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Abstract—Online display advertising has becomes a billion-dollar industry, and it keeps growing. Advertisers attempt to send
marketing messages to attract potential customers via graphic banner ads on publishers’ webpages. Advertisers are charged for each
view of a page that delivers their display ads. However, recent studies have discovered that more than half of the ads are never shown
on users’ screens due to insufficient scrolling. Thus, advertisers waste a great amount of money on these ads that do not bring any
return on investment. Given this situation, the Interactive Advertising Bureau calls for a shift toward charging by viewable impression,
i.e., charge for ads that are viewed by users. With this new pricing model, it is helpful to predict the viewability of an ad. This paper
proposes two probabilistic latent class models (PLC) that predict the viewability of any given scroll depth for a user-page pair. Using a
real-life dataset from a large publisher, the experiments demonstrate that our models outperform comparison systems.
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1 INTRODUCTION

Online display advertising has emerged as one of the most
popular forms of advertising. Studies [1] show that display
advertising has generated earnings of over $63.2 billion in
2015. Online advertising involves a publisher, who inte-
grates ads into its online content, and an advertiser, who
provides ads to be displayed. Display ads can be seen in a
wide range of different formats and contain items such as
text, images, Flash, video, and audio. In display advertising,
an advertiser pays a publisher for space on webpages to dis-
play a banner during page views in order to attract visitors
that are interested in its products. A page view happens each
time a webpage is requested by a user and displayed in a
browser. One display of an ad in a page view is called an ad
impression, and it is considered the basic unit of ad delivery.

Advertisers pay for ad impressions with the expectation
that their ads will be viewed, clicked on, or converted by
users (e.g., the ad results in a purchase). Traditional display
ad compensation is mainly based on user clicks and con-
version, because they bring direct profits to the advertisers.
Much research has been done for predicting click rate and
conversion rate [2], bid optimization [3], and auctions [4].
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Recently, there is growing interest by advertisers to use
online display ads to raise brand awareness and to pro-
mote the visibility of companies and their products. Indeed,
users like to purchase products from the brands that they
recognize and trust. Display ads can create an emotional
experience that gets users excited about a brand and builds
trust. However, users do not typically click this type of ads,
rendering the traditional form of pricing structure based on
clicks or conversion to be ineffective.

To address this problem, another pricing model, which
pays ads by the number of impressions that a publisher
has served, has become popular in the display advertising
market. However, a recent study [5] shows that more than
half number of the impressions are actually not viewed by
users because they do not scroll down a page enough to
view the ads. Low viewability leads to ineffective brand
promotion.

Therefore, a new pricing model is emerging: pricing ads
by the number of impressions that can be viewed by a user,
instead of just being served [6]. This avoids the frustration
of advertisers, who concern about paying for ads that were
served but not seen by users.

Not surprisingly, ads placed at different page depths
have different likelihoods of being viewed by a user [7].
Therefore, it is important to predict the probability that an
ad at a given page depth will be shown on a user’s screen,
and thus be considered as viewed. The vertical page depth
that a user scrolls to is defined as the scroll depth.

Viewability prediction is important for many cases:
Guaranteed impression delivery. One of the main ad

selling methods is guaranteed delivery, in which advertisers
contract publishers to buy guaranteed advertising cam-
paigns. The contracts may fix the number of impressions,
targeting criteria, price, etc. As the industry moves toward
transacting on viewable impressions, advertisers may pro-
pose contracts that specify the number of impressions that
will be viewed. Predicting ad viewability helps publishers
to fulfill such contracts by placing the ads in the right
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impressions.
Real-time impression bidding. Advertisers can also

buy impressions through real-time bidding. Given the im-
pression context, including the user, the page, and the ad
position, advertisers desire to know the probability that the
ad will be in-view. Based on the viewability, advertisers can
adjust the bidding price for an impression and improve ad
investment effectiveness. Specifically, they can bid higher
for impressions with high predicted viewability. In addition,
publishers can also benefit from ad viewability prediction
by adjusting the minimum prices for impressions which are
offered for bidding.

Webpage layout selection. Viewability is expected to
become a crucial factor in page layout design, which may
impact ad revenue [8]. Publishers are exploring personal-
ized page layouts that can balance ad viewability and user
experience. For example, if a user will not scroll deep, the ad
slot at the bottom of the page may be moved higher, while
considering the impact on user experience.

Recommender Systems. Dwell time (i.e., the time a
user spends on a page) has been regarded as a significant
indicator of user interest. Recommender systems can also
employ scroll depth prediction as another critical metric of
user interest.

This paper studies the problem of predicting the prob-
ability that a user scrolls to a page depth where an ad
may be placed, and thus the ad can be in-view. Scroll depth
viewability prediction is challenging. First, most users visit
only several webpages on a website. It is challenging to
detect user interests based on such sparse history of user-
page interaction. Second, it is challenging to select signif-
icant webpage and user features related to user scrolling.
Intuitively, page topics and user interests are regarded as
influential factors. But it is non-trivial to explicitly model
these features. Naturally, we may resort to latent models that
utilize latent features. However, a commonly used latent
model, Singular Value Decomposition (SVD), is not suitable
to give probabilistic predictions on a full spectrum of scroll
depths. Specifically, an SVD model can be trained with data
consisting of users, pages, and whether a certain scroll depth
is in-view in individual page views, and then be used to
predict the viewability for that specific scroll depth. But one
SVD has to be trained for each possible scroll depth. Another
option is to train an SVD model with data consisting of
users, pages, and the maximum page depth that a user
scrolls to on a page. The predicted maximum page depth can
help give a binary decision for any given scroll depth (i.e.,
in-view or not), but it cannot give a probabilistic value for a
scroll depth to be in-view, which is important to determine
pricing. As a webpage typically have multiple ad slots at
different page depths (and sometimes ad positions may be
even dynamically determined), it may be costly to build one
SVD model for every single depth.

We first analyze a real-life dataset collected from a large
online publisher and develop a probabilistic latent class
model (PLC) with constant memberships (PLC const) that
predicts the viewability of any given scroll depth for a page
view. In particular, it learns from training data the user and
page memberships, i.e., the probability that a user/webpage
pair belongs to each latent user/webpage class. The mem-
berships are used to predict the viewability of a page depth.

Furthermore, we take webpage features into account and
propose another probabilistic latent class model powered by
dynamic memberships (PLC dyn), which can better adapt
to changes in user and webpage characteristics, e.g., user
interest and webpage attractiveness. “Dynamic” means the
final memberships of a user/webpage pair are not directly
calculated from training data, but they are determined in
real-time based on the feature values. Specifically, compared
to PLC const, PLC dyn uses two softmax functions pow-
ered by linear functions to calculate the final memberships
in real-time. PLC dyn learns from the training data the
weights in the linear functions, instead of the final member-
ships of each user/page pair. The output of the models is the
probability that a given page depth is in-view. Compared
with a binary decision, i.e. in-view or not, a probabilistic
output is very useful in optimization problems, e.g., page
layout selection.

The proposed methods have been experimentally com-
pared with four systems: SVD, Cox Regression, Logistic
Regression, and a deterministic method. The experiments
show that our PLCs have better prediction performance
than the comparative systems. Also, PLC dyn has better
adaptability and less memory usage than PLC const.

