
Cooperative System for Free Parking Assignment
Abeer Hakeem∗, Narain Gehani†, Reza Curtmola‡, Xiaoning Ding§, Cristian Borcea¶

Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
Email:{∗amh38, †gehani, ‡reza.curtmola, §xiaoning.ding, ¶borcea}@njit.edu

Abstract—This paper presents Distributed Free Parking Sys-
tem (DFPS), a decentralized system for assigning free curbside
parking spaces. DFPS optimizes a system-wide social welfare
objective: the total travel time to destinations for all drivers.
DFPS uses the smart phones of the drivers for parking request
assignment, and a centralized dispatcher to receive and distribute
parking requests. The parked drivers in DFPS are structured
in a K-D tree, which is used to serve new parking requests
in a distributed fashion. DFPS solves the scalability problem
associated with a centralized parking assignment system by
removing the computation from the dispatcher and substantially
reducing the communication handled by the dispatcher. At the
same time, DFPS achieves similar travel time performance with a
centralized system. Compared to a naive algorithm that assumes
a breadth-first-search for parking spaces around the destinations,
DFPS reduces the travel time for over 97% of the drivers.

Index Terms—Parking assignment; cooperative system; mobile
app.

I. INTRODUCTION

Drivers searching for free curbside parking waste valuable
time and fuel, create traffic congestion, and pollute the air.
Existing solutions to this problem employ a sensing infrastruc-
ture [1] that feeds data to mobile apps to show a map of the
available parking spaces to drivers. These solutions have two
problems. First, the sensing infrastructure is costly and may
not be deployed in everywhere. Second, they are not designed
to provide individual guidance to a specific parking space for
each driver. Since they show the same map to all drivers, they
can lead to parking space contention and traffic congestion.

To solve these problems, in prior work we proposed a
centralized parking assignment algorithm [2] that relies on
driver cooperation to maintain the parking availability map.
This algorithm assigns drivers to available parking spaces close
to their destinations and reduces the total travel time (i.e., the
sum of the driving time to the parking space and the walking
time from the parking space to the destination) of all drivers.
However, the algorithm is centralized and requires substantial
computation and communication resources at the server.

This paper presents the Distributed Free Parking System
(DFPS), a decentralized system for assigning free curbside
parking spaces to drivers. DFPS has two components: a mobile
app running on drivers’ smart phones and a dispatcher running
at a server that enables cooperation among phones. DFPS
solves the scalability problem associated with the centralized
parking assignment system by substantially reducing the com-
munication and computation costs at the centralized dispatcher.
The mobile apps on the phones form the distributed system
that enables the parking assignment algorithm.

DFPS provides a distributed version of our previous cen-
tralized parking assignment algorithm, which optimizes the

total travel time for all drivers as a system-wide social welfare
objective. In order to increase the processing efficiency of new
parking requests, DFPS structures the distributed system as a
K-D tree [3]. This structure allows DFPS to increase parallel
processing and decrease the response time. Thus, DFPS is able
to scale with an increasing number of drivers by performing
localized computations over smart phones of drivers parked in
proximity of each other.

DFPS does not assume that all drivers use our system.
It relies on subscribed drivers to submit observation reports
regarding the parking spaces occupied by unsubscribed drivers.
DFPS avoids allocating the reported spaces for a period of time
proportional with the age of the observation reports; then, it
reconsiders these spaces.

We have evaluated DFPS through extensive simulations
using SUMO [4] and PeerSim [5], a real map of a part of
New York City with 1024 parking spaces, and as many as
768 drivers looking for parking. The results show that DFPS
scales well. In particular, it eliminates all computation from
the centralized dispatcher and reduces its communication load
by a factor of two. At the same time, the DFPS distributed
assignment algorithm achieves similar travel time performance
with the centralized version of the algorithm. Compared to a
naive algorithm that assumes a breadth-first-search for parking
spaces around the destinations, DFPS reduces the travel time
for over 97% of the drivers.

II. SYSTEM OVERVIEW

This section presents an overview of DFPS, focusing on
how the mobile drivers are organized in DFPS to work
cooperatively on assigning free parking spaces. The major
design principle of DFPS is to execute as much work as
possible on the phones of drivers, instead of relying on a
central server. This is feasible with the resources available in
today’s phones. By executing most work on the phones, the
system avoids the performance bottleneck at the central server,
and thus remains scalable.

