

policy enforcement, we augment each node witihusted agent o to solve these problems using our approach in next sectio
which protects the policy enforcement components from gein

compromised. When a node joins a trusted tier, its trusted .
agent helps establish trust by proving the execution of aecor A. Example 1: Secure Routing

trusted agent, a trustworthy policy enforcing software ponent ~ Consider a group of nodes supporting Ad hoc On Demand
(referred to aspolicy enforcerhereafter), and the right policy. Distance Vector(AODV) [19] routing protocol. AODV is known
Furthermore, it ensures that the integrity of the agentetifercer, to be vulnerable to wormhole attacks [20], in which an atéaick
and the policy will not be compromised. This is possible nsea €xploits a fast tunnel to attract all network traffic throughOne

the trusted agent is part of the operating system kernel away to defeat this attack is to implement Packet Leashes [20]
guarantees the integrity of the kernel and all programslieebin ~ For example, a geographical leash can ensure that the aléstin
policy enforcement. Therefore, it can foil attacks, inéhgithose node is within a certain distance from the source node. It is
launched by local users, to tamper with the enforcer or thieypo implemented as follows:

being enforced. If any of these components is compromises, t The source node checks for each AODV reply from the

trusted agent will disconnect the node from the trusted oetw destination node, dmaz > ||p(s) —p(r)|| +2(tr —ts) x v +
The trusted agent is built on top of Satem [15], our trusted e, wheredmq. is the max distance that the destination node
execution monitor based on a low-end trusted hardware tdaus s is allowed from the source node p(s) is the position of

Platform Module (TPM) specified by the Trusted Computing s at ts, the time of sending the AODV packetr) is the
Group (TCG) [16]). Due to its low cost and broad support by position ofr at ¢,, the time of receiving the AODV packet,
computer makers, the TCG TPM has been already integrated in v is the maximum relative moving speed of the two nodes,

many laptops. In the near future, it will also be installecsamaller and e is the acceptable error. Replies that do not pass the
mobile devices such as PDAs and mobile phones [17], which  check are deemed as from wormholes and rejected.
makes our TPM-based approach feasible for MANETS. We can directly translate the above leash into a routingcpoli

This mechanism provides a number of benefits, which makept;. However, the implementation of the above leash or enforce-
suitable for MANETS. First, policy enforcement in the mulér ment of the policyPr requires that node and s be loosely
networks is entirely distributed without relying on any trah synchronized and can authenticate. In general, this is non-
trusted choke points. Second, the trusted networks are seffvial in MANET due to the lack of a central time server. Insea
organized. They can be established and managed spontgneopSsanonymous environment, this becomes more difficult sthee
without requiring pre-deployed trusted entities or cdite@l two nodes can not trust each other. The node has to rely om+oun
management. Third, the multi-tier trust enables flexibloe®- trip delay to estimate the time needed for an AODV message
ment of complex policies, which can be defined across variotis reach the other. However, this method will accumulatgdar
interdependent protocols and enforced independently, bie errors with number of hops and distance between the two nodes
tier. Furthermore, nodes running multiple applications gain increasing. Therefore, the best place to detect the wornisol
multiple trusted networks, each enforcing policies forfadiént on the node that is close to either end of the tunnel. The durth
applications without interfering with each other. away the node is, the less precise the estimate becomeshand t

We implemented a prototype of the policy enforcing mechdrigher false positives and negatives the method incurs.avery
nism in Linux and tested it over an IEEE 802.11-based wigelethis is infeasible since we do not know which node is closéo t
ad hoc network that is composed of TPM-enabled laptops. Wennel and whether this node can be trusted to check the.leash
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Fig. 1. Policy Enforcement in Multi-tier Networks. Nodes 1, 3 4, 6, 7, 8 and 9 establish an AODV routing tier. On top of it, nods 1, 4 and 6
establish a file sharing tier and nodes 6, 8 and 9 establish a gee tier. Hence, nodes 1, 4 and 6 form a trusted two-tier file shamg network enforcing
both the file sharing and routing policies. Nodes 6, 8 and 9 fon a trusted two-tier game network enforcing both the game androuting policies.

B. Example 2: Unselfish Sharing Ill. TRUSTEDMULTI-TIER NETWORKS

Consider cars on a highway forming a vehicular network to In this section, we first formally define the trusted muléti
obtain traffic information ahead of them [21]. Each node simunetworks. Then, we illustrate how to create the networkublo
taneously posts queries, answer queries, receives respasd an example.
forwards queries for others. To benefit all cars in the nekwibr
is vital to ensure that enough cars respond to and relay theegu
posted by others. Similar concerns exist in other appboatsuch
as a P2P file sharing network, where sufficient file providees a For some applicatiows, we define the trusted policy enforcing
desired. To achieve these goals, each node must abide bicg pdier 7o, as follows:

A. Definition and Policy Enforcement

Pr, like the following, before joining the network: To =< N,S,P >
Every mobile node has to serve or relay at least 1 requeshere N are the set of nodes communicating throughand P
from others after posting 3 queries to the network. is the policy defined fols. To facilitate description, we use “.” to

Clearly, the only way to enforce the policy is to do it on everyepresent “member of” relation, i.eTy.N means the set of nodes
node in the network. Due to the anonymous nature, any igentih the tier7y.
based policy enforcement method, such as Peace [13], dbes ndAssume S calls a set ofh independent protocols and each

apply. protocol is associated with a policy, the nodes running é¢hes
applications and enforcing their associated policies fafiis
C. Example 3: Fair Game underlying tiers7y, 75, ... 7;,. Similarly, each of these protocols

Consider a group of smart phones using a MANET to play dRay also depend on other protocols and therefore has its own
online game. They are separated intdeams and each of themunderlying tiers. Assume that there are totaily direct and
chooses to join one of the teams at the beginning of the ganfiedirect underlying tiers offg, thesem + 1 tiers form the trusted
To ensure each node can only take one role in the game, fulti-tier network ofS defined as follows:
following game pollcw?G |.s deflned:. . N =< m T..N, U 7.8, U T.P>

Each gaming node is free to join any of theteams. But i—o P o
once it joins one, it can not join another team without first
withdrawing from the current team.

The above policy is similar to Chinese Wall Policy [22].
Enforcing such a policy for Internet based applications iheean
addressed in literatures such as [9]. The existing methelgon 1) Compliance. For each member node of; to send a

Each policy is enforced at its associated trusted tier inde-
pendently. Each trusted tief; ensures both compliance and
authenticity of the messages .S as follows:

the capability of differentiating one node from anotherwidwer, message ir7;.S, it must be permitted by;.P.

due to Sybil attack [23], this is difficult in MANET. 2) Authenticity. For a message of;.S to be accepted by a
It is difficult for existing methods to enforce any individyl- member node of7;, it must be sent by another member

icy aforementioned. To make it more challenging, thesecjedi node.