Our contributions are summarized as follows: 1) We
define the problem of viewability prediction for any page
depth. 2) We propose two novel statistical models based
on PLC to predict the probability that a page depth will
be in-view. 3) We demonstrate experimentally using a real-
life dataset that our two PLCs outperform three comparison
systems. Compared with PLC const, PLC dyn can save
more memory and better adapt to changes in user and
webpage characteristics.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 4 presents the real-life
dataset. Sections 5 and 6 describe the two proposed PLC
models. Experimental results and insights are presented in
Section 8. The paper concludes in Section 9.

2 RELATED WORK

Researchers have investigated scrolling behavior and viewa-
bility for webpage usability evaluation. In [7], [9], [10], the
authors discover that users spend more time looking at
information on the upper half of the page than the lower
half. Also, the distribution of the percentage of content
viewed by users follows a Gaussian-like distribution. We
differ from these works in our main goal: viewability pre-
diction. Existing work [11], [12] collects scrolling behavior
and uses it as an implicit indicator of user interests to
measure webpage quality. In contrast, we design algorithms
to predict the scrolling behavior for any user-webpage pair.

Several studies have attempted to predict user browsing
behavior, including click [2], [13], [14], [15], [16] and dwell
time [17], [18]. The existing methods on click prediction
are not applicable in our application. They rely heavily on
side information (e.g., user profile, and users’ queries and
tweets) [16] in order to detect what the user is looking for
and thereby suggest the items that are more likely to be
clicked on. In our application, on the other hand, there is no
such kind of explicit indicators of user information needs
and detailed user profile. Wang et al. [13] learn user’s click
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behavior from server logs in order to predict if a user will
click an ad shown for the query. The authors use features
extracted from the queries to represent the user search in-
tent. In our case, search queries, which can explicitly reflect
user interests, are not available.

Most of the work on click prediction [14], [15] is done
on the advertiser side, based on high-dimensional features
about users (e.g., private profiles), ad campaigns (e.g., ad
content), and impression context. However, such data is
not accessible at the publisher side. Our goal is to use
the publisher data to predict page depth viewability. In
addition, Chen et al. [2] propose a factor model to predict
if an ad shown together with search results at a specific
position will be clicked on. However, this prediction is made
for a given position and a query-ad pair, but does not
consider the individual users as a factor. In contrast, our
methods make predictions that are tailored for individual
users and pages. Furthermore, compared with other user
responses, scrolling is a more casual behavior because users
may terminate the viewing process at any time [19]. In
contrast, users do not easily click an item. In other words,
clicking is more deliberate, while scrolling is more casual.

For dwell time prediction, Liu et al. [17] fit the dwell
time data with Weibull distributions and demonstrate the
possibility of predicting webpage dwell time distribution
from page-level features. Yi et al. [18] predict dwell time
through Support Vector Regression, using the context of
the webpage as features. However, both methods do not
consider individual user characteristics, an important factor
of scrolling prediction.

Our models are also related to meta-level hybrid rec-
ommender systems [20], which typically cascade a content-
based and a collaborative system. However, existing stud-
ies [21], [22], [23] in meta-level category are not applicable
in our case. They either require pre-knowledge about user
detailed profiles, e.g., gender and age, or pairwise prefer-
ence of items, which are not available in our case.

In summary, there is no existing research attempt to
predict the maximum scroll depth of a user/page pair and
to predict ad viewability. In addition, existing methods for
user behavior prediction cannot be easily adapted to solve
the scrolling behavior prediction problem. Exploring such
a problem, our pilot work [24] analyzes a real-life dataset,
identifies the features that impacts scrolling behavior, and
proposes a probabilistic latent class model that predicts the
viewability of any given scroll depth for a page view using
constant user and webpage memberships.

3 PROBLEM DEFINITION

Before defining the problem, let us first introduce several
important concepts to be used in the problem definition:
1) The scroll depth is the percentage of a webpage content
vertically scrolled by a user. 2) The maximum scroll depth of
a page view is how far down the page the user has scrolled
during that view. The maximum scroll depth that a user
u will scroll on a webpage a is denoted as xua. 3) The
target scroll depth, denoted as X , is the page depth whose
viewability an advertiser or publisher wants to predict. For
instance, a publisher wants to predict the probability that
an ad is in-view in a page view. In this case, the target scroll

depth can be the percentage of the webpage that contains at
least half of the ad. 1

Our problem is to estimate how likely a user will scroll
down to a target scroll depth of a webpage. Specifically,
the prediction should be personalized to individual users
and webpages. The proposed approach is a supervised
learning technique. The inputs of the training module are
historical user logs that contain the context of page views.
The output is our viewability prediction model. The inputs
of the prediction model are a target page depth X and a
given pair of user u and webpage a, while the output is the
viewability probability of X in the page view.

Problem Definition. Given a page view, i.e., a user u and a
webpage a, the goal is to predict the probability that the max scroll
depth, denoted by xua, is no less than X , i.e., P (xua ≥ X|u, a).

4 OBSERVATIONS AND ANALYSIS OF A REAL-
LIFE DATASET

We use a proprietary dataset collected over one month on
a large publisher’s website, i.e., Forbes. The dataset consists
of logs of user browsing behavior captured via Javascript
events. These scripts send the data to a server. This type
of client-side approach accurately captures users’ behavior
even in multi-tabbed modern browsers [18]. Compared to
the dataset used in the pilot work [24], the dataset collected
for this article contains more page views and casual users
who read more than three web articles on Forbes.com. Since
frequent users tend to engage with web articles much more
than casual visitors whose behavior is more arbitrary, a
flatter max scroll depth distribution is obtained as shown in
Figure 2. This makes the prediction much more challenging
because user scrolling behavior is relatively more diverse
and volatile.

Fig. 1: An Example of a
Scroll Depth

The scroll depth is recorded
according to the last row of pixels
on users’ screens. In this paper,
we adopt 1% as the minimum unit
of scroll depth; thus, the range of
scroll depth is from 0% to 100%.
Once a user stops scrolling and
stays at a position for one second,
the scroll depth is recorded in the
user log. Figure 1 shows an exam-
ple, in which the bottom of the
users screen is at the 50% of the
whole page. Thus, the scroll depth
at the moment is 50%.

The user log of this dataset
includes user IDs, URLs, user
agents, user geo-locations and
maximum scroll depths of page
views. Individual users are iden-
tified by cookies. Table 1 shows
some of the important attributes captured in the log. Each
row corresponds to a page view. For instance, the max scroll

1. This is in line with the definition suggested by the Interactive
Advertising Bureau: a viewable display ad impression requires that
a minimum of 50% of pixels be in-view for a minimum of one second.
We do not consider the one second in-view duration.
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TABLE 1: Example of User Log

User
ID IP URL

Max Scroll
Depth GMT Time

001 1.3.4.5 /abc 72% 07/12/2015 11:00:00
002 7.6.9.2 /bcd 66% 07/12/2015 11:01:33

depth of the first page view is 72% and that of the second
page view is 66%.

The publisher also provides their article metadata which
can be retrieved using an API. The article metadata in JSON
format contains basic information about each web article,
including channels (i.e., topical categories) and sections (i.e.,
sub-channels). Some of these fields are used in one of the
proposed models as webpage features (PLC dyn).

Figure 2 illustrates the distribution of max scroll depths
observed on the publishers’ platform. It can also be noticed
that there are very few page views whose scroll depths are
less than 10%. The main reason is that the top 10% of most
webpages can be loaded on the first screen, especially on
desktops. In this case, the viewability of the first 10% of
webpages is nearly 100%. Therefore, in this research, we
mainly focus on the viewability prediction for the page
depths greater than 10%.