Figure 1 shows the architecture of DFPS. Drivers cooperate
to assign parking spaces with the assistance of a dispatcher.
The DFPS software runs on the dispatcher and the phones
of the drivers. The dispatcher receives parking requests and
forwards them to the system formed by the cooperative drivers.
This system, without involvement from the dispatcher, per-
forms parking assignment. The communication in the system
is done over the Internet (e.g., LTE).

The dispatcher also serves as a bootstrapping unit. During
the system adoption period when few drivers have the DFPS

Fig. 1: System architecture

app, the dispatcher could share with the drivers parking avail-
ability information derived from historical parking statistics or
real-time sources (e.g., street images from video cameras).

The drivers in the system are divided in three categories:
(1) the drivers who are looking for parking spaces, (2) the
parked drivers, and (3) departing drivers. The drivers in the
first category submit their requests and then wait to receive
parking spaces while heading to their destinations. Once the
parking assignment is done, they drive to the parking spaces.
When a driver parks, it transitions from the first category into
the second. Parked drivers cooperate to handle the requests for
parking spaces. Departing drivers report when they leave the
system, such that DFPS can update the status of the parking
spaces.

The lifecycle of a request in DFPS, from generation to
completion, is described as follows. When a driver is about
to set off for her destination and needs a parking space near
the destination, the DFPS software on her phone generates
a parking request and computes a Request Distance. This
distance determines when the parking request is sent to the
system. If the request is sent when the drivers are far away
from the destination, non-subscribing drivers have a high
likelihood of taking the assigned space. If the request is sent
when the driver is too close to the destination, the system
may not be able to find a parking space close-enough to
the destination. DFPS on the requester’s phone computes the
request distance based on road conditions within the region
of the destination, which are learned from the dispatcher. The
distance defines a circle centered around the destination, and
the request is submitted to the dispatcher as soon as the driver
intersects this circle.

The dispatcher accepts requests and forwards them to the
cooperative system of parked drivers (i.e., to the DFPS in-
stance running on their phones). All the work requried to serve
a request is done by the parked drivers. This minimizes the
workload on the dispatcher and allows it to serve a larger
number of drivers.

To maximize scalability, the workload of assigning parking
spaces is shared by the parked drivers. We use a structured
network to organize parked drivers, partition the whole area
into regions, and assign a parked driver to manage a region
and allocate parking spaces in the managed region.

III. ORGANIZATION OF PARKED DRIVERS AND ROLES

DFPS uses an overlay network to organize parked drivers
and the regions that the parked drivers manage. The or-
ganization of parked drivers needs to satisfy the following
requirements:
• Scalability: The drivers must be organized in a scalable

way to share the workload effectively.
• Fast Routing: Given a request, DFPS must identify quickly

the driver managing the region where the parking space is
requested.

• Adaptability: The overlay network must adapt quickly and
with low overhead to high churn (i.e., parked drivers
coming and going frequently).

A. K-D Tree in DFPS

To meet these requirements, DFPS organizes the overlay
network of the parked drivers as a K-D tree. A K-D tree is a
k-dimensional binary search tree for partitioning and spatially
indexing data distributed in a k-dimensional space [3], [6]. A
node in the K-D tree is associated with three types of infor-
mation: a value, a rectangular representation (i.e., a region)
containing a set of data points, and the coordinates of these
data points.

Each node in the K-D tree represents a region. The region
corresponding to a parent node is divided into sub-regions
corresponding to the children of that node. The locations of
the parking spaces in a region are represented as data points
associated with the node for that region. The node’s value is
the location of the first driver parked in the corresponding
region when the region and the node are created. For brevity,
we call this value the location of the node.

DFPS associates a parked driver with each tree node. The
tasks of forwarding parking requests and allocating parking
spaces, as well as the data structures required to manage these
tasks are associated with nodes. Since the nodes follow a tree
structure, DFPS can manage the tasks and data structures in a
hierarchical way, which leads to good scalability.

There are two roles that may be associated with a node
in the K-D tree as shown in Figure 2: 1) region manager
which forwards parking requests, divides a region into two
sub-regions when necessary, and assigns sub-regions to drivers
that park in these sub-regions; 2) parking manager which
assigns parking spaces within the region associated with the
node. Depending on its position in the tree, a node may have
one or both of these roles. A leaf node acts only as parking
manager for its region (i.e., nodes C, F, G, and H). An internal
node that has two children acts only as region manager (i.e.,
nodes A and E). An internal node that has only one child acts
as parking manager for the sub-region that is not covered by
the child node, and it acts as a region manager by forwarding
requests to its child or by assigning the sub-region not covered
by the child to a driver that parks in that sub-region (i.e., nodes
B and D).