can be related. For example, secure routing may be preitequis Compliance ensures that all member nodes abidg;b¥ in

to secure the file sharing and gaming applications. Thezefocommunicating with each other througdhj.S. This is accom-
enforcing the file sharing or gaming policy requires that thglished because only nodes that are trusted to enfBrcan join
underlying routing policy have already been enforced. Oa thhe trusted tier. Once the trust is established, the nodelenlying
other hand, a node may run the file sharing application side trysted computing system ensures that it will not be comsed
side with the gaming application. Enforcing the policy fareo Otherwise, the node will lose its membership of the trusted t
should not interfere with the other. Since nodes can runethéd/e will discuss how these are accomplished in the next sectio
applications in any combinations, it is critical to enforteeir Authenticity prevents a non-member node from creating and
associated policies flexibly and organically. injecting messages to the trusted tier. To achieve thisgtifiercer
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Fig. 2. Multi-Tier Creation. Building the trusted 2-tier file sharing network demands creating the AODV tier 7 followed by the file sharing tier
Tr. To create the AODV routing tier 7z, node 1 initiates 7z and invites its neighbor nodes (2 and 3) to join the tier. At s¢p 2, node 2 joins7y
and further invites its neighbors (node 4 and 5). Finally, nale 6 joins the tier at step 3. The file sharingZy is then built similarly on top of the
AODV tier.

on the node attaches a Message Authentication Code (MAC)Ror example, node 1 and 4 can share files securely by routing
each messag& of S it sends out. The trusted tier kéy is used through node 3. Node 3 is trusted to enforBg even though

to compute the MAC code e.gM(X) = HMAC(ky,X). kr it is not trusted to enforc’r. Nodes in any trusted multi-tier

is created wherT is established and shared by all member nodestwork must have the trusted agent. Otherwise, they cgaimot

in 7. We will discuss more on the trusted tier key in the followingny trusted tier, such as node 5.

sections.

B. Example: Two trusted two-tier networks C. Creating a Trusted Multi-tier Network

In order to understand the main idea of our solution, let s$ fir Building a trusted multi-tier network involves establisbiall
consider the example presented in Fig. 1. This example showg trusted tiers it is composed of in a bottom-up fashior. Fo
a group of nodes using a MANET to run a file sharing and @ample, to build the file sharing multi-tier netwakk- in Fig. 1,
game application, denoted #y andG. Both applications rely on the trusted AODV tier7y is first established followed by the
AODV routing denoted byR. The nodes can build two trustedtrusted file sharing tief. Fig. 2 illustrates this procedure.
two-tier networks: (1) a file sharing networ consisting of a A tier is created step-by-step. First, a node begins to eafthre
file sharing tier7 and a routing tie; and (2) a game network tier policy. It creates the tier key, which is used to autfwe in-
N consisting of a game tief; and the same routing tiefz. A tier communications as discussed earlier. By doing so,dbies
node can join more than one multi-tier networks at the same ti the first member of the tier, calledriginator of the tier, e.g.
(e.g., node 6 in this example). Nodes in each tier must eeforgode 1 in Fig. 2. The originator then broadcasts an invitatio
the tier policy, P for 7g, Pp for 7p, and P for 7. Formally, to its neighbors, e.g. node 2 and 3, to join the newly created

Nr and N are defined as follows: tier. Assume node 2 and 3 choose to join this tier. Since node 3
Tr =< {1,3,4,6,7,8,9}, R, Pp > enforcesPg, it succeeds in joining the tier and receives the tier
Tr =< {1,4,6}, F, Pp > key from node 1, but node 2 fails because it does not enfBgce
Ta =< {6,8,9}, F, Pg > Next, node 3 extends the tier one step further by invitingasodl
Np =<{1,4,6},{R,F},{Pgr, Pr} > and 5. Similarly, node 4 joins and continues the processdadie
Ng =< {6,8,9},{R,G},{Pr, Pg} > node 6 in the tier. The tier originator controls the size @& tier

Enforcing Pr, Pr, and P is no longer a problem inv and by setting a TTL parameter in the invitation message. Eacieno
Ng¢ because they are enforced on every member node of thetacrements the TTL after joining the tier and stops forwaydi
For Py, if there is a wormhole in the networks, the node closethe invitation message once the TTL becomes 0. The joining
to the wormhole will check the leash and detect the existenpeocedure is defined in JOIN protocol, which will be discusse
of the wormhole. EnforcingPr and P, is also straightforward in details in next Section.
since the history of the node posting queries, serving regund Once the routing tier is built, the upper-layer file shariiey t
registering its identity is available on this node. can be built in a similar way. The difference is that the bozesd

For two nodes to communicate, they have to be in the sansein a multi-hop manner. That said, a member node of the file
multi-tier network. For example, in Fig. 1, node 1 cannotrehasharing tier broadcasts the invitation to its neighbora.nighbor
files with 3 because node 3 does not enfofge and is not a node decides to join the tier, it re-broadcasts the ingtatn the
member of the trusted two-tier file sharing network. Neitban same way as in the routing tier creation. Even if the neighbor
files be shared between node 1 and 2 as node 2 does not joinrthde does not join the tier, it forwards the invitation messto its
underlying trusted routing tier. On the other hand, the twdes neighbors and acts as a router for further communicationdest
do not have to be neighbors, as the higher tier applicataffidcr the sender and other potential members of the new tier. Indan a
can be routed by the trusted lower tier in a multi-hop fashioloc network, the neighbor node may also choose not to forward



Application 1 Application n

the invitation. If all intermediary nodes are not coopergtithe
tier expansion stops.

Each tier application comes with a signed policy. When a 1 | Enforcerl | - - Enforcer 7
installs an application, it installs its associated polsywell. Tiet n Tier Manager
policies are defined and enforced independently. The pédicya ( Trusted Agent (Satem) )
multi-tier network is composed automatically from the indual ( TPM )

tier policies based on the application dependencies. Fample,
Node 1 in Fig. 1 is a member of the routing tier, which ens
the packets sent and received at its file sharing tier aresd
through the trusted routing tier. On the other hand, theiegipbns
may come with contradictory policies or may use differerek
spaces. We do not address these issues in this paper. collects the code hashes and generates the commitmefficageti
The policies are enforced by each node in the multi-tietéd  as follows:

network rather than by a trusted central authority. Theeefi is
critical to verify a node’s trustworthiness of enforcingeey tier
policy. This is accomplished when the node joins the net
through two protocols: JOIN or MERGE. We will discuss th 2)
in the next section.

Fig. 3. Node Architecture of the Trusted Multi-tier Network

1) Request code certificate3.he service provider requests
each vendor to generate a vendor-signed code certificate
in the same format as the commitment for its code.