Fig. 2: The Distribution of Max Scroll Depth

(a) Three Random Users (b) Three Random Pages

Fig. 3: The Max Scroll Depths of Three Users and Three
Pages across 1-hour Sessions

We investigate how much the max scroll depth varies
across sessions. All page views of a user/page occurred
in one hour are considered to be in the same session. The
max scroll depth of the user/page in a one-hour session
is the mean max scroll depths of the page views in the
session. Figure 3(a) plots the behavior of three randomly
picked users from the users who have more than 10 unique
page views in a session. Figure 3(b) plots the same figure for
three pages that are randomly selected from the pages which
have sufficient visits. The figures indicate that there are
significant differences in the user behaviors and in the visits

experienced by different pages in terms of max scroll depths.
Furthermore, we do not observe any periodical pattern in
scrolling behavior, which makes the prediction challenging.

We also extract all page views of each individual user
and then calculate the standard deviation of the page views
of each user. The standard deviation of each user reflects
the variation of the user’s reading behavior. We then cal-
culate the mean (µu = 13.21) and the standard deviation
(σu = 9.33) of the standard deviations of all users. µu
represents the average variation of user behaviors, while
σu represents how different the variations are across users.
As we can see, the same user behaves quite differently on
different pages. We also analyze the behavior difference
of different users on the same page, where µp = 12.50
and σp = 7.87. This indicates that different users behave
differently on the same page. As a reference point, the most
challenging case arises when the max scroll depth of any
page view is randomly drawn from a uniform distribution,
unif(0, 100). In this case, the standard deviation is about
29. Thus, fixing one variable, the mean of the of the group
standard deviation µ′ is 29 as well. All µ∗ are less than µ′

because fixing these variables helps control the variation of
the outcome to some degree. Meanwhile, most µ∗ are more
than half of µ′, showing that the problem is still challenging.

5 PLC CONST: PREDICTION MODEL WITH CON-
STANT MEMBERSHIPS

Our task is to infer the max scroll depth of a page view,
xua, where u is the user and a is the webpage. It is intuitive
that the characteristics of individual users and webpages
can be utilized to improve the performance of max scroll
depth prediction models. For example, users who prefer to
scroll far down on most webpages would have a higher
probability to scroll down the current page. Also, features
such as device type and geo-location are easy to be modeled.

However, some other significant features are very hard
to capture due to lack of data and the ambiguity of user-
webpage interaction. For example, pages with popular con-
tent and good design may motivate users to scroll more.
But accurately modeling topic popularity and webpage
design is difficult. Other examples include user interests and
psychology. Therefore, depending solely on explicit features
will not lead to accurate prediction.

In addition to feature modeling, data sparsity is another
challenge. While a large publisher usually has tens of thou-
sands of webpages, one user only visits several. Likewise,
one page may be visited by a small subset of the entire user
population. As a result, the user-page interaction employed
in prediction could be extremely sparse, which brings about
challenges in the prediction performance. A widely-used
solution is grouping similar users and similar webpages
together and inferring the prediction for a user-page pair
using the known data of similar user-page pairs.

To overcome these issues, we use a latent class
model [25] to discover classes of users and webpages.
Specifically, we build a probabilistic latent class model with
constant memberships (PLC const). The intuition behind it
is that different latent classes of webpages and users tend
to generate different levels of max scroll depths. PLC const
can detect classes of users and webpages that share similar
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patterns of max scroll depth. The exact class memberships
of each user and webpage are learnt from the user log and
used to do prediction for each page view in test datasets.
PLC const outputs the probability P (xua|u, a), where xua
is the max scroll depth that a user u reaches on a page a.

Formally, PLC const works as follow:

P (xua|u, a) =
Ns∑ Np∑

P (s|u)P (p|a)P (xua|fuac, s, p;wsp)
(1)

where xua is the max scroll depth of a page view. Ns is the
number of latent user classes, andNp is the number of latent
webpage classes. Both Ns and Np are pre-defined as model
parameters. The optimal values for these parameters can be
explored by cross validation. P (s|u) is the probability that
user u belongs to the latent user class s, while P (p|a) is the
probability that webpage a belongs to the latent webpage
class p. For simplicity, in this paper, we use s and p to notate
individual latent user classes and latent page classes. The
last term, P (xua|fuac, s, p;wsp), represents the probability
that the max scroll depth of the page view is xua, given the
latent user class s and webpage class p. fuac is the feature set
that reflects the user, the webpage, and context information,
while wsp is the corresponding feature weights.

As mentioned above, the last term can be approximated
by the probability density function of a normal distribu-
tion. Note that there is no single distribution that can fit
all datasets. This paper proposes a general framework for
predicting user reading behavior. The proposed methods do
not rely on properties specific to the Gaussian distribution.
Therefore, different publishers and advertisers can plug in
other distributions according to their own datasets. They
only need to change the probability density function (Equa-
tion 2) and the corresponding M-step.

P (xua|fuac, s, p;wsp)

=
1√

2πσ2
sp

· exp

(
−
(xua − wTsp · fuac)2

2σ2
sp

)
(2)

The right side of Equation 2 is developed based on the
probability density function of a normal distribution, i.e.,

1
σ
√
2π
· exp(− (x−µ)2

2σ2 ). The mean of the distribution, µua, can
be modeled by a regression whose features are extracted
from the history of u and a as well as the context of the
page view, i.e., µua = wTsp · fuac. The superscript uac means
the feature set includes user, webpage, and context features.
Each pair of latent user class s and latent webpage class p
has a set of wsp∗, i.e., the weights in the linear function of
µua and σsp, i.e., the mean and the standard deviation.

Based on the observations presented so far, we consider
seven features:

• User Features:
1) The mean max scroll depth of all page views of u.
This feature captures user browsing habits.
2) The most recent three max scroll depths of u. This
feature captures the recent scroll behavior of the user.

• Webpage Features:
3) The mean max scroll depth of a by all users. This
feature captures the popularity of the webpage.

4) The most recent three max scroll depths of page
views of a. This feature captures the recent scroll
behavior for this webpage.

• Interaction of User and Webpage:
5) Interaction of the mean max scroll depth of u and
that of a, i.e., the product of features 1 and 3.

• Page View Context:
6) User geo-locations, which were shown to be im-
portant by our analysis of the dataset.
7) Device Type (i.e., desktop, mobile, or tablet), also
shown to have a certain relevance by our analysis.

Let W be the collection of the weight vectors of all latent
user classes and webpage classes. σ is the collection of the
standard deviations of all latent user classes and webpage
classes. The features help iteratively determine W and σ.

In Equations 1 and 2, there are several parameters
(P (s|u), P (p|a), W, σ). They can be calculated by maxi-
mizing the following likelihood function:

l(P (s|u), P (p|a),W,σ) =∑
u,a

ln

 Ns∑ Np∑
P (s|u)P (p|a)P (xua|fuac, s, p;wsp)

 (3)

To maximize it, the Expectation Maximization (EM) Al-
gorithm is adopted. The EM algorithm is widely used to
solve the maximum-likelihood parameter estimation prob-
lem. The EM algorithm performs an expectation step (E-
step) and a maximization step (M-step) alternatively. The
E-step creates a function for the expectation of Equation
3. This function, i.e., Equation 4, is evaluated using the
current estimates of the parameters. The initial values of
the parameters are randomly generated.