Since parking space allocation is handled by the phones of
parked drivers, we also refer to the parked drivers as the region

Fig. 2: The roles associated with nodes in the K-D tree

Fig. 3: Example showing how a K-D tree grows when drivers
A,C,B,D park in a 8x8 area. Dots represent parking spaces
and letters represent parked drivers. The numbers in each box
of sub-figure (b) are the 2-D coordinates of the parking space of
the corresponding driver.

manager or the parking manager of the region’s corresponding
to the node (depending on the node’s role).

B. Joining and Departing K-D Tree

The K-D tree grows dynamically when more drivers park.
When a driver informs its parking manager that it had parked,
the parking manager creates a sub-region and a new node
for the sub-region. Then, it attaches the new node as the
child of the node it manages and assigns the newly parked
driver to manage the new node and the parking spaces in
the corresponding sub-region. Thus, the newly parked driver
becomes the parking manager for these parking spaces. Over
time, it also becomes a region manager when it has to divide
this sub-region.

When a parking manager creates sub-regions, it divides
its region based on the location of its parking space. This
design has two advantages over evenly splitting the entire
region among all the parked drivers. First, it helps to evenly
distribute parking requests to parking managers. Due to hot
spots, the destinations of drivers are not distributed evenly in
the region. If the entire region is evenly partitioned among
parking managers, the drivers managing hot areas might be
overloaded. In contrast, the method employed by DFPS guar-
antees that more parking managers are assigned to hot areas
than cold areas. Second, sub-regions are created dynamically
within a small region where the driver parks. Other regions
are not affected. This minimizes the changes to regions and
the associated overhead, such as exchanged messages.

Figure 3 shows an example to illustrate how a K-D tree
grows, in which four drivers (A,C,B,D) park sequentially in
a region of size 8x8. Figure 3-a shows how the sub-regions
are created when these drivers park, and Figure 3-b shows

how each new node is created and added to the K-D tree.
Initially, before any driver parks, there is only one node (i.e.,
the dispatcher) in the tree, managing the entire region. The
location of the dispatcher ((4,7) in the figure) is chosen such
that its x coordinate is in the middle of the region, whereas
its y coordinate is chosen at random.

When driver A parks at coordinate (1, 4), the whole region is
split into two sub-regions. Sub-regions are created by splitting
the parent region along alternating dimensions depending on
the K-D tree level of the node managing the parent region.
At the root level, the x dimension is used. In our example,
the first splitting is along the x coordinate of the dispatcher.
The sub-region where driver A parks is assigned to A. Though
the dispatcher is still the region manager of the entire region,
node A is the parking manager of the sub-region assigned to
it. The dispatcher remains the parking manager for the other
sub-region.

Driver C requests a parking space in the region whose
parking manager is A. Assume that A assigns parking space
(3,2) for driver C. When C parks, the new node created for
C is added as a child node of A. Thus, A splits its region
into two sub-regions based on the y coordinate of A’s parking
space location. Since the parking space of C is in the bottom
sub-region, C becomes the parking manager of this sub-region.
Though A is the region manager of the region consisting of
the two (top and bottom) sub-regions, it acts as the parking
manager only for the top sub-region.

Driver B requests a parking space in the region managed
by the dispatcher, and the dispatcher allocates a parking space
at (6, 6) to B. When B parks, the node created for B is added
as a child of the root. It then becomes the parking manager of
the dispatcher’s second sub-region (the right half of the whole
region). Since A and B handle the parking space allocation of
both dispatcher’s sub-regions, the dispatcher does not handle
parking space allocation any more.

When parked drivers leave their parking spaces, the tree
nodes associated to those drivers must be updated. For each
node managed by a leaving driver, if the node is a leaf, the
node is deleted from the K-D tree and its parent node (i.e., the
corresponding driver) takes over the parking space allocation
task associated with the node. If the node is an internal node,
one option is to apply existing solutions for deleting K-D tree
internal nodes [6]. However, because the sub-trees rooted at the
internal node’s children must be re-organized to form another
subtree, these solutions can be very expensive and may cause
considerable overhead, especially when the sub-trees are large.

Instead of deleting an internal node, DFPS assigns the node
to another parked driver. DFPS considers the following two
situations:
• The node is the parking manager of the region containing

its location (the node value). In this case, the node has only
one child node. DFPS will find the driver who is managing
the child node, and assign the node to this driver.