Sign the commitment® he requester forwards all the code
certificates and the commitment to a third-party trusted
Certificate Authority (CA). The CA needs to verify the

IV. NODE ARCHITECTURE ANDPROTOCOLS . -
signatures of all code certificates and compare the code

In this section, we introduce the node architecture of hashes in the commitment against the certificates. The CA
method. As shown in Fig. 3, it consists of a trusted agene(8a signs the commitment if and only if it verifies all code
a tier manager and a number of enforcers, each of which esd certificates and code hashes in the commitment.

a tier policy. We then discuss in details the two protocoBtNI

and MERGE, followed by the analysis of their correctness. Satem only guarantees the integrity and the authenticithef

code, but not its correctness. The requester must have & loca
) trust policy that governs which kernel and services areteris
A. Satem: The Foundation of Trust It takes two steps to verify whether a service is trustedstFit
We leveraged Satem [15] to build the trusted policy enf@  authenticates the kernel and service commitment cergficand
mechanism. Originally, we designed and implemented Sat |earns the identities of the kernel, its modules, and theicer
ensure requesters of a remote network service that thece 2 Second, it verifies the kernel and the service against tist tr
executes only trusted code. Satem is composedtifsted agen policy.
in the OS kernel of the service platform andrast evaluatoron In Satem, evaluating a commitment is reduced to autheirtigat
the user platform. The service provider performs the @test the certificate. In general, this is non-trivial in ad hocwertks
of the OS kernel (including the trusted agent) through atédis due to the lack of constant connection to the Internet and the
boot process using the TPM specified by the Trusted Computipgplic Key Infrastructure (PKI) [25]. A node may still be abl
Group (TCG). Subsequently, the trusted agent takes ady@antg authenticate a certificate if it locally holds the publieykof
of the service execution context to only verify the integrdf  the signing certificate authority or a valid certificate chéo it.
the code loaded dynamically by the service. More imponaittl However, it is unable to validate in real-time the certifecaince it
ensures that the service executes only trusted code bychngfe has no access to the CA's certificate revocation list. Tisisescan
the service execution in the OS kernel. be significantly alleviated given the special nature of thebfem
Central to Satem is the commitment protocol. Before startinye aim to solve. As discussed in [26], although nodes do not
a transaction with a service, requesters ask the trusteat &ge have persistent Internet connectivity, they can still getline
provide the integrity measurements of the OS kernedystem from time to time. For example, a user may be off-line on an
commitmentand aservice commitmenfThe commitments are jnter-city train most of the time, but get online when theirtra
certificates describing all the code files the kernel and énéi® enters a train station. Furthermore, a Satem commitment onl
may execute in all circumstances (e.g., executables,rid®a states that a code file has a certain correspon8iigl digest.
The system commitment includes the kernel binary and all theyis fact is invariant under any circumstance. Lastly, sitice
modules it may load. The service commitment includes theeentaq hoc network is formed for a specific task and only lasts for
code stack of the service including the service applicaioary, 3 relatively short period of time, the likelihood of revogira
shared libraries, other applications it calls during execuand certificate is negligible.

their shared libraries. Based on the above observations, we introduce a short-life

Each piece of software described in the commitments is définggtificate to authenticate the commitment. Each node nbtai
by a combination of its identifier (e.g., name and version) anegyar long-life commitment certificate,, a short-life commit-
the SHA1 hashes of all its code files. It is the service provider'gyent certificate”’s, and the authority’s certificate, when being
responsibility to create appropriate commitments. Theviser connected to the Internet. When losing Internet conneyiv
provider uses static or runtime analysis to determine th#e cosgn still use theC'4 to authenticateC's of other nodes. Since

base. Commitments for an application typically includegesal his certificate is only good for a short period of time, thése
dozens of code hashes. For example, the system and service

cgmmitments qltogether for the PZP file sharing app!icalticrn ~ 2The commitment authentication is not trivial in ad hoc netwokke will
ning Mute [24] include 47 code file hashes. The service pevidpresents our solution for such networks later in this sactio
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Fig. 4. JOIN Protocol. Node 1 joins the tier by conducting the DIN protocol with node 2 that is already in the tier.

no need to be concerned about revocation. Afterexpires, the new node is trustworthy to enforce the tier policy. At the sam
node needs to regain Internet access to renew it usingjts time, the new node must also verify the trustworthiness ef th
The CA verifies the”;, using PKI and grants the renewal requesinember node. Fig. 4 illustrates the JOIN protocol. In theréigu
without re-authenticating it from scratch. we assume that Node 2 is already a member of a trusted tier and
The trusted agent enforces the system commitment at bdaide 1 wants to join this trusted tier. In this example, wepals
time and the service commitment upon being started such tlagsume that each application comes with an associatedy,polic
the kernel and the service are forbidden to load any code filekich is stored on each node together with the application
that are either undefined in the commitment or tampered with.
Therefore, if the requester verifies that the kernel, thengge 1) Requestto join.As illustrated in steps 1-2 of Fig. 4. Node 1
and the commitments are trusted, it is convinced that (1) the Sends a join request to Node 2 by specifying the application
service has executed only trusted code up to the time ofrinteg identity (e.g., the IP address and port number) and receives
measurement; and (2) the service will continue to do so in ar_equest for a guarantee of trusted enforcement of the tier
the following phases due to the protection provided by the  policy.

trusted agent. We will discuss more implementation details ~ 2) Deliver the commitment. This is done by steps 3-6 of
commitment enforcement in Section V. F|g 4. Node 1 first evaluates whether the pO“Cy can be

enforced. Then, it calls the trusted agent to generate arfSate
report including (a) its system commitment, (b) the enforce
commitment (i.e. the service commitment defined for the
enforcer), and (c) the integrity measurement of booting.

B. Tier Manager and Enforcer

The tier manager is an application that allows the node to
create, join and merge into a tier. When the user decides t0  Fipa|ly, Node 1 sends the Satem report to Node 2 for
create a new tier, she calls the tier manager to create the tie  oygiuation.
key and start the tier creation procedure. Then, the tierag@n 3y Eyaluate the commitment. This is step 7 of Fig. 4. Node
communicates with the tier managers on other nodes through * 2 first authenticates and verifies the integrity of the com-
the JOIN or MERGE protocol. The node may join multiple tiers mitments and attestation. Then, it verifies the system com-

and thereby, run multiple enforcers. An enforcer is anyveaxfe
that can enforce the tier policy. In the simplest form, ther ti
application itself has built-in capabilities of enforcirgertain

mitment, the enforcer commitment, and the boot attestation
in the Satem report against the local trust policy before
accepting Node 1 to the tier. From the boot attestation,

policies and can be the enforcer. Both the tier manager aad th  the member node learns that the requesting node has been
enforcer must be trusted. This is achieved by defining theecod  pgoted into a trusted Satem kernel. Knowing the system
base of the tier manager in the system commitment and the code ommitment convinces the member node that the kernel of
base of each enforcer in a service commitment (called eaforc  the requesting node will not load untrusted modules, which
commitment in this paper). Consequently, Satem enforoeseth protects the trusted agent from being tampered with. Know-
commitments to prevent the tier manager and the tier enforce  ng the enforcer commitment convinces it that the enforcer
from being tam.pered \.N'_thl- . ) . software execution stack on the requesting node is trusted
~ Before creating or joining a tier, the user first registers th  pacayse the trusted agent will enforce the commitment to
tier enforcer with the tier manager. As explained later ifNO prevent untrusted code from being loaded by the enforcer.
protocol, this enables the tier manage to deliver the cbrrec 4) Grant the join permission. As shown in step 8-10 of
enforcer commitment. Moreover, at the end of the JOIN and ~ Fig 4 Node 2 accepts the join request and sends the trusted
MERGE protocols, the tier manager receives the tier keynThe tier key along with its own Satem report to Node 1. Node

the tier manager can deliver the key to the right enforcet tiha
been protected by the trusted agent.

C. Joining a Tier

1 then verifies the report the same as Node 2 did at step 7.
After it sets the tier key and enforces the tier policy, Node 1
becomes a member of the tier and can not exchanged with
other nodes in the same tier using the tier key.