P (s, p|fuac;wsp) =P (s|u)P (p|a) ·
1√

2πσ2
sp

·

exp

(
−
(xua − wTspfuac)2

2σ2
sp

) (4)

The M-step updates the parameters in Equation 4, which
can maximize Equation 3. In each iteration, the M-step up-
dates the value of each parameter based on the result of the
E-step. The updated wsp∗ of each iteration in Equation 7 can
be determined by Limited-memory BFGS, an optimization
algorithm in the family of quasi-Newton methods.

P (s|u)∗ ∝
∑
p,a

P (s, p|fuac) (5)

P (p|a)∗ ∝
∑
s,u

P (s, p|fuac) (6)

w·sp∗ ∝argmax
wsp

{−
∑
u,a

P (s|u)P (p|a)·

[
(xua − wTspfuac)2

2σ2
sp

+ lnσsp + ln
√
2π]}

(7)
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σ∗sp ∝

√∑
ua P (s|u)P (p|a)(xua − wTspfuac)2∑

ua P (s|u)P (p|a)
(8)

The EM iterations stop if the max ratio is not greater
than a pre-defined threshold, which is set to 10−3 in our
experiments. In other words, it stops if the difference of all
feature weights is less than 10−3.

After convergence, the PLC const with the optimal pa-
rameters can predict P (xua|u, a), i.e., the probability density
of any target max scroll depth xua of a user-webpage pair.
Section 7 uses this probability to predict the viewability of
any target scroll depth. Similarly, this model can be applied
to recommender systems, as mentioned in Section 1. The
predicted max scroll depth xua reflects the interest of the
user u in the webpage a.

6 PLC DYN: PREDICTION MODEL WITH DYNAMIC
MEMBERSHIPS

By computing offline the memberships of users and web-
pages belonging to latent user and webpage classes,
PLC const predicts the viewability of any target scroll depth
in a page view. However, user and webpage memberships in
reality can be dynamic during the online process, since user
interests and page popularity keep changing. For instance,
user interests may shift over time, e.g. from entertainment to
sports, which can influence the class memberships of a user.
Webpage attractiveness may also change for some reasons,
e.g., bursting topics and content freshness. For instance,
users viewing a newly updated webpage may scroll deeper
than users viewing the same page one week later. The
reason is that after one week its content is not fresh and
attractive. A drawback of PLC const is that it can only use
fixed memberships calculated from training data to make
predictions in test data. For instance, assuming there are
two user classes, the memberships of a user in the training
data are s1 = 0.8 and s2 = 0.2, i.e., the probability that
the user belongs to the first latent user class is 0.8. These
memberships are used to predict in all test page views
involving that user. Thus, PLC const cannot adapt user’s
interest shift.

To capture the dynamic nature of the memberships,
we propose to represent the memberships by a function
whose output value is determined in real-time. Mean-
while, the feature vectors should also be able to reflect
the change of user, webpage, and context. Based on this
idea, we develop a dynamic probabilistic latent class model,
PLC dyn that extends PLC const. This model enables dy-
namic memberships and also considers webpage informa-
tion, such as channels, i.e., topical categories (e.g. “finance”
and “lifestyle”), and sections, i.e., sub-channels. Webpage
information is provided by the article metadata. Note that
“dynamic” does not refer to online learning where the
model parameters keeps changing based on incoming data
stream. The model parameters, i.e. feature weights, are not
changed during testing once they have been learnt from the
training data. But the memberships calculated based on the
model parameters are dynamically changing since feature
values may change over time.

Let us clarify the similarities and differences between
PLC const and PLC dyn in technical details. Similar with
PLC const, PLC dyn calculates the probability that a user
or a page belongs to each class and utilizes user and
webpage classes to overcome sparsity. However, unlike
PLC const, PLC dyn calculates the user and page mem-
berships in real-time, instead of learning constant numbers
of memberships from training data offline. In particular,
in Equation 1, the memberships P (s|u) and P (p|a) are
constant numbers learnt from training data. Before being re-
trained, PLC const always uses these fixed memberships to
perform predictions for specific users and pages. In contrast,
PLC dyn uses soft-max functions powered by linear func-
tions to calculate user and webpage memberships, as shown
in Equation 10. PLC dyn learns the feature weights in the
linear functions from training data, rather than learning final
memberships. These feature weights are used to compute
the memberships in real-time with the feature values at that
moment. Thus, the memberships of a user or a page may
be different over time, i.e. dynamic, since the feature values
keep updating. For instance, the value of the feature “the
mean max scroll depth of the user on the webpages in the
same section” is dynamic. It can capture the change of the
user’s interest. Also, the dynamic value of the feature “the
mean max scroll depth of the pages in the same section” can
capture the change of topic attractiveness. Thus, PLC dyn
can better adapt to changes of user and page characteristics.
To support such calculation, user features and webpage fea-
tures (webpage features are not used in PLC const) are used
to calculate the user and page memberships, respectively.

Formally, PLC dyn is modeled as following.

P (xua|u, a) =
Ns∑ Np∑

P (s|fu;αs) · P (p|fa;βp)P (xua|fuac, s, p;wsp)
(9)

where P (s|fu;αs) represents the probability that the
user u with the user features fu and the corresponding
feature weights αs belongs to the latent user class s, while
the P (p|fa;βp) represents the probability that the webpage
a with the webpage features fa and the weights βp belongs
to the latent webpage class p. P (xua|fuac, s, p;wsp) is the
probability that the max scroll depth is xua given the user
and the webpage belonging to s and p respectively. It is
almost the same as its counterpart in Equation 1, but they
have different feature vectors. fuac is the entire feature set
that concatenates all features about the user, the webpage,
and the context (e.g. screen sizes, devices), while wsp is the
corresponding feature weights. Ns and Np are the numbers
of latent user and webpage classes, respectively.

Equation 9 uses user features fu and webpage features
fa to calculate the user and webpage memberships, re-
spectively. The parameters that have to be learnt from the
training data are feature weights αs and βp. In contrast, the
memberships in Equation 1 are learnt as constant numbers,
P (s|u) and P (p|a). Each user and each webpage receives a
set of membership values, which are not subject to change
during prediction.

The user membership P (s|fu;αs) and the webpage
membership P (p|fa;βp) can be modeled by the soft-max



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2016 7

function [26]. The soft-max function takes the outcome of a
linear function as input and outputs the predicted probabil-
ity for one of the classes given the input vector. User and
webpage memberships can be defined:

P (s|fu;αs) =
1

Zu
exp(αTs f

u) =
exp(αTs f

u)∑Ns exp(αTs f
u)

(10)

where Zu is the normalization factor that guarantees the
sum of the memberships of a user belonging to all classes
is equal to one. The page membership with weights βp and
page features fa can be modeled similarly. As in PLC const,
the last term can be modeled by Equation 9:

P (xua|fuac, s, p;wsp) =
1√

2πσ2
sp

exp

(
(xua − wTspfuac)2

−2σ2
sp

)
(11)

fuac is the combination of the user , webpage, and
context features. All features are shown as below.

• User Features (fu):
1) The mean max scroll depth of the user in past page
views, which captures user browsing habits.
2) The mean scroll depth of the user on the webpages
in the same channel.
3) The availability of the second feature.
4) The mean scroll depth of the user on the webpages
in the same section, i.e., sub-channel.
5) The availability of the fourth feature.
6) The mean scroll depth of the users at the same geo
location on the webpages in the same channel.
7) The mean scroll depth of the users at the same geo
location on the webpages in the same section.