• The location of the node is managed by another node,
i.e., another node is the parking manager of the region
containing its location. DFPS will first locate the parking

manager. Then, it assigns the node to the driver of the
parking manager. In the example shown in Figure 3, when
A leaves, driver D will be asked to take care of node of A,
since D is in charge of the parking space allocation in the
region where A parked. Thus, later on, when the parking
space is re-allocated by D to another driver E, E can be
assigned to manage the node.

C. Request Forwarding

Each parking request is forwarded down the tree from the
root until it reaches the corresponding parking manager, which
will assign a parking space in its region. This process is
described in Algorithm 1.

Algorithm 1 Parking request forwarding procedure
1: Upon node n receiving a parking request (v, Dv)

// v refers to a driver’s identity and Dv represents the driver’s destination
// Region(n) is the region managed by n when acting as parking manager

2: if (n is not a parking manager) then
3: Forward the request to the child whose region contains Dv .
4: else if (n is a parking manager that has no children) and (Dv ∈

Region(n)) then
5: Accept the request.
6: else if (n is a parking manager that has one child) then
7: if (Dv ∈ Region(n)) then
8: Accept the request.
9: else

10: Forward the request to the child node.
11: end if
12: end if

D. Load Balancing

Each parking manager receives requests for its region.
However, the distribution of destinations and requests coupled
with the tree-structure of the network can cause heavy load
on certain managers. Heavy load leads to slow downs and
significant battery consumption on the impacted phones. To
avoid this problem, DFPS applies a simple load balancing
mechanism. An overload threshold is determined by each
parking manager as the difference between the local load δ
(i.e., the number of requests that have been processed by the
phone) and a load threshold α. If δ > α, an imbalance is
detected and the phone removes itself from the system. As
described in Section III-B, a phone of another parked driver
will replace this phone in the overlay network and will handle
any pending requests inherited from the removed phone.

E. Failure Recovery

DFPS employs the mechanism proposed in [6] to ensure that
the system continues to function in the presence of failures or
disconnections of the phones of parked drivers. For example,
the phones may fail without warning if the drivers decide
to turn them off. Failure or disconnection of the phones is
detected by periodic gossip messages from their neighbors
(see Table I). Each neighbor knows the region boundary of the
failing node w and maintains a replica of the data it stores (e.g.,
the number of available spaces and total number of spaces) in
order to restore the data and improve availability. In addition,
a parent maintains a list of requests forwarded to w and
requests assigned by w in case of failure. To avoid consistency

problems, a disconnected parking manager will not attempt to
reconnect to the system when the wireless connection becomes
available again. Finally, let us note that the overload threshold
at parking managers (used for load balancing as described
in Section III-D) also reduces the effect of node failures or
disconnections.

IV. PARKING SPACE ASSIGNMENT

In DFPS, each parking manager periodically runs the same
parking space assignment algorithm to satisfy the requests that
are forwarded to it and are still outstanding. The algorithm
computes an assignment for these requests, aiming to optimize
the total travel time of the drivers.

A. Assumptions and Problem Statement

The set of curbside parking spaces in the region is denoted
S = {s1, s2,, sm}. The set of drivers whose requests have
been forwarded to the parking manager because their desti-
nations are within its region is denoted V = {v1, v2,, vn}.
To the extent possible, each driver will be assigned a parking
space in the region that contains her destination. If this is not
possible, the driver will receive a parking space in a nearby
region.

The destinations of the drivers are geographical locations,
such as shops, bank, houses, hotels, etc. Their addresses are
converted into latitude and longitude coordinates, similar to
the locations of parking spaces. The drivers are assumed
to be moving independently based on legal speeds and the
congestion levels on different road segments. We also assume
that the parking request is submitted to the dispatcher when the
driver is within its request distance of the destination. Then,
the request is forwarded to the corresponding parking manager.

A parking assignment of spaces to drivers is defined as Y:
V → S, where yij is the assignment of a driver vi ∈ V to a
parking space sj ∈ S:

yij =

{
1, if vi is assigned to sj
0, otherwise

1 ≤ i ≤ n, 1 ≤ j ≤ m

(1)
n∑

i=1

yij ≤ 1, 1 ≤ j ≤ m (i.e., sj ∈ S) (2a)

m∑
j=1

yij = 1, 1 ≤ i ≤ n (i.e., vi ∈ V) (2b)

Constrains 2a and 2b ensure, respectively, that a driver
receives at most one space and that a space is not assigned to
more than one driver.

For a set of drivers and a set of parking spaces, there may
exist a large number of assignments. The algorithm is to find
an assignment that can minimize the total travel time of the
drivers. The travel time TC(vi) of a driver vi is the time
period from the moment when the driver submits her request
until she arrives at her destination. It consists of two parts, the
driving time and the walking time:

Fig. 4: Nodes in the maximal sibling subtrees of node C

• Td (Ovi , sj) is the driving time of driver vi from the
moment she submits her request from location Ovi until
she parks at the parking space sj .

