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Abstract—Computation offloading is employed by mobile 
apps running over resource-constrained devices to leverage the 
cloud in overcoming their resource limits. The advent of the 
Multi-access Edge Computing (MEC) paradigm further extends 
the potential opportunities of mobile-cloud offloading, allowing 
new service provisioning scenarios, such as mobile gaming and 
multimedia, where responsiveness of mobile devices at the 
network edge significantly benefits from low latency 
interactions. However, state-of-the-art offloading platforms for 
MEC architectures have not addressed the technical challenge 
of supporting specific file systems for this MEC-enabled class of 
applications, with components running at three hosting 
environments, i.e., mobile, edge, and cloud. This paper proposes 
the Mobile Edge File System (MEFS), an application-level 
distributed file system designed to be highly resilient and able to 
efficiently maintain consistency among the mobile, edge, and 
cloud entities. MEFS supports application handoff through live 
migration as end devices move between edges. The cloud 
transparently helps with recovery from faulty edge nodes or in 
the case of unavailability of edges in the user’s proximity. We 
implemented a MEFS prototype in Android along with MEFS-
based MEC-enabled mobile apps. The experimental results 
show how MEFS can achieve low latency and low overhead. 

Keywords—MEC, cloud, mobile devices, task offloading, file 
system, handoff, fault-tolerance 

I. INTRODUCTION 
During the past decade, the users’ requirements on data 

rates and Quality of Service (QoS) have increased 
substantially. Furthermore, the technological evolution of 
smart phones has led to mobile apps requiring huge processing 
power, while the battery life and power consumption still pose 
significant technical challenges toward achieving optimal 
users’ Quality of Experience (QoE). This motivates the idea 
and development of Mobile Cloud Computing (MCC) 
platforms [1], which allow mobile users to seamlessly 
leverage powerful resources available in the cloud. MCC has 
already demonstrated several advantages in terms of QoS, 
QoE, and energy consumption; for instance, it enables 
computation offloading from mobile users to the cloud [2-6]. 
However, MCC solutions often exhibit the drawback of 
increased latency due to mobile-to-cloud communication. One 
promising research direction is to leverage edge computing for 
computation offloading in a mobile-edge-cloud architecture in 
order to reduce the communication latency and the overall app 
response time. 

The edge computing paradigm enables the deployment of 

middleboxes for supporting and enhancing service 
provisioning at the locations of mobile users. This allows 
improved scalability and reactivity in the interaction with 
mobile nodes when control decisions are applicable. As an 
architectural model and specification for edge computing, 
Multi-access Edge Computing (MEC) [7] proposal by the 
European Telecommunications Standards Institute (ETSI)  
evolves the traditional two-layer MCC model with the 
introduction of a third intermediate middleware layer that is 
executed at the network edge and allows users to access the 
services at the edge of the network, e.g., computation 
offloading service for mobile apps.  

Compared to MCC, MEC can offer significantly lower 
latency and jitter; moreover, since MEC can be deployed in a 
fully distributed manner, it can improve the overall scalability 
for mobile apps. In the MEC paradigm, a MEC-enabled 
application (referred to as edge-assisted app) can have 
components running at three hosting environments, i.e., the 
mobile device, the cloud, and the edge servers that are selected 
based on the current location of the mobile device and may 
change when the mobile device moves. 

Despite the potential advantages of the MEC paradigm, 
MEC platforms have not addressed yet the technical challenge 
of supporting specific file systems for the envisioned MEC-
enabled class of applications. Therefore, computation 
offloading cannot be employed for most mobile apps because 
they need concurrent accesses to files from their hosting 
environments across mobile devices, dynamically selected 
edge servers, and the cloud.  

With the growing amount of data available to mobile apps, 
the problem of a MEC-enabled file system could not be 
ignored anymore. Unfortunately, existing network file 
systems, such as NFS [8] and Dropbox, are not effective in 
handling file access for offloaded tasks of mobile apps due to 
their limited support for remote file access. Recently, the 
Overlay File System (OFS) [9] proposed support for 
concurrent and consistent file access on both the mobile and 
the cloud by working in conjunction with its task offloading 
middleware. Despite its advancements, OFS and similar 
solutions designed for MCC do not fit the MEC scenarios 
primarily for two reasons: 1) they cannot handle the switch of 
edge nodes when mobile users move; and 2) they are not 
resilient to the faults in MEC edges. 