The JOIN protocol is used when a node wants to join a trusted
tier for the first time. The new node communicates with a membe
node of the trusted tier. The member node has to verify that th 3Policy distribution is discussed in more details later irstbéction



D. Security Analysis of JOIN Protocol.

Attacker model. Let us consider a local attacker on Node 1
(the analysis holds if the attacker is on Node 2). We assume
that the attacker cannot break the TPM or launch hardware

based attacks, and in particular, cannot use direct menumgsa

(DMA). We further assume that the attacker is unable to bypas

the node operating system to gain access to system respsucas

as memory, CPU, network card, and disk. To achieve thiscdire
memory access from user space via /dev/imem and /dev/kmem i$

disabled in Satem implementation. Other than these raefri;
the attacker can have full control of the software systerlutting
root privilege.

« Disable enforcement of the tier policy. The most direct

SK1. The private key is cached in the tier manager’'s memory
and never disclosed to any other processes or saved to disk.
The trusted agent protects the key from being disclosed to
any process other than the tier manager. In case of system
suspension, all tier keys are wiped out. When the system
resumes operation, it has to re-join the previous tiers.cden
the attacker is unable to acquisek; to decrypt the tier key
intercepted at step 8.

Play man-in-the-middle. The attacker may want to replay

a valid TPM report and exploit it to gain trust from Node 2.
The protocol foils the attacker by including a nonce in the
attestation report. The attacker may also attempt to play a
man-in-the-middle attack by creating her own public-peva

key pair (PK;, SK;) and replacing the aforementioned
(PK1, SK;) with them in order to decrypt tier key with
SKj.

Although PK; is not authenticated in the protocol, it
is attested in the TPM report. When the TPM report is
generated, the tier manager computes the hash valRéof
and passes it as a parameter to the TPM. By evaluating the
TPM report, Node 2 knows that the public key belongs to
the node that generates the report. Since the joining node is
trusted because of the report and is the only one that has
the corresponding private key to decrypt the tier key, the
member node is assured that tier key is distributed to a node
that is trusted to enforce the policy.

Our method was originally developed in Satem [15]
and is similar to [27]. It is orthogonal to identity based
authentication and can be used in combination with any
existing MANET key authentication methods such as [28],
[29], [30], [31], [32].

attack is to disable the enforcement of the tier policy
after obtaining the connectivity. The attacker can do so by
disabling the policy enforcer. This requires removing the
policy enforcer’s kernel module. The trusted agent intgise
the removal request and clears the tier key before removing
the module. Thus, the attacker has to first disable the ttuste
agent (Satem). The attacker may choose not to enable the
trusted agent. However, this will make the node fail to join
the tier at step 7. Alternatively, the attacker may want to
disable the trusted agent after being accepted to the druste
tier. However, the only way to turn off the trusted agent is
to reboot the system, which will wipe out all tier keys and
force the node to rejoin the tier.

Modify the policy. The attacker may attempt to modify
the current policy at runtime. The trusted agent secures the
memory space holding the policy such that only the tier
manager has write permission to it. Additionally, the tier
manager is protected by the trusted agent. The attacker may
try to run a malicious tier manager. But this will make the ) )
node fail to pass evaluation at step 7. E. Merging Tiers

Steal the tier key. The attacker may attempt to steal the Two tiers enforcing the same policy but using different keys
session key on the node. One of the creators was selecté®t be united by the MERGE protocol. Every node has an
to generate the key, which became the first node in tigglual opportunity to establish a trusted tier. To preventipia

tier. Which node was selected is irrelevant since the kéypdes from establishing the same trusted tier at the sanmeg tim
is secured by the trusted agent in memory and accessii¢ originator may first query its neighborhood for the émist
only to the tier manager and the tier policy enforcer. Thter. However, this method does not work if two nodes are not
tier manager and the enforcer are not allowed to discloser@achable from each other. As a result, they will create twsted

to any other program or save it to disk. Violating enforceriers running the same application and enforcing the sartieypo
will either be stopped due to the enforcer commitment diut holding different trusted tier keys. When later coniveyt
revealed to the member node, thus causing the join requescomes available between them, they cannot communicéte wi
to fail. The protocol ensures secure distribution of the gy €ach other. In this case, the two trusted tiers can be merged b
establishing mutual trust between the joining node (Node pifying the two tier keys into one common key. This procedur
and the member node (Node 2). On one hand, the memiséarts when a node (Node 1) in a tier (tier A) learns the endsie
node (key owner) will not distribute the key to any untruste@f another tier (tier B) nearby. For instance, it may receive
node (step 8). On the other hand, the joining node will né message from Node 2 that it cannot authenticate. This may
accept the key from a member node unless the member nda@icate that Node 2 is running the same application butrigavi
has been verified to be trusted (step 9). Consequently, arflifferent key. To verify whether tier B is enforcing the sam
untrusted node cannot create a key and fool others to acceplicy, Node 1 exchanges its policy with Node 2. If the p@i

it. are the same, Node 1 starts the MERGE protocol to unify the
Hijack the key. The attacker may try to steal the tierkey. Fig.5 shows the steps of the MERGE protocol, which can
key in distribution by intercepting it at step 8. To ensur&e categorized in two phases.

secure distribution of the key, the tier manager on Node 11) Change membership.

dynamically creates a public-private key paitK1, SK1) This is the steps 1 and 2 in Fig.5. Nodes 1 and 2 first
when it is loaded to run. The public keyK; is passed to negotiate the new key to be used by the merged trusted

Node 2 along with the TPM report at step 4 which is used by
Node 2 to encrypt the tier key at step 8. Node 1 then decrypts
the encrypted tier key using the correpsonding private key

tier. They compute a hash of their own keys and select the
key with greater hash value as the new trusted tier key.
Assume the key of Node Zcw is chosen, then Node 1
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Fig. 5. Merge Protocol. The old tier and the new tier enforce tie same policy but were created separately and have differeriter keys. Node 1 in
the old tier joins the new tier by conducting the JOIN protocol with Node 2. Then, Node 1 calls for other nodes (e.g. Node 3) ihe old tier to
merge into the new tier through the MERGE protocol.

joins Node 2's tier through the JOIN protocol mentionethe commitments was compromised since last JOIN, the tfuste
above. After receiving the key, Node 1 verifies it againsigent would have wiped out the key. This property helps sfynpl
the hash received in the previous step. It still keeps the diide trust verification process in the MERGE protocol. Since
key, k.14, for a certain period of time. The old key will be computing the MAC code is much cheaper than the Satem report,
used to authenticate other member nodes in the old tier.the performance is greatly improved.