• Tw (sj , Dvi) is the walking time of the driver from the
moment she parks until the moment she arrives at her
destination Dvi .

B. Parking Space Assignment Algorithm

Each parking manager in DFPS assigns parking spaces in
its region in the same way as the dispatcher assigns parking
spaces in our centralized solution. The detailed algorithm can
be found in [2]. A brief description is included below for
convenience.

A parking manager assigns parking spaces periodically to
outstanding requests. In our simulations, we experimentally
determined that the time interval of 2s provides a good trade-
off between performance and overhead. In each period, it first
pre-allocates to the driver of each outstanding request the
closest available parking space to her destination. The pre-
allocation adapts the solution to the flow problem described
in [7] to minimize the total walking time of these drivers. The
actual assignment of parking spaces takes place based on the
urgency of the demands for parking spaces, which is measured
by how close the corresponding drivers are to their destinations
or their pre-allocated parking spaces. Specifically, in each
period, the drivers with the most urgent demand are selected.
Their pre-allocated parking spaces are officially allocated to
them.

The algorithm described above is named FPA. It assumes
that subscribed drivers are generally representative of the entire
driving population and all spaces in the region are available
to them. To consider the cases in which spaces may be taken
silently by unsubscribed drivers, the algorithm is enhanced
to track the spaces taken by unsubscribed drivers and avoid
assigning these spaces. This algorithm, described in [2], is
named FPA-1.

FPA and FPA-1 are used under the assumption that there are
still available parking spaces in the region. However, in DFPS,
the assignment of parking spaces is done by multiple parking
managers. It is possible that a parking manager runs out of
parking spaces, but still has outstanding requests. In such
a case, DFPS allows a parking manager to acquire parking
spaces from nearby parking managers temporarily to satisfy
her outstanding requests, as explained next.

C. Finding Best Available Spaces from Neighboring Regions

DFPS uses an indexing scheme based on the multi-indexing
technique in [6] to locate nearby regions. The scheme assigns
a binary identifier to each node as its index. The binary format

TABLE I: Neighbor relation table

Node Neighbors
C(011) D(010) B(00)
D(010) C(011) B(00)
B(00) A (01) C(011) D(010)

of the index reflects the path from the root to the node, and
thus reflects roughly the location of the corresponding region.
For example, as shown in Figure 4, the index of the root node
is 0 and the indexes of its children nodes (A and B) are 01
and 00. The first bit of the indexes (i.e., 0) reflects that they
are in the region of the root node (i.e., index 0). The second
bit (i.e., 1 or 0) reflects the corresponding sub-region created
by the root node. Nodes C and D are the children of node
A, and the first two bits (i.e., 01) reflect that they are in the
region of node A (i.e., index 01), and the last bit reflects the
sub-region.

In DFPS, each parking manager maintains a neighbor table,
as shown in Table I, which includes the nodes managing
the neighboring regions, named neighboring nodes. For any
two nodes (N1 and N2) with indexes of lengths L1 and L2

respectively, the two nodes are neighboring nodes if one of
the following two conditions is met: 1) If L1 ≤ L2, the first
L1 − 1 bits of the two indexes are the same, and the L1

th

bits are different. 2) If L1 > L2, the first L2 − 1 bits of
the two indexes are the same, and the L2

th bits are different.
The neighbor table is built by broadcasting the index of each
newly-created node.

The best parking spaces are those close to the destinations of
the requests. To find such spaces, a parking manager that runs
out of spaces first needs to contact her neighboring nodes to get
their lists of available parking spaces. Note that a neighboring
node may not be a parking manager, which has first-hand
information on available parking spaces. If a neighboring
node is not a parking manager, to obtain a list of available
parking spaces in its region, the node needs space availability
reports from all its offsprings. Then, the parking manager short
of spaces examines the parking spaces in the lists received
from its neighbors, calculates the distances between the spaces
and the destinations of the pending requests, and selects the
parking space with the shortest distance for each of these
requests.

V. EXPERIMENTAL EVALUATION

Our simulation-based evaluation has three goals. First, it
assesses the scalability and load balancing of DFPS. Second,
it measures the benefits of DFPS in terms of travel time when
compared to a Naive parking solution, which resembles what
drivers normally do. Third, it compares the performance of
DFPS with that of the centralized system (FPS) under two
scenarios: (i) all drivers subscribe to our systems; (ii) a fraction
of drivers does not subscribe to our systems.