• Webpage Features (fa):
1) The mean max scroll depth of the page by all users.
This feature captures the popularity of the webpage.
2) The mean max scroll depth of the pages in the
same channel, i.e., topical category (e.g., finance).
3) The mean max scroll depth of the pages in the
same section, i.e. sub-channel.
4) The mean max scroll depth of all pages in the
“related content list” of the page. If the page has no
related content page, it equals to the first feature.
5) The length of the body text.

• Page View Context (f c):
1) Screen Width, i.e., the width of the user’s screen.
2) Screen Height
3) Viewport Width, i.e., the viewport is the visible
area of a web page on user’s screen. Unlike screen
size, viewport size indicates the area of the user’s
browser. Viewport size is captured and sent to the
server when the user clicks the link of the page.
4) Viewport Height.
5) The mean max scroll depth of all page views on
the same device.

Note that only the first user feature and the first webpage
feature are used in both PLC const and PLC dyn. Other
features are either new features added in PLC dyn (e.g.,
screen size and the mean max scroll depth of the pages in the

same channel) or the dynamic version of the features used in
PLC const (e.g., the mean max scroll depth of all page views
on the same devices). Also, since the user and webpage
characteristics can be reflected in their own memberships,
the interaction used in PLC const is removed.

The new feature set contains many categorical character-
istics, e.g., channels, sections, and geo-locations. To reduce
the number of dimensions and enable dynamic updates,
these categorical characteristics are converted to continuous
features. For instance, we convert “device type” (used in
the PLC const) to “the mean max scroll depth of all page
views on the same devices” (used in PLC dyn). Specifically,
in PLC dyn, the continuous variable “the mean max scroll
depth of all page views on the same device” is adopted, in-
stead of dummy variables representing devices. This feature
in PLC dyn occupies only one dimension, while its counter-
part feature in PLC const has three dimensions. In addition,
the value of PLC dyns feature is dynamic, since the mean
scroll depth is changing over time. In contrast, being repre-
sented by dummy variables, the value of PLC consts feature
is constant.

(α, β,W, σ) denote the weight vectors of all latent user
and webpage classes as well as the weight vectors and stan-
dard deviations of all latent user and webpage class pairs,
respectively. These parameters can be learnt by maximizing
the following likelihood function. Note that the differences
between Equations 12 and 3 are the same as those between
Equations 9 and 1.

l(α, β,W, σ) =
∑
u,a

ln

( Ns∑ Np∑
P (s|fu;αs)

P (p|fa;βp)P (xua|fuac, s, p;wsp)
) (12)

Similar with PLC const, the EM algorithm is adopted to
learn the parameters iteratively in PLC dyn. The E-step is
as below:

P (s, p|fuac;wsp) =
P (s|fu;αs)P (p|fa;βp)P (xua|fuac, s, p;wsp)∑NsNp P (s|fu;αs)P (p|fa;βp)P (xua|fuac, s, p;wsp)

(13)

The values of the parameters are updated in the corre-
sponding M-step using the L-BFGS algorithm:

α∗s· ∝ argmax
αs·

∑
u,a

[∑
p

P (s, p|fua)

]
·

ln

[
1

Zu
· exp

(
αTs f

u
)]
− λ

2
α2
s

(14)

β∗p· ∝ argmax
βpj ·

∑
u,a

[∑
s

P (s, p|fua)

]
·

ln

[
1

Za
· exp

(
βTp f

a
)]
− λ

2
β2
p

(15)
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w∗sp· ∝argmax
wsp·

∑
u,a

P (s, p|fua)·

ln

 1√
2πσ2

sp

· exp

((
xua − wTspfuac

)2
−2σ2

sp

) (16)

σ∗sp ∝argmax
σsp

∑
u,a

P (s, p|fua)·

ln

 1√
2πσ2

sp

· exp

((
xua − wTspfuac

)2
−2σ2

sp

) (17)

Note that the first terms of Equation 14 and 15 are not
strictly convex. Therefore, adding weight decay, i.e., the
second terms, will take care of the numerical problems as-
sociated with soft-max regression’s over-parametrized rep-
resentation. The second terms penalize large values of the
parameters, α and β, and thus guarantee to have a unique
solution, i.e., converge to the global maximum. λ is the
weight decay term, which should be greater than 0. In the
experiment, it is set to 0.01 based on cross validation. After
convergence, the PLC models with the optimal parameters
can predict P (xua|u, a), i.e., the probability density of any
target max scroll depth xua of a user-webpage pair.

7 VIEWABILITY PREDICTION FOR A TARGET
SCROLL DEPTH

Given a target scroll depth X and a user-webpage pair, the
trained PLC models can be used to compute the probability
that the max scroll depth will be X , i.e., P (xua = X|u, a).
As stated in the problem definition, our goal is to predict
the probability that a given scroll depth will be in view,
i.e., P (xua ≥ X|u, a). Therefore, we integrate P (xua|u, a)
from X to 100%, as shown in Equation 18. The result is the
probability that the max scroll depth of the page view will
be greater or equal to the target scroll depth X . This means
the max scroll depth xua is at a page percentage no less than
X . The upper bound of the max scroll depth is 100%, i.e.,
the page bottom.

P (xua ≥ X|u, a) =
∫ 100%

X

P (xua|u, a)dxua (18)

8 EXPERIMENTAL EVALUATION

This section investigates the following questions: 1) Do
the proposed PLC models outperform the comparative
systems? 2) Does PLC dyn have better adaptability than
PLC const? 3) How does the training data size influence the
performance of the PLC models? 4) Does PLC dyn require
less memory than PLC const?

8.1 Experimental Dataset
The dataset has been described in Section 4. After random
sampling by users, data transformation, and data cleaning,
nearly 1 million page views are in the dataset. To avoid
bias, the user log is split into three sets of training data and
test data, as shown in Table 2. The experimental results are

reported by taking the average over the three datasets. On
average, there are 80K unique users and 50K unique web-
pages that generated 200K page views in a 7-day training
set and 50K page views in a 1-day test set.

TABLE 2: Training and Test Data Partitioning

#Set Training Data (7d) Testing Data (1d)

1 07/06/2015-07/12/2015 07/13/2015

2 07/09/2015-07/15/2015 07/16/2015

3 07/12/2015-07/18/2015 07/19/2015

8.2 Comparison Systems
We compare the performance of the proposed models
(PLC const and PLC dyn) with several other systems:

Deterministic Method (DET): We compute the propor-
tion of the page views whose max scroll depths are greater
or equal to the target scroll depth X in each training set.
This proportion is the prediction for all page views given
X . For instance, P (xua ≥ 30%|u, a) is 0.7590 means that the
viewability xua for all test page views is 0.7590.

Logistic Regression (LR): Since one LR model cannot
predict for every given target scroll depth, we train an LR
model for each target scroll depth. We use the same set of
input features as those used to train PLCs. When training a
model for a specific target scroll depth, for each page view,
we examine whether that page depth was in-view or not. If
yes, it is considered to be positive (i.e., viewed), otherwise
negative (i.e., not viewed). For instance, when the target
scroll depth is set to 20%, a page view is considered as a
positive example if its 20% depth was viewed according to
the user log. When testing, given the feature vectors of a
test page view, the LR model outputs the probability that
X is in-view, i.e., P (xua ≥ X|u, a). This probability can be
further converted into a binary decision.

Cox Regression (Cox): The research problem can also
be considered as a survival analysis problem by treating
reaching the max scroll depth as the subsequent event.
Thus, we build a Cox regression, commonly used in survival
analysis, as a comparison system. Cox regression is defined
as hk(t) = h0(t) · exp(βTxk), where hk(t) is the probability
that a user k does not reach the max scroll depth at depth
t. h0(t) is the baseline or underlying hazard function and
corresponds to the probability of reaching the max scroll
depth when all the xs are zero. β is the weight vector of
the feature set x. The Cox regression is implemented using
Lifelines [27], which is a publicly available Python library.