2) Convert membership.
This is the steps 3-5 in Fig.5. Node 1 broadcasts a MERGE V. IMPLEMENTATION

message to its neighbor nodes in its old tier with a nonce.\e implemented the policy enforcing mechanism prototype
A neighbor node, Node 3, and Node 1 then mutualljnder the Linux 2.6.12 kernel. It consists of the Satem based
authenticate to each other by exchanging a nonce andrgsted agent and the tier manager. To evaluate the penfena
message authentication code (MAC) computed using theje also implemented enforcers for two MANET applications:

old tier key, k4. Successful authentication of the MACSAQDV (user-level daemon) [33] for ad hoc routing and Mute][24
verify both nodes’ membership of the old tier. Finally, thgor p2p file sharing.

new tier key is encrypted witk,;; and delivered to Node

8. A. Satem Trusted Agent

Similar to the tier creation procedure, the MERGE is broatica The  the trusted tis t ide a fail-st .
in a multi-hop manner. For instance, the MERGE message of the e focus of the trusted agent is to provide a fail-stop jutcie

file sharing tier can be delivered to other nodes in the old ti@egh;plfmtitooegfirce clqmmnmenlts. O”g'”.‘p'e”t‘.e”tatr']".““s'
through a series of AODV router nodes that are not in either grated into the ernel in many places by inserting cheokpo

the new and old file sharing tier. The MERGE protocol does né? 'S‘e;”i'nct"’(‘)"ismztigz ?f}g;’ég;geex :‘é’jﬂ}'):'intvg‘lr(‘;z”t') e r";'g‘:'cte g
guarantee two trusted tiers to be merged completely in omelmu ys-op P yp

fact, merging is driven by the need of facilitating commuaticn. processes. We add these modifications by patching the akigin

As a result, it only aims to merge the nodes which interachwi{‘Inux kernel.

. . Jrusted System Initialization. In Satem, the first step is to
each other. In practice, a TTL can be used in MERGE messa%?s?ablish the trusted computing base that includes thiettagent

to limit the scope of merging in the same way as trusted ti . - .
establishment. Nodes beyond the coverage of the TTL may | d :}hehennn; 0S kernel.t ‘I_'hlihpr%ces;s imvolves a ttru‘?ed’ ?00
merge into the trusted tier when they need to interact wittheso It?] WTIIDCM eac comp;:ne_nt n i € ¢ toho seqtuencet,) ?ar ":]g (;(_)m
in the trusted tier. In this way, merging is carried out omded € » measures the integnty of the next one betore handin
step by step over the control. In our case, the TPM measures the integrity
' of the BIOS image by computing th8HA1 hash over it and
then transfers control to the BIOS. Next, the BIOS calls TPM
) ) ) to computeSHA1 hash over the OS loader (e.g., LILO), and the
As discussed in JOIN, the attacker is unable to break ﬂlﬁter does the same over the OS kernel image, denotetbas

tier manager, the poli_cy enfprcer, or the trusted_ agen_t. ASThe measurement is saved in a PCR regisie Ro), which is
result, she cannot obtain the tier key without enforcinggblcy. 51, internal configuration register of TPM. As a result, aftez
Additionally, she cannot modify the policy or steal tier keyn g kernel is loaded

the machine either. Therefore, the new key distributedegt 8t PCRy = SHA1(SHA1(SHA1(0|BIOS)|
is safe. LILO)|

Except for initial membership change (e.g. merging Node 1 OSK)
into the new tier), verifying the trustworthiness of the eedn assumingPC Ry = 0 initially.
the old tier is reduced to simply tier key authenticationisTis The SHAL1 hash is computed in a chained fashion using the
because these nodes must have been verified before they Wid?® API TPMExt end, which is the only way to change
allowed to join the old tier for the first time. Owning an oldthe content of a PCR. As a result, all the components can be
key implies it has been protected by the trusted agent andnieasured using a single PCR. More important, this prevéets t
still protected by Satem. Otherwise, if any program defimed PCR content from being reset (i.e., the attacker can chadmge t

F. Security Analysis of MERGE Protocol



measurement value, but it cannot set it to an arbitrary peede results. When the code file is executed subsequently, Sates d
mined one). The content of selected PCRs is reported via thet measure it again if the associated commitment has nat bee
TPMQuot e API, which signs the content with a TPM internalchanged. Instead, it verifies each of the loaded chunks stgain
key. We assume that the TPM is unbreakable and, therefore, thie cached measurement results. Satem will re-measuratine e
consider that the integrity measurement it makes and thatrép code file only if the execution loads a chunk that has not been
produces cannot be tampered withAs a result, the TPM report loaded before.

containing the measurement result saved in the TPM is seiffici
to prove a genuine kernel and trusted agent.

The commitments are maintained in the kernel memory as a
table. The trusted agent uses the file name as the key to look up

Commitment Enforcement. Before a policy enforcer is the corresponding hash value. The trusted trusted agentaires
started, the user needs to associate the commitments widyfh the list of SHA1 hashes for the mapped binaries of each protected
tem and enforcer executables such that the trusted agemba@n program at page level. We use the Linux kernel crypto API to
the right commitment when executing the enforcer. To dots®, timplement theSHAL functions.
user defines a list of enforcers in a configuration file, whidpm

the enforcer binary to its commitment. Once the enforcettssta
the trusted agent locates the commitment from the configurat | ACDV Policy ( F;) on Node i
file. The trusted agent then associates a protection flag allith
processes executed by the enforcer, memory regions mapped b’ g1 " “Rrep( o, d):

these processes, and code files opened by them. The trusteid ag if (dmax > d(i,d) + 2*(ti-td)*v + e)
enforces the commitment in each checkpoint only if the flag i ACCEPT
present. The only exception is modifications to the kernate®
always enforces system commitments regardless which ggsoc
attempts to load the kernel modules. The checkpoints used by
our method to enforce system and enforcer commitments are th

I ncom ng:

[2)

el se

following:
1) Loading. When the enforcere is executed, the trusted | Mite Policy ( F.)
agent intercepts system calls such éds_execve and Initial: Credit=3
loads the pre-configured enforcer commitment. Then, [t | .oni ng: ’
computesSHAL(e) and verifies its integrity against the R2. Request (f);
enforcement commitment. Besides, it marks the curremt if(Om(f))
. Credit--;
process executing as protected. Whenever a protected
process loads a code file the trusted agent will verify | Qut goi ng:
¢’s integrity against the enforcer commitment. R3. i f(éerd".et( f+)_) 3
2) Binding. If the program is a service, it needs to bind g ed! T
network socket upon being loaded. Tégs _bi nd system R4. if(Request(f)){
call traps into the kernel. The trusted agent links the sbcke if( g gg: E >, 0){
to the commitment associated with the process; ACCEPT:
3) Module Inserting.When a kernel module is loaded, the } else
trusted agent intercepsys_i ni t _modul e and verifies its ) DROP;
integrity against the system commitment without checkin
the calling process’s protection flag. Fig. 6. The Example Policies.Pr implements the secure routing policy
4) Mapping. Modern OSes map rather than load code fileg)r for AODV tier, which requires that each node check the packet éash.
including shared libraries, into memory. When a protectela” is the unse_lfish sharing policy for Mute tier,_which ensures tlat nodes
" . in the file sharing network serve at least one file download regest from
process maps a segment of a code dil@to its Memory ger nodes after posting 3 requests.
regionr, the trusted agent marksas protected, computes
SHA1( ¢) and verifies its integrity against the commitment.
Additionally, it partitions r into a series of page-sized
chunksry, ra, ..., 7y, computes evergHAL( r;) (i € [1..k]), B. Policies and Enforcers
and saves them in kernel memory. We define the policy for MutePy, and the policy for AODV,
5) Paging. When a mapped code chunk of a protected p. s jllustrated in Fig. 6. These policies address the sgcuri
memory region is loaded into memory via kernel calls likgssyes for the routing and file sharing described in Sectiorin|
file.nopage, the trusted agent computBsiAl(r;) and  p. \when node i receives an AODV reply mess&®REP( o, d)
verifies itg integrity with the values previously computed i, 4 previous query originating at for destinationd, it must
the mapping. . compute and check the geographical leash. The route is teccep
6) Forking. When a protected procegsforks a child process it anq only if the leash is valid. In the evaluation, the mastaince
p', the trusted agent marls as protected. dmaz and runtime distance between the two nodésd) are