A. Simulation Setup

Our experiments use SUMO [4] and PeerSim [5]. The road
network and the locations of curbside parking spaces are
imported into the simulator based on the real map of a business

Fig. 5: Number of messages handled by the dispatcher/server
in DFPS and FPS. The number of destinations is 8

district in Manhattan, New York City. The total number of
parking spaces is 1024, and the total number of travel destina-
tions is 400. SUMO simulates the traffic and sends commands
to drivers to guide them to the assigned spaces. PeerSim
simulates the communication in the distributed system.

We generate a set of random trips for the drivers. While the
starting locations of the vehicles are randomly chosen over the
entire road network, the destinations are chosen from a small
region in the center of the map to ensure enough contention for
parking spaces. Once a vehicle parks, we calculate the driving
time and the walking time; for walking time, we consider a
speed of 1.4 m/s, which is reasonable for adults [8]. DFPS
starts each test with 1024 vacant parking spaces. The arrival
rate of the requests falls within the range of 1 to 5 requests
per second. For each experiment, we collected results from 5
runs and averaged them.

The parameters of the assignment algorithms (i.e., the
scheduling period and the request distance) are set to the
values of the centralized system [2] to have a fair comparison.

B. Results and Analysis

Scalability and Load Balancing. In DFPS, the computation
bottleneck at the central server (i.e., dispatcher) is removed, as
the parking assignment is computed in a distributed fashion
by the phones of the drivers. Therefore, DFPS scales better
from a computation point of view.

The total computation time consumed in each period for the
parking assignment algorithm is the sum of (1) finding a valid
allocation that minimizes the total walking time to destinations
and (2) determining the urgency of pending requests in order
to assign spaces to the most urgent requests and minimize the
total driving time.

Minimum-cost network flow in a directed bipartite graph is
used to generate a valid allocation. Its cost is O(ve), where v is
a number of nodes (i.e., m spaces + n drivers in the region) and
e is the number of edges (i.e., equal to n, the number of drivers
in the region). The cost of computation to determine request
urgency and select urgent requests is O((n+ϕ)2), where n is
the number of drivers to be assigned parking spaces and ϕ is
the number of drivers with high urgency. Thus, the total time
for each parking manager is O(n2+nm)+O((n+ϕ)2). Given
that each parking manager handles only a limited number of
parking spaces and drivers, as described in Section III-D, this
computation can easily be done on today’s smart phones.

TABLE II: Maximum number of assigned requests by a
parked driver’s mobile phone for different numbers of

destinations and a constant number of drivers (768)

Destinations
2 4 8

DFPS 13 12 12
DFPS* 268 166 100

Fig. 6: Number of parked drivers involved in the assignment
process. The number of destinations is 8.

Figure 5 compares the number of messages handled by the
dispatcher in DFPS and the server in FPS by varying the
number of drivers from 128 to 768. The results show that
DFPS reduces the number of messages by a factor of 2 when
compared to FPS.

We next investigate the effect of load balancing on parking
managers. We compare the number of assigned requests by a
phone of parked driver when DFPS employs its load balancing
mechanism (DFPS) and when it does not (DFPS*). The value
of the load threshold α in the load balancing mechanism
is experimentally determined to be 10, which provides a
good trade off between performance and overhead. Table II
compares the maximum number of assigned requests in DFPS
and DFPS*. As expected, DFPS scales better due to its load
balancing mechanism. The maximum number of requests in
DFPS* is about 20 times higher than the maximum number
in DFPS. We also observe that the maximum in DFPS is 13,
not 10 as expected (the load threshold). This is because of two
reasons. First, a parking manager receives requests until it has
served α of them (while the others are pending). Second, a
parking manager can not depart the network until it completes
its set of requests with high urgency.

Figure 6 presents another measure of scalability: the av-
erage number of parking managers cooperating to serve the
incoming parking requests in DFPS and DFPS*. The results
show that the number of managers in DFPS increases by 185%
compared to DFPS*. Higher numbers are better because the
load is distributed more evenly across the participants, and the
system scales better.

Travel Time Performance. We conduct an experiment
to find out the gains and losses in travel time for individ-
ual drivers using DFPS when comparing to the travel time
obtained by a Naive solution (i.e., a baseline assignment
algorithm that assumes the driver goes to the destination
and, after arriving there, she starts a breadth-first-search for
parking spaces along the nearby road segments). To measure
the gains/losses, we calculate the ratio between the travel time

Fig. 7: Distribution of travel time gain/loss for 512 drivers.
The number of destinations is 8. Error bars are shown.

obtained by the Naive solution and the travel time obtained by
DFPS for each driver. If the ratio is higher than 1, the driver
has benefited from DFPS. Otherwise, the driver has not.