Singular Value Decomposition (SVD): In addition to
dimension reduction, SVD is often used to predict a target
variable based on historical data. For any M ∗N matrix A of
rank r, SVD can decompose it asA = U

∑
V T .U is aM∗M

orthogonal matrix that spans the “column space”. V is a
N ∗N orthogonal matrix that spans the “row space”.

∑
is a

M ∗N diagonal matrix whose first r entries are the nonzero
singular values of A. Using matrix factorization, SVD maps
both row items (e.g., users) and column items (e.g., pages)
to a joint latent factor space, such that the interactions of
row items and column items are modeled as inner products
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in that space. In our case, it generates a vector to represent
each user or page. The dot product of a user vector and a
webpage vector is the prediction of their interaction. Unlike
the PLCs, SVD does not utilize the distribution of max scroll
depth and the explicit features of page views.

Our SVD model implementation is based on libFM [28].
The number of factors is set to 8, as suggested in the manual.
The matrix A is a user-webpage matrix. Each cell value is
either 1 or 0, i.e., whether X is in-view or not. The output
for a page view is a value between 0 and 1, which is treated
as the probability that X is in-view. This probability can be
converted into a binary decision. Similar to LR, we build an
SVD model for each X .

8.3 Metrics
RMSD: The RMSD measures the differences between the
values predicted by a model, ŷi, and the values actually
observed, yi. It is widely used in various research fields and
is defined as the square root of the mean square error. If
the target scroll depth X is in-view, yi = 1; otherwise, yi
= 0. ŷi is the probabilistic prediction of the ith page view,
i.e., ŷi ∈ [0, 1]. The lower RMSD, the better the prediction
performance.

Precision, Recall and F1-score: The probability that X
is in-view can be converted to 0 or 1, i.e., if it is greater
or equal to 0.5, then X is in-view; otherwise, X is not
in-view. Thus, the probabilistic prediction problem can be
considered as a binary classification problem as well. Hence,
precision, recall, and F1-score can be used to compare the
models. The precision of a class is the number of page views
correctly labelled as belonging to the class divided by the
total number of page views labelled as belonging to the
class. High precision means high true positive rate and low
false positive rate. The recall of a class is the number of page
views correctly labelled as belonging to the class divided by
the total number of page views that belong to the class. High
recall means high true positive rate and low false negative
rate. The F1-score of a class is the harmonic mean of the
precision and recall of the corresponding class.

Area Under Curve (AUC): The AUC is a common
evaluation metric for binary classification problems, which
is the area under a receiver operating characteristic (ROC)
curve. An ROC curve is a graphical plot that illustrates the
performance of a binary classifier system, as its discrimina-
tion threshold is varied. The curve is created by plotting the
true positive rate against the false positive rate at various
threshold settings. If the classifier is good, the true positive
rate will increase quickly and the area under the curve will
be close to 1. Higher values are better.

8.4 Effect of Parameter Combination
We investigate the performance of PLC const and PLC dyn
with different combinations of Ns and Np parameters. As a
reminder,Ns is the number of latent user classes, whileNp is
the number of latent webpage classes. As one of the ad slots
placed at the 60% page depth on a Forbes’ article webpage,
60% is used as the target scroll depth X in this experiment
for setting the parameters. In fact, this also is one of the most
challenging page depths, since it is in the middle of a page.
Grid search and random search are adopted in order to find

TABLE 3: RMSDs of Different Parameter Pairs

PLC const PLC dyn

Ns = 1, Np = 1 0.4654 0.4501

Ns = 5, Np = 5 0.4637 0.4443

Ns = 6, Np = 8 0.4609 0.4425

Ns = 8, Np = 7 0.4581 0.4475

Ns = 10, Np = 10 0.4601 0.4467

the optimal parameter combination. For the grid search, we
try all combinations of Ns ∈ [2, 15] and Np ∈ [2, 15]. For the
random search, we try 20 combinations of Ns ∈ [2, 30] and
Ns ∈ [2, 30] which are not included in the grid search. The
range of RMSDs is [0.4581, 0.4665] for the PLC const, while
that of the PLC dyn is [0.4425, 0.4566].

Table 3 shows the 5-fold cross validation RMSD re-
sults for different Ns and Np combinations. For the sake
of brevity, we only present partial results, including the
best performance. PLC const and PLC dyn obtain the best
performance with Ns = 8 and Np = 7, and Ns = 6 and
Np = 8, respectively. In the following experiments, we use
these values.

8.5 RMSD Comparison

Fig. 4: RMSD Performance

The performance is measured at various target scroll
depths by RMSD. Since the top 10% of a webpage are usu-
ally shown in the first screen without the user performing
any scrolling, we set the range of the target scroll depth to
the interval [0.1, 1].

Figure 4 presents the results of RMSD comparison. The
results indicate that both PLC const and PLC dyn consis-
tently outperform the comparison systems. The percentages
of the difference between the PLC dyn and the PLC const
falls in the range of [2%, 7%] with the mean of 5%.2

According to our observation in Forbes user browsing
log, the first 20% of webpages are in-view in more than
80% of all page views. Also, the last 10% of webpages are
in-view in less than 10% of all page views. Therefore, all
models have better performance near the top and bottom of
a webpage than in the middle. Their performance near the

2. For each target scroll depth, we calculated what percentage the
RMSD of the PLC dyn is lower than that of PLC const. We then take
the minimum (2%), the maximum (7%), and the mean (5%) of the
resultant percentages.
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top and bottom is also very similar, which is why the curves
overlap in the intervals [0.1, 0.2] and [0.9, 1].

It is increasingly difficult to make correct prediction with
the target scroll depth X moving toward the middle of
pages. The reason is that the likelihood of being in-view
and the likelihood of being not in-view are getting close.
The models are more prone to incorrect predictions in the
middle of pages. Therefore, RMSDs in the interval (0,2, 0.9)
are higher than those in the two tails. Nevertheless, the
two proposed PLC models still perform substantially better
than the other models within this challenging interval. In
the very middle of web pages, i.e., the interval [0.4, 0.6],
the deterministic method generates errors that are higher
than 0.5. This is because that user browsing behaviors are
quite noisy, in which case the overall in-view rates learnt
from the training data may not hold very well in the test
data. In addition, since it depends only on explicit features
and cannot utilize any latent factors, LR does not perform
as well as SVD and the two PLC models, which identify
latent features or latent classes, respectively. Cox regression
has comparable performance with SVD. The curves of these
methods almost overlap. Compared to SVD, Cox regres-
sion does not make predictions collaboratively; however, it
considers multiple auxiliary features to identify the context
and the history of users and pages. Cox has lower RMSD
than LR because it conditions on the user not leaving the
page before the target scroll depth. LR, on the other hand,
treats every user-page-depth observation as independent.
Matrix factorization-based methods like SVD and Factoriza-
tion Machines (FM) can handle relatively sparse datasets.
However, real-life datasets, such as the one we use, are
extremely sparse. For example, when considering only users
who read at least three pages and pages read by at least three
users, the density of our dataset is less than 0.0006. Even
though SVD and FM use matrix factorization to overcome
the sparsity issue, they still rely on the sparse interaction
of users and pages to infer latent features. In contrast, our
models rely on the interaction of classes, instead of that of
individual users and pages. Note that we do not aim to
solve the cold-start problem. We still expect each page and
user to have at a minimal historical browsing history so as
to calculate their feature values. In the experiments, the pro-
posed models outperform SVD. Also, although technically
these methods could be used in our application, they would
have to be re-trained frequently to update according to the
changes of user interests and page characteristics, which
may introduce additional maintenance overhead or even
disruption to business operation. In contrast to PLC const,
PLC dyn leverages explicit web page metadata, e.g. chan-
nels, sections, and related webpages, in order to better
identify the latent classes for webpages. It also utilizes more
context information, to boost prediction performance. The
adaptability provided by dynamic memberships can also
contribute on the improvement.