Satem exploits a lazy integrity measurement to minimizgonstant and pre-definedd and ti are the local time on node
overhead. It measures the code file page by page and caches;taid i respectively. InPp, each node is given 3 credits in the

4The current TPM specifications use SHA1, which has been fdweadk-

able [34]. We expect future releases of TPM to be upgradel avistronger

one-way hash function such as SHA256.

beginning. The credits are deducted by 1 every time the node
rejects a request for a file it owns or requests a file from other
nodes, and added by 3 every times the node serves a request. Th
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node must maintain positive credits to be able to requestfiesy | SCJer_'a”OI Lat'“;nscz (in seconds)
oin .
from others. Merge 0.38
The enforcers can be any software that understands and en-
forces the policies. In general, users need to provide tilet ri TABLE |
enforcers for the applications as external componentsetalu- Tier Joining and Merging Delay

ation purpose, we implemented simplified enforcers for theva

Mute and AODV policies by modifying the applications’ soerc

code and hard coding enforcement of the policies. Hence, the

applications are also the enforcers of themselves and mast b2) Results:

trusted. This is done by having them included in the enforc&ernel call cost. The overhead in kernel calls was incurred
commitments and protected by Satem. by the Satem trusted agent, which enforces the system and
enforcer commitments. We measured it in terms of extra CPU
cycles needed to complete these calls. Fig. 7 shows the eagrh

C. Tier Manager .
) ) . o . . in four kernel calls:do_execve, do_mmap, sys_open, and
The tier manager is a service application. It implementditve ¢ ; | emap_nopage. We measured the cost of these functions in

creation_, ‘]O_IN and MERGE protocols. In ad_dition,_ it pro‘ﬂ.deenforcement ofPr in Mute enforcer. All functions are measured
the registration service for the user to register tier &¥8 j, yyq cases: in the original Linux 2.6.12 kernel and in théeBa
by providing the server port that the enforcer listens omc&i yorne|. For each function, we measured its overhead for tae fi
Satem maintains the mapping between the application palt af, (the left two columns in the figures) and the overhead for

its commitment, the tier manager can use the port number stebsequent calls (the right two columns in the figures).
retrieve the commitment of the enforcer during JOIN protoco ¢ graphs show that the impact of Satem on the first time

Therefore, when the tier man_ager_receives the tier key a@mlde function call is significant® . For do_execve and do_map,
of JOIN or MERGE protocql_, it delivers the key to the registr o ost is dramatically increased because of the by-paegrity
enforcer that has been verified. measurement for mapped code files. Farl emap_nopage,
by contrast, the cost is significantly reduced. This is bseau
V1. EVALUATION Satem needs to load every mapped page into the page cache
To evaluate the performance of our mechanism, we ran protehen it measures a protected memory region. As a result, when
type experiments and simulations. In the experimentauetin, a page fault occurs, it is very likely that the page is still in
we created a 2-tier trusted ad hoc network over 3 laptoffse cache. Furthermore, the costs of the subsequent cathein
and measured the overhead incurred by our policy enforcigtem kernel are significantly reduced. This is because @f th
mechanism in application execution and communication. o ulazy integrity measurement mechanism in Satem. Cost of the
derstand the performance overhead of network creation alicy/p subsequento_execve calls is still large compared with the
enforcement in large MANETS, we also ran simulations inaasi  original kernel, but the impact on the system is limited eiric

mobility scenarios using NS-2 [18]. is only one-time cost.
Joining latency. We measured the joining latency as the delay
A. Experimental Evaluation between the time a node starts joining or merging into a tier

and the time it is accepted as shown in Table I. Both protocols
Reur significant latency. The high overhead is mitigatedirfr

0 perspectives. First, JOIN is only used once for the ahiti
%onnection. Cost of reconnection is greatly reduced by MERG
]

to (1) the kernel call execution due to enforcing the Sate
commitment, (2) joining the trusted network due to verifyin
trustworthiness during JOIN and MERGE protocols, and (
the network communication due to enforcing the policy an
computing and verifying the MAC for application messages.

1) Methodology:

We created an 802.11g ad hoc network consisting of threepapt
(IBM T43 with a 1.7Ghz Pentium M CPU, 512M RAM, and
Atheros wireless card). In order to test multi-hop commatian,
the network was configured with a line-like logic topologye(j
the direct link between laptop 1 and 3 was disabled, but tbejdc T
still communicate with each other through laptop 2 as a Rpute
This was achieved by enabling MAC filtering usingt abl es
[35] on each laptop.

Each laptop ran two applications: AODV (user-level da
mon) [33] for ad hoc routing and Mute [24] for P2P file sharing,
We used P and Pr defined in Fig. 6 and created a two-
tier trusted network consisting of a file sharing tier enfiogc
Pr and an underlying routing tier enforcingr. We used a  5The cost of the functions of the first and subsequent invooatimay be
simplified method to implement the Mute and AODV enforcers bgfamatically different. In order to compare them in one figuve,use a re-

; frage P ) ; duced scale to plot the following figures: first calldo_execve at 1/10, first
directly modifying the applications’ source code and addine call todo_mmap in the Satem kernel at 1/200, first callftd| emap_nopage

policy enforcement functionality. As a result, the two ap@lions in original kernel at 1/400, and first call fd | emap_nopage in the Satem
themselves are trusted and attested by the enforcer corentsm kernel at 1/40.

rotocol. Second, if a node loses wireless connectivitytheis

st for a short period of time, it is unlikely the trust tienet
node belongs to will update its policy or merge with otherdie
Therefore, once the node regains the wireless connectiiity
can simply reconnect to the tier without running either JOIN
or MERGE protocols. With that said, even MERGE protocol is
rarely needed.

The latency of JOIN protocol is largely due to the time the
PM takes to generate signatures, which varies dramatitsll
the TPM models and vendors. The TPM we used in the test were
manufactured by National Semiconductors. TPMs with higher
egerformance are already available [36]. JOIN latency betwe
machines equipped with these TPMs is expected to be much
fower.