Figure 7 plots the distribution of individual travel time
gains/losses for all drivers in the experiment. We observe that
the system manages to improve the travel time for a large
majority of drivers (over 97%). Many drivers reduce their
travel times by more than an order of magnitude. These results
are possible due to the high parking contention generated in the
experiment, which leads to high traffic congestion and thus to
very high travel times for the Naive solution. The error bars in
the figure demonstrate that these results are consistent across
different simulation runs.

Comparison with Centralized System. While the previous
results show that DFPS outperforms the Naive solution, one
may ask whether DFPS can achieve performance similar to
the centralized system (FPS) [2]. We use the average travel
time as a metric to compare their performance. The exper-
iments simulate two different scenarios: subscribed-driver-
only, which assumes that all drivers in the system use DFPS;
unsubscribed-driver-interference, which assumes that there are
a number of drivers who have not subscribed to DFPS. In the
second scenario, the unsubscribed drivers may occupy, without
notification, parking spaces known to the system as available.

Figure 8 shows the average travel time for DFPS vs.
FPS in the subscribed-driver-only scenario. We observe a
difference of 1% fluctuating between the two systems. For
the same scenario, Figure 9 shows the average travel time
when the number of destinations is varied from 2 to 8. The
figure also plots the contribution of walking time and driving
time in the total time. Similar results are obtained for DFPS
and FPS. Therefore, DFPS is a better solution because it
reduces the computation and communication bottleneck at the
server/dispatcher, while obtaining similar travel time with FPS.

The final set of experiments evaluates the performance
of DFPS and FPS in the unsubscribed-driver-interference
scenario. Each system, has two parking assignment algorithms.
One (DFPS/FPA and FPS/FPA) just keeps trying to find
another space if the assigned parking space is found to be
taken by an unsubscribed driver. The other (DFPS/FPA-1 and
FPS/FPA-1) keeps track of the spaces found to be taken by
unsubscribed drivers and tries them later. We call the spaces
taken by unsubscribed drivers “hidden” spaces. The interested
reader can refer to [2] for more details on how we model the

Fig. 8: Average travel time with different number of drivers
and 8 destinations

Fig. 9: Walking and driving time of DFPS and FPS for
different number of destinations and 768 drivers

Fig. 10: Average travel time when varying the number of
hidden spaces; 768 drivers and 8 destinations.

behavior of unsubscribed drivers.
Figure 10 compares the performance difference between

DFPS and FPS when the number of hidden spaces is varied
from 32 to 256. We observe that DFPS outperforms FPS
consistently. We also notice that DFPS/FPA-1 achieves the
lowest average travel time. These results demonstrate that
DFPS/FPA-1 adapts very well to the interference caused by
unsubscribed drivers.

VI. RELATED WORK

Several solutions have been developed in order to assist
drivers with parking, and they focus on implementing a
wireless sensor network to detect parking information and
provide real-time parking services. For example, SFpark [1]
installs sensors, each costing $500, in the asphalt to detect the
parking availability on the streets. ParkNet [9] uses ultrasonic
sensor technology on a vehicle door, each costing $400, to
detect and collect parking availability information, and then
build a real-time map for drivers. Although these solutions
increase the probability of finding vacant spaces, they have

several shortcomings. First, the cost involved in deploying
and maintaining the sensor infrastructure is extremely high.
Second, all drivers see the same map at any given time, and
many of them will compete for the same spaces. This parking
contention problem leads to traffic congestion and frustrating
driving/parking experience. DFPS does not rely on expensive
infrastructure and guides drivers to their assigned spaces. It
relies on cooperative mobile phones, which is a cheaper, more
convenient, and more flexible alternative.

Several works explicitly consider parking space contention
when assigning parking spaces to drivers. Parking assignment
is studied in two contexts. The first is centralized, in which
a central authority makes parking decisions and assigns each
driver to a specific parking space. The second is a model with
distributed agents that are competing for the parking spaces.
The works in [2], [10] are examples of centralized solutions.
Ayala et al. [10] developed a pricing model to minimize the
system-wide driving distance. However, the proposed approach
depends on pricing data and is offline in nature, as the number
of drivers and resources are known in advance and do not
dynamically change. In [2], we introduced FPS for on-the-fly
curbside parking assignment. Unlike other parking systems,
FPS adapts on-the-fly to new parking requests and shows
good performance in reducing the total travel time for drivers.
However, it has a scalability problem, inherent to a centralized
solution. DFPS solves this problem, while maintaining the
same level of travel time performance.