It is difficult to present the effectiveness of all features
in our proposed models because there are too many sets of
feature weights: Each feature in the PLC const has Ns ∗Np
weight vectors, while each user or page feature in the
PLC dyn has Ns + Ns ∗ Np or Np + Ns ∗ Np weights,
respectively. Thus, we only investigate the feature weights
in the third terms of Equations 1 and 10. The reason is that

the first term is user membership and the second term is
page membership. The third term directly determines the
max scroll depth. Focusing on the best model, i.e., PLC dyn,
we compute the average weight of each feature. The top five
significant features in the PLC dyn are: 1) the mean max
scroll depth of the webpage (0.3069), 2) viewport height (-
0.1202), 3) the mean max scroll depth of the user (0.1030),
4) the mean max scroll depth of pages with related content
(-0.0652), and 5) the mean max scroll depth of pages in the
same section (0.0392). All features are already normalized
within the range [0, 1]. The p-values of these features are all
less than 0.001.

The first three features show that the scrolling behavior
in a page view is related to the current viewport size and the
historical behavior of the user and the page. Interestingly,
the deeper a user scrolled in the pages with related content,
the less the user will scroll in the current page. This may be
because the user has already been familiar with the content.
Thus, the user will probably not read the whole content. The
fifth feature indicates that the more interest the user has in
the broad topic of the page (i.e., section), the more the user
will engage with the page.

8.6 Classification Comparison

False positives (i.e., impressions which are mistakenly con-
sidered to be in-view) cause advertisers to invest on ad
opportunities that will not be seen by users. This leads to
significant investment ineffectiveness. On the other hand,
false negatives (i.e., impressions which are mistakenly con-
sidered to be not in-view) make publishers lose the revenue
that they are supposed to gain because these impressions
could have been sold at higher prices. Currently, when
bidding an ad opportunity, advertisers consider all ads near
the bottom of the page as rarely-seen impressions and thus
submit very low bid prices. Thus, identifying both in-view
and not in-view impressions is equally important. There are
two examples illustrate this goal: 1) because the viewability
of page bottoms tend to be low, it is important to recognize
in which page views the bottoms will be in-view. 2) Because
the viewability of page tops tends to be high, it is important
to identify the page views whose tops will not be in-view.

Figure 5 plots the precision, recall, and F1 score of
both class 0 and class 1 (i.e., not in-view and in-view,
respectively). PLC dyn overall performs the best among the
methods, followed by PLC const. The performance of class
1 of all methods is high when the target scroll depth X is
placed in the interval [0.1, 0.5], since the top of most page
views can be in-view. Although it is challenging, the two
PLC models can better identify the page views whose tops
are not in-view (due to high precisions and recalls of class
0 in the interval [0.1, 0.55]). Similarly, the two PLC models
also can better identify the page views whose bottoms are
in-view (due to better precisions and recalls of class 1 in the
interval [0.6, 1]).

In the interval [0.25, 0.55], both PLC methods have
relatively low recall for class 1. The reason is that they
classify more page views to class 0 than the comparative
systems. A majority of these predictions are correct, i.e., true
negatives, while a few are incorrect, i.e., false negatives. The
correct ones increase the precision and recall for class 0, but
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(a) Precision of Class 1 (b) Recall of Class 1 (c) F1 Score of Class 1

(d) Precision of Class 0 (e) Recall of Class 0 (f) F1 Score of Class 0

Fig. 5: Classification Performance Comparison

the wrong ones decrease the recall for class 1 inevitably,
as fewer pages are assigned into class 1. This is also the
reason why the two PLC methods precision for class 1 is
the highest in the interval [0.25, 0.55]. These observations
are more apparent in the interval [0.55, 1]. At the cost of
sacrificing the recall for class 0, the PLC models achieve
decent performance on the precision for both classes as well
as the recall for class 1.

The differences among the models in Figure 5 are not as
substantial as those in Figure 4 because RMSD is a more
sensitive metric. For instance, given a page view whose
target scroll depth X is in-view according to the ground
truth, the probabilistic prediction of PLC dyn is 0.8, while
that of LR is 0.6. Both methods have the same evaluation
results on the classification metrics because the outputs are
greater than 0.5. But their performance can be distinguished
when looking at RMSD: The PLC’s RMSD is 0.2, while LR’s
is 0.4. In other words, they do not have any difference in
the classification performance, but they do in the RMSD
performance.

As shown in Figure 5a, all predictive methods have no
precision for class 1 in the interval [0.9, 1] in that no page
view in the test data is classified into class 1. Therefore,
precision cannot be calculated because the number of page
views classified into class 1 is the denominator when pre-
diction is calculated and it is 0 in this case. Due to the same
reason, the recall for class 1 is 0 in this interval and no F1-
score for class 1 can be computed. A similar observation is
obtained for class 0 in the interval [0.1, 0.2], as shown in
Figure 5d. The reason that no page view is classified into
class 1 within [0.9, 1] is that the distributions of the two
classes are very skewed in the interval. Particularly, a large
majority of page views are not in-view.

Such imbalanced data precludes statistical methods such
as ours to work appropriately [29]. Essentially, the classi-
fiers cannot learn well from the skewed data because the
training examples are scarce. To overcome this issue, we

have tried simple under/over-sampling. But inevitably, the
precision has largely decreased. Therefore, mitigating data
imbalance remains a task for future work. Note that the
deterministic method (DET) is not impacted by imbalanced
data because it always makes the same decision for all
test page views given an X . Measured by the classification
metrics, it performs as well as the other methods at the two
tails, especially in the interval [0.9, 1] because the RMSD
of DET is also quite close to other methods as shown in
Figure 4. Since DET is much simpler and faster, a practical
suggestion on viewability prediction is to use DET to predict
the viewability of scroll depths in [0.1, 0.2] and [0.9, 1]
intervals, while the PLC models should be employed to
predict in the middle of pages.

Fig. 6: AUC Comparison

We also use AUC to evaluate the methods. Figure 6
shows that the PLCs outperform other methods. In addi-
tion, we notice that AUC decreases from the top to the
bottom. To analyze this, we plot the distributions of the
prediction outcomes in the positive class and the negative
class using box plots. We find that at the top of the page
the predictions of both classes are close to 1 due to imbal-
ance in the training data (Class1: median=0.9997, first quar-
tile=0.9993, third quartile=0.9998; Class0: median=0.9972,
first quartile=0.9950, third quartile=0.9985). However, the
overlap between the prediction distributions of the positive
class and the negative class is relatively small: In particular,
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at 10%, the first quartile line of the positive class is higher
than the third quartile line of the negative class. Therefore, a
decision threshold between these two lines can separate the
two classes relatively well. In contrast, at the bottom of the
page, e.g., 95%, the overlap of the two prediction distribu-
tions is more significant (Class1: median=0.0977, first quar-
tile=0.0514, third quartile=0.1714; Class0: median=0.0541,
first quartile=0.0305, third quartile=0.0926). The first quartile
line of the positive class is much lower than the third
quartile of the positive class. Therefore, it is more difficult to
separate them by a decision threshold.