Network communication delay. We measured the routing
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latency indirectly. We ran the AODV daemons on all threedapt run Mute in the 2-tier network wittz and 7y tiers enforcing
and pinged laptop 3 from laptop 1. Then, we measured the rouRg and Pr respectively. We measured the download latency in
trip time (RTT), which includes both packet transmissioteey case (1) as the baseline and measure the percentage ofseatrea
and the routing cost. Since all packets are at the same site dplay in case (2) and (3). The results are summarized in Fig. 9
enforcement of°; has no impact on the ICMP protocol, the cost Compared with no enforcement, the enforcement overhead in
of transmitting each packet is the same. The routing coseévarpoth case decreases with the size of the file being trandferre
with the change of the network state. In one extreme, thengut increasing. This is because the overall costs consist oinitial

cost is high when laptop 1 has to build a full route from sdratccost of enforcing the policy in handling file download redses
since all 3 laptops have no routes to the others. The overhgfids the ongoing cost of computing or verifying the MAC code
of enforcing Pr is also high in this case because enforcemefdr each Mute message being sent out or received. With the file
is performed on all nodes on the route. In the other extremsize increasing, network transmission and routing cosbines

the routing cost is 0 once the route is established and remajinore significant, making the policy enforcement cost reddi
valid; laptop 1 can keep sending packets via the route. Torere small. However, the policy enforcement overhead does miskia

the enforcer is not invoked and the enforcement overheaw algstead, it levels off at aroungbs. The overhead is mainly due to
becomes 0. To test the different cases, we randomly invalidathe commitment enforcement by the trusted agent and the MAC
the existing routes on each laptop by blocking and unblagkimyeneration and verification by the tier enforcers. The cdst o
the wireless network interfaces. The enforcement overhigadenforcing the policy se{ Pr, Pr} demonstrates similar pattern
determined by the probability distribution of these scersar with high level of overhead due to the extra cost of enforcing

Fig. 8 compares the probability distributions of ping latgin _PR. One |mportant difference is that the cost of enforcifg
the trusted network wittP being enforced (called in-network) INcréases with the length of the route between the two nodes,
and in the original network withP; not being enforced. Clearly, While the cost of enforcing’ does not. This is due to the fact
the latency in the two cases are nearly identical, indigalitie 12t P iS enforced by all nodes on the route, whif is only
impact of enforcingPy, on the routing latency. In both scenarios€nforced by the two endpoints. We will show in the simulation
the majority (over 85%) of routing efforts incurred low deldgss that this difference causes the overhead of routing to awge
than 1ms). This was because our route invalidation is infeg dramatically in complex dynamic networks.
and most of the time, laptop 1 had a valid route to laptop 3 and
the enforcer was not invoked. Hence, the mean overhead is low
(less than 5%). B. Evaluation through simulations

To measure the overhead of enforcifg, we compared the In the simulation, we used the NS-2 simulator to evaluate
downloading speed of Mute application in three cases (1) rtmow the overhead in creating the trusted multi-tier netwankl
Mute in the original network with no policy enforcement, (2n enforcing the policies varies in complex MANETs with difert
Mute in the 1-tier network with onlyZx tier enforcing Pr, (3) mobility scenarios.



12

1) Methodology: of broadcast messages increases exponentially with theoriet
The simulation includes three types of mobility models:Hwgy expanding neighborhood by neighborhood, which leads toyman
vehicular network, city vehicular network and a network hwit packet losses due to contention. By contrast, in the vednicul
nodes moving randomly at walking speeds. We leveraged awetwork scenarios, messages have to propagate along tbe roa
vehicular simulation tool [37] to generate the highway aitg ¢ unless the sending cars are at the road intersections. Téassn
networks. The highway scenarios simulated is a 10 mile sagmé¢hat most of the time the number of messages that are being
of New Jersey Turnpike with 200 nodes (cars) moving at laroadcast in the network does not grow. Therefore, latescy i
speed from 45 miles per hour (20 m/s) to 72 miles per hour (3@w in this case.

m/s). The city scenarios is a 1.2x1 miles region of Los Angele Enforcement overhead in AODV. We measured the enforce-
with 100 nodes moving up to 40 miles per hour (18 m/s). Weent overhead in AODV in the same way as we did in the previ-
also modified Carnegie Mellon Universigetdest [38] utility to  ous subsection. We randomly selected the source and déestina
generate random waypoint mobility models with 100 nodes inreodes and let the sources repetitively ping the destinatigve

1x1 miles region, moving at walking speeds. In our simulajo measured the per-hop RTT by dividing the round-trip time hgy t

we set the node density to be around 6-8 neighbors per nodentamber of hops traversed. We denote BRTT as the basic per-hop
avoid connectivity failure due to sparse networks or too IMu@RTT measured whet’z was not enforced and ERTT whérg
contention in over-crowded networks. In all scenarios, arethe was enforced. We computed the overhead as

simulations for 300 seconds. ERTT — BRTT

Since the cost of cryptographic operations associated with overhead = —BrrT X 100% 2
JOIN, MERGE, and enforcement cannot be ignored but NS- ) L . .
does not account for execution time, we add a certain Iaten§7 Fig. 13 reveals, the overhead is higher than in the simple

for these operations. Specifically, these additional Eenare ! ototype experiments (Fig. 8), but they still remain unde®s

' . - . i erall increase istheat
modeled as normal random variables with standard dewangha” cases. The main reason for the ov

equal to 10% of its mean. The mean latencies are: 1150ms E%Iwork is highly dynamic and the established routes do awtt |

JOIN, 180ms for MERGE, and 0.15ms for enforcement. The %ng Frequent broken routes trigger route rgpairs, whihlve
numbers were obtained from the previous experimental tesul pollcy.enforcement. In the prototype experiments, the acat
2) Results: establishment was far less frequent.

. The worst case is the city scenario because it is the most
Cost of network creation. We measured the cost of network . . . . .
L . namic network. The overhead is small in the highway séenar
creation in terms of both successful ratio of JOIN and MERGE; . . . -

. . - his is because the relative positions between most nodestdo
operations and the latency it takes for a node to join the otw hange compared to other networks thouah each node itsetfsno
The completion ratio of JOIN (or MERGE) is defined as the totagt hi ghest speed g
number of nodes that successfully join (or merge into) thevoek 9 peed.
against the number of nodes that apply to join (or merge ithi®)
network. To test MERGE, we first set all nodes in the network to VII. L IMITATIONS AND FUTURE WORK

be the members of the old tier. We randomly selected one nodepe leveraged static root of trust to establish trust on thstéd

and updated its membership to become the first node of the ng¥ent. In practice, this approach is known to be susceptibke

tier. Then, this node automatically started the MERGE psscenymber of attacks due to bugs in implementations of bootdnad

with other nodes. BIOS and TPM [40]. These vulnerabilities may be mitigated by
As illustrated in Fig. 10, in most cases we achieved a complgre dynamic root of trust feature of new processors [41].tAep

tion of over 80% for both JOIN and MERGE. The ratio is loweSfimitation is that Satem only measures and protects the tuate

in the city scenario. This is mainly because nodes exit tg®re the application depends on. As pointed out in [42], [43], the

when they reach the boundary of the map. This problem does Ristworthiness of the application also depends on the mima

exist in the random walking scenarios and is less of a prolifemgata it uses. Roti [43] provides a solution to this problem.

the highway scenario since most cars stay in lanes withatihg@x  Satem only ensures that a protected service can not load

the highway. untrusted code from the disk. It is unable to tackle attacks,
The latency for a node to join the network is measured @ige buffer overflow, that can cause the protected service to
follows: run arbitrary code without changing its disk image. Satery on
joining latency = % (1) mitigates the problem in two aspects. First, Satem may te¢kea
(3

code that has known buffer overflow vulnerabilities by ditep

where we denoteg; as the time nodeéjoins the networkty as the it to the user. Hence, the user can avoid trusting the vubbera

time the originator initiates the network, adést; as the number code. Second, in the case of a successful buffer overflowkatta

of steps the join invitation message has traversed befaghiieg the attacker runs her own code on the service stack withongbe

nodes. In another words, we measured the latency per hop. Thaught by Satem. But due to the limited size of the stack, the

reason to do so is because obviously the more number of h@tacker's code typically has to call other local programsttoe

a node is away from the network originator, the longer it $akeservice provider to make the attack meaningful. Satemicestr

for it to join the tier. We do not count nodes that fail to jolmet the attacker's capability of launching arbitrary local eofl.e.,

network since the latency for these nodes is infinite. any code launched by the protected service must be defined in
Fig. 11 and 12 show that both vehicular networks incurreitie commitment).

less latency in joining and merging into the trusted network The tier keys are protected in memory. However, a recent

This result can be explained by the broadcast storm prob®&h [ study [44], [45] demonstrates the possibility of retrigythe keys

in tier creation. In the random waypoint scenarios, the neimbdirectly from DRAM, since DRAM still retains the content eve
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after being pulled out from the motherboard. Fully addmegsi VIIl. RELATED WORK
make it lose memory faster. distributed policy enforcement.