Among the decentralized solutions, Ayala et al. [7] analyze
the parking problem as a competitive game in which indi-
vidual, selfish drivers are competing for the available spaces.
It is assumed that each vehicle has access to the location of
other vehicles, which raises privacy concerns and has technical
difficulties in real-time. In DFPS, vehicles share location
information only with parking managers at the time of request
submission. Furthermore, the main objective in Ayala et al. [7]
is to prove the existence of an equilibrium for the considered
game. However, the authors show that the cost (i.e., travel
time) for the whole system can get arbitrarily worse than the
cost of the optimal assignment. DFPS, on the other hand,
optimizes the system cost (i.e., total travel time). In [11], the
parking assignment capitalizes on the ability of a trustworthy
central controller to construct a feasible assignment in a dis-
tributed fashion via the coordination of drivers. The problem
with this solution is that the assignment computation and
communication are burdens on the coordinator. In DFPS, we
reduce the communication and computation cost by offloading
the assignment process to the parked drivers, where each one
manages and assigns drivers to spaces in their regions. Thus,
DFPS achieves better scalability.

VII. CONCLUSION AND FUTURE WORK

This paper presented DFPS, a cost-effective and efficient
distributed parking assignment system that can be imple-
mented and deployed in real-life settings. DFPS uses the smart
phones of the drivers to offload the computation of parking
request assignments, and thus the assignment process becomes

scalable in real-time. Parked drivers cooperate to serve parking
requests in a distributed fashion while optimizing the social
welfare of the whole system, i.e., minimizing the total travel
time. DFPS is scalable and achieves performance similar to a
centralized system.

So far, DFPS does not protect the driver privacy in terms
of hiding her destination from the dispatcher and potentially
from other drivers. To solve this problem, we are currently
extending DFPS to support privacy-aware parking requests
through location cloaking based on k-anonymity. This future
work will ensure that the effect of privacy protection on
DFPS’s performance is minimal.

VIII. ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation (NSF) under Grants No. CNS 1409523, SHF 1617749,
CNS 1054754, and DGE 1565478, and by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under Contract No. A8650-15-
C-7521. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF, DARPA, and
AFRL. The United States Government is authorized to re-
produce and distribute reprints notwithstanding any copyright
notice herein.

REFERENCES

[1] “Sfpark,” http://sfpark.org/.
[2] A. Hakeem, N. Gehani, X. Ding, R. Curtmola, and C. Borcea, “On-

The-Fly Curbside Parking Assignment,” in Proceedings of the 8th
EAI International Conference on Mobile Computing, Applications and
Services, ser. MobiCASE’16, 2016, pp. 1–10.

[3] E. Nardelli, “Distributed K-D Trees,” in Proceedings 16th Conference
of Chilean Computer Science Society (SCCC’96), 1996, pp. 142–154.

[4] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO
- Simulation of Urban MObility: An overview,” in Proceedings of
the Third International Conference on Advances in System Simulation
(SIMUL), 2011, pp. 63–68.

[5] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator,” in
2009 IEEE Ninth International Conference on Peer-to-Peer Computing,
2009, pp. 99–100.

[6] G. Tsatsanifos, D. Sacharidis, and T. Sellis, “MIDAS: Multi-Attribute
Indexing for Distributed Architecture Systems,” in Advances in Spatial
and Temporal Databases. Springer, 2011, pp. 168–185.

[7] D. Ayala, O. Wolfson, B. Xu, B. Dasgupta, and J. Lin, “Parking Slot
Assignment Games,” in Proceedings of the 19th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems,
2011, pp. 299–308.

[8] R. W. Bohannon, A. W. Andrews, and M. W. Thomas, “Walking
Speed: Reference Values and Correlates for Older Adults,” Journal of
Orthopaedic & Sports Physical Therapy, vol. 24, no. 2, pp. 86–90, 1996.

[9] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe, “ParkNet: Drive-by Sensing of Road-side
Parking Statistics,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2010, pp.
123–136.

[10] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, “Pricing of Park-
ing for Congestion Reduction,” in Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, 2012, pp.
43–51.

[11] E. Alfonsetti, P. C. Weeraddana, and C. Fischione, “A Semi Distributed
Approach for Min-Max Fair Car-Parking Slot Assignment Problem,”
arXiv preprint arXiv:1401.6210, 2014.