8.7 Effect of Latent Classes

Fig. 7: RMSD Comparison by Considering Only Latent User
Classes or Latent Page Classes

Both user groups and page groups are considered in the
proposed models. In this section, we evaluate the effects
of latent user classes and page classes by separating them
out from PLC const and PLC dyn one at a time. We also
evaluate the performance of PLC models without latent
user or page classes. Figure 7 presents the experimental
results, in which PLC const p and PLC dyn p mean the
corresponding PLC models with the latent page classes.
PLC const u and PLC dyn u mean the corresponding PLC
models with the latent user classes. Gaussian const and
Gaussian dyn represent the third terms in Equation 1 and
Equation 9, respectively.

In both models, PLCs with latent user classes only
outperform PLCs with latent page classes. In particular,
the RMSD of the PLC const p is in fact comparable with
SVD. Considering latent user classes in PLC const instead
of latent page classes enhances the performance. A similar
observation is also obtained in the PLC dyn model. This
indicates that the reading behavior varies more with the
users than with the pages. Although it cannot be denied
that pages also play an essential role, the user decisions are
the main factors that determine the scrolling behavior.

8.8 Performance on Different Gap lengths

In practice, publishers may not be able to re-train prediction
models every day. Thus, it is important to develop models
which can adapt to the changes of users and webpages such
that the performance stays at a high level for a relatively
long time. The goal of this experiment is to evaluate the
adaptability of the models. The adaptability is defined as
how well a model can adapt to the changes of user factors
and/or webpage factors. Such changes in webpage charac-
teristics may influence the class memberships of web pages.
This is in fact one of the motivations for using new feature

Fig. 9: The RMSDs with 0-day and 20-day Gaps

sets and regression-powered soft-max functions to dynam-
ically compute the memberships of users and webpages in
PLC dyn. Therefore, to test the impact brought by such
changes, the two PLC models are compared using a constant
value to represent the memberships of users and webpages.

Fig. 8: The Mean RMSDs with Differ-
ent Gaps across Target Scroll Depths

To this end, we re-
partition the dataset
by varying the time
gap between a train-
ing set and the corre-
sponding test set. The
lengths of the train-
ing period and the
test period are un-
changed, i.e., they are
still 7 days and 1 day.
But the time period
between the training
set and the test set,
i.e., gap, is varied. For example, setting the gap to 5 days,
could use 07/06/2015 - 07/12/2015 as the time period
for the training set. The test set is 07/18/2015. Intuitively,
the larger the gap, the more likely the user and webpage
characteristics are to shift. The gap lengths we adopt are
0 day, 5 days, 10 days, 15 days, and 20 days. Due to the
constraints of the time span of the user log, the maximum
gap length we set is 20 days.

We only compare the two PLC models because the
previous experiments have shown that the comparative
systems do not perform as well as the PLC models. Figure 8
shows the average RMSDs at all target scroll depths with
different gap lengths. Figure 9 plots the RMSDs of the two
models at different target scroll depths with different gaps.
To make the curves more distinguishable, we only plot the
results of two gaps. The average RMSDs of PLC dyn are
consistently lower than those of PLC const. The increase of
the gap length does not influence significantly the RMSD
of PLC dyn (it stabilizes around 0.384). When the gap
reaches 20 days, RMSD increases to 0.3978. The difference
between the two models is increasing with the gap because
the performance of the PLC const degrades. This indicates
that computing user and webpage memberships in real-time
using the soft-max function can adapt well to the dynamic
changes of user and webpage factors within the first 15-20
days after the model is trained. In contrast, for PLC const,
the user and web page memberships learnt from the training
data cannot remain effective when the gap grows.

According to their requirements, the publishers can de-
cide when the model needs to be re-trained in order to keep
high prediction performance upon updating the users and
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Fig. 11: RMSDs with 1-day and 20-day Training Sizes

(a) Memory Comparison of
Training

(b) Memory Comparison of
Testing

Fig. 12: Memory Usage Comparison

webpage information. For example, a publisher may select
0.5 as the bottom line for RMSD at any target scroll depth.
In other words, the model has to be re-trained once RMSD
at any target scroll depth increases to 0.5. In this case, based
on the experimental results we present, PLC const needs to
be re-trained approximately every 10 days, while PLC dyn
does not have to be updated for more than 20 days.

8.9 Performance on Different Training Data Sizes

TABLE 4: Dataset Partitions with Different Sizes

Training Data Testing Data (1d)

07/26/2015 (1d)

07/27/2015
07/17/2015-07/26/2015 (10d)

07/07/2015-07/26/2015 (20d)

Fig. 10: The Average RMSDs
with Different Training Sizes
across All Target Scroll Depths

Web sites receive new
users and publish new web
articles all the time. It is
very difficult to draw any
inference for these new
users and new webpages
due to insufficient informa-
tion about them in training
data set. This “cold-start”
issue is very prevalent in
real-life scenarios. The pur-
pose of this experiment is
to test the effect of differ-
ent training data sizes on
the PLC models’ performance. Generally, the smaller the
training data, the less information is known about users
and webpages. The dataset is re-partitioned by fixing the
testing dates and varying the time period of the training
data, as shown in Table 4. Figure 10 shows the comparison

of PLC dyn and PLC const in terms of different training
data sizes. Figure 11 shows the comparison with 1-day and
20-day at all target scroll depths.

PLC dyn has better RMSD performance with the in-
crease of the training data size because large training data
lead to optimal weight parameters. However, the improve-
ment becomes smaller when the training data size keeps
increasing because the optimal feature weights have been
obtained. The fact that the PLC dyn has better performance
with small training data indicates that it is more suitable
for handling the “cold-start” issue. The performance of
PLC const surprisingly decreases when the training data
size increases from 10-days to 20-days. The reason is that
the user interest and article attractiveness change over time,
which subsequently hurt the prediction performance.

8.10 Memory Usage Comparison

Figure 12 shows the memory usage comparison between
the two models. PLC dyn requires much less memory than
PLC const for both training and testing. The main reason
is that PLC const has to store the memberships of all users
and webpages that occur in the training data, which has
Ns · Nuser and Np · Npage memberships. Ns is the number
of latent user classes, while Np is the number of latent
webpage classes.Nuser is the number of users in the training
data, while Npage is the number of webpages in the training
data. In the experiments, Ns is set to 8 and Np is set to 7.
The magnitudes of Nuser and Npage are 104. On the other
hand, PLC dyn only has to store the parameters in the linear
functions, i.e., α, β, which have |fu| and |fa| numbers,
respectively. As stated in Section 6, |fu| is 7 and |fa| is 5.
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9 CONCLUSIONS

To the best of our knowledge, our research is the first to
study the problem of predicting the viewability probability
for a given scroll depth and a user/webpage pair. Solving
this issue can benefit online advertisers to allow them to in-
vest more effectively in advertising and can benefit publish-
ers to increase their revenue. We presented two PLC models,
i.e., PLC with constant memberships and PLC with dynamic
memberships, that can predict the viewability for any given
scroll depth where an ad may be placed. The experimental
results show that both PLC models have substantially better
prediction performance than the comparative systems. The
PLC with dynamic memberships can better adapt to the
shift of user interests and webpage attractiveness and has
less memory consumption.
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