~ Satem kernel code is not modularized due to the need ofpjstributed Policy Enforcement. The idea of trusted policy
inserting integrity check points at various places in thenkeé  enforcement on each network node can retrospect to oueearli
This makes the code difficult to port and modify. We are exgork in [14]. In that paper, we developed a Satem-based rdetho
ploring other methods such as Linux Security Module [46] fop implement network access control in ad hoc networks. This
Improvement. ) paper further extends the idea in two fronts. First, the sode
In the current prototype, we implemented the enforcer byl hagan now verify the trustworthiness of each other at any layer
coding the policy enforcing function in the application B! ang for any application rather than just at link layer as in
code. This is inflexible since changing the policy may regui14]. This enhancement enables finer grained control of ortw
modifying the application. In the future, we plan to impleme  egtaplishment. Second, the policies can be associatedanith
standalone enforcer as the transparent application piox#is  gpplications rather than just with the network layer. Thiskes
way, the appllcgnon request is redllrec.ted to its local ev®D possible to regulate the communication in any applicatio
which communicates with the application on the remote nodg.tocol.
One way to achieve this is to establish the mapping between th \ych of research on security policies focuses on policy rep-
appllcanon and its enforcer when the gnforcer r_eglstetla e resentation and evaluation [1], [2] or building security aha-
tier manager. To do so, the user provides the tier managér Wifisms based on specific policies [47] without addressingcyol
the TCP or UDP port number on which the applicatiofistens,  enforcement. McDaniel et al. implemented Antigone [48], a
ps and the port number on which the enforcer listems, The  general-purpose policy enforcement mechanism. Howeveés, i
manager then maintains the mapping between the appligadiin oy concerned with providing API's to integrate variousipp
ps and the enforcer portg in the kernel by using Linux built- enforcing software components.
in kernel hooks\F_I P_LOCAL _QUT andNF_I P_PRE_ROUTI NG Enforcement of access control policies can be implemenyed b

[35] as follows: use of reference monitors. Conventionally, the referencgitors
1) NFI PLLOCAL_OQUT are managed by a trusted entity in a centralized way, such as i
When the local node; sends a message foon a remote [3], [4], which is suitable for enterprise computing rattean
noden,, the kernel maps destination pott : ps t0 n; :  ad hoc environments. Recent research efforts have beentseen
pg- This causes the message to be redirected to the loggtribute the monitors [5], [6]. However, the methods ame i
enforcer.E computes and attaches the MAC code for thgssence still server-centric and rely on trusted serven®sb the

application message. monitors, while our method is application-centric and does
2) NF_l P_.PRE_RQUTI NG _ assume any pre-existing trusted nodes.
When the local nodey; receives a message fot from Minsky et al. developed Law-Governed Interaction [9], [8]

a remote node, the kernel maps destination pgr 1o to govern the communication between a group of nodes by
pE, which causes the message to be redirected to the logalnified group policy. By implementing policy enforcement
enforcer. The local enforcer first verify that the attaCheﬂhrough middleware Controuers’ LGI can Support more flexib
MAC code is correct. Otherwise, it drops the message. NeXfad complicated policies, which can not be done in previous
it strips off the MAC code and forwards the message to theéhforcement mechanisms. Our method is similar to LGl in tihet
application. policy enforcement is performed in the entire network. Mwey,
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our method supports any policy that can be expressed in #he ldarough a prototype based on an IEEE 802.11 ad hoc network
of LGI. and through network simulations. The results demonstiage t
The major difference between our method and LGl is the ladkasibility of the proposed method as well as its low ovedhea
of the dependence on pre-existing trusted nodes. LGI regtfiat
controllers be trusted but does not provide means of estabtj
the trust. Consequently, in practice, it can only be applean
controlled environments where the enforcers can be degloye
elected, such as corporate intranet [10], [6] and Interr2R® P
[11]. Our method enables trust to be built dynamically based
node S. tr-ustworthlness. of er.n‘orClng the policy Wlthoutun.as?g keynote trust-management system, version 2RKFC 2704 September
pre-existing trust relationships between nodes. As a teiub 1999
suitable for uncontrolled environment, such as spontamiadihoc  [3] G. Karjoth, “The authorization service of tivoli policgiirector,” in the
networks. In addition, instead of just supporting policiefined Proceedings of the 17th Computer Security Applications ference
for a specific protocol, our multi-tier network can enforcens (ACSAC) December 2001, p. 319. o o
- . . . [4] T. Woo and S. Lam, “A framework for distributed authorizatj
complex policies defined across various interdependemognts. in the Proceedings of the 1st ACM Conference on Computer and
Sailer et al. [49] developed a TPM based fine grained policy Communications SecuritiNovember 1993, pp. 112-118.
enforcement mechanism for corporations to control theiNVP [5] S. loannidis, A. Keromytis, S. Bellovin, and J. Smith, “Irepienting
clients. Compared with our work, the method relies on thedfixe ‘é fﬁgﬂ?grtefng'rg"(;’ff:%dgf?:ﬂsr:‘;cgzgg'rﬁi (Oé’(tggo'&cm_clogrgﬂ%gc_e on
infrastructure and a trusted policy owner and distributanich (6] 1. phan, z. He, and T. D. Nguyen, “Using firewalls to enfoenterprise-
is the corporate VPN server. Neither exists in ad hoc comguti wide policies over standard client-server interactioris,"Journal of
Trusted Computing. Both hardware and software based meth-_ Computers (JCR)April 2006, vol. 1, no. 1, pp. 1-12.
ods have been proposed to ensure trusted software execlition 1 ﬁé&%ﬁ'&g?’ii'tﬁé”ﬁg)é‘ezgfng'sug‘f’yihgﬂi@,'&y gﬁ'rﬁchseiﬁlﬁnr'tgﬁnﬁgbﬂgc/xd
the hardware approach, the trusted software is executedigha Hoc Networking and Computing (MobiHOC)une 2003, pp. 46-56.
end trusted processor or co-processor such as IBM 4758 [508] N. Minsky and V. Ungureanu, “Unified support for heterogeus
Citadel [51], Dyad [52], Cerium [53], and XOM [54]. Due to the Eescgmg( %%“ciiﬁf ig g:sgist;u:;;njaystelfggg i""elg’foceedings of 7th
high cost, the hardware is unlikely to be ubiquitously dgpth [9] y Symposu i » P
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