By carefully considering these relevant gaps, this paper 
proposes Mobile Edge File System (MEFS), a file system that 



runs on mobile devices, edge nodes, and the cloud to 
efficiently and seamlessly handle file accesses for edge-
assisted mobile apps. To the best of our knowledge, this is the 
first work that presents the design, implementation, and 
prototyping of such a system solution. MEFS supports file 
accesses with low-latency for the components of a mobile app 
that possibly offloads some tasks to either the edge or the 
cloud (mobile-to-edge or mobile-to-cloud offloading), and 
guarantees strong data consistency between these 
components. It is fully compatible with the MEC standard 
specifications. With MEFS, an entirely new class of mobile 
apps (i.e., apps that need access to files) can take advantage of 
the MEC infrastructure for faster response time and lower 
energy consumption on mobiles. 

There are two major challenges in MEFS design. One is 
how to manage automatically session handoff between edge 
nodes; and the other is how to tolerate the faults in edge nodes 
and prevent data loss. MEFS manages automatic session 
handoff between edge nodes by following the user’s node 
mobility. To minimize service downtime, it monitors and 
predicts the mobility path of each mobile node, and uses a 
mechanism similar to VM live migration to migrate file data 
and metadata, as well as session state, between the edge nodes 
along the mobility path.  

To prevent the data loss caused by the faults in edge nodes 
(e.g., node crashes or becoming unreachable from the mobile 
node),  the fault-tolerance design in MEFS uses a log-based 
approach: edge nodes send write operations to the cloud; when 
an edge node goes down or there are no available edge nodes 
in the mobile user’s area, the cloud is able to restore the edge 
session by exploiting its log. 

MEFS contributes to the literature in the field in multiple 
ways. First, the paper proposes and designs MEFS to make it 
possible that the components in edge-assigned apps can access 
files concurrently and consistently from cloud, edge, and 
mobile nodes. Second, we have implemented a MEFS 
prototype based on Android. This paper also presents the 
insight of MEFS implementation. Third, in order to test the 
MEFS design, we have implemented MEC-enabled mobile 
apps, one of which is a real-time video analytics mobile app. 
Each app can utilize the assistance from either the edge or the 
cloud, such that we can use the app to compare the 
performance of MEFS with that of a mobile-cloud file system 
and demonstrate the benefits of MEFS. Forth, we have 
conducted extensive experiments with a test app and real 
mobile user traces, to validate the functionality and 
performance of MEFS. The collected experimental results 
demonstrate that 1) the total time of handoff is about 300ms 
for more than 100 read/write operation messages processed, 
and 2) the cost to recover data and system state when an edge 
node fails does not exceed 130KB for more than 100 operation 
messages. Therefore, we conclude that MEFS works well in 
practice, achieving low latency with a small overhead. 

The remainder of this paper is organized as follows. 
Section II provides the necessary background material, and 
shows an overview of the most important related literature. 
The requirements and the architecture of MEFS are described 
in Section III. Section IV presents the implementation 
highlights of our prototype. Section V reports the performance 
results. The paper concludes in Section VI. 

 

II. RELATED WORK 
Existing solutions for MCC offloading. Computational 

offloading for MCC is addressed, among the others, in 
CloneCloud [6], MAUI [5], ThinkAir, [10] and COMET [4], 
which propose task offloading onto a centralized surrogate in 
the cloud. CloneCloud migrates threads to application-level 
VMs. MAUI and ThinkAir adopt the offloading approach 
with method granularity. COMET provides distributed shared 
memory to support thread offloading. Even though all of them 
have shown the benefits of offloading for speedup and energy 
savings, this only holds for cases in which little shared state 
synchronization between mobile devices and the cloud is 
necessary. MEFS solves this problem by providing strong 
consistency for concurrent file access. 

Exploiting network edges. As an evolution to the above 
solutions for MCC, a few frameworks have been already 
proposed with a MEC or Fog oriented approach.  

MECO (Mobile-edge computation offloading) [11] is a 
technique proposed for prolonging the battery life and 
enhancing the computational capacity of mobile nodes. It aims 
at minimizing mobile energy consumption by considering the 
computation overhead and the available resources at MEC. 
The proposed algorithm calculates an offloading priority for 
each user. In addition, MECO is focused on model aspects and 
does not consider MEC challenges such as app portability and 
resiliency. MEFS, on the other hand, overcomes these 
challenges and guarantees consistency and low latency as 
well. CloudAware [12] presents a programming model and a 
framework that directly fit the common app developer’s 
mindset to design elastic and scalable MEC-based mobile 
applications with extremely low response time, e.g., 
multimedia applications. But these applications are typically 
stateless since the server is agnostic of the client state. 
Therefore, if the applications need to keep server-side state, a 
mobility management technique is needed to manage 
service/state migration. Unlike CloudAware, MEFS provides 
support for mobility management with state migration, which 
is transparent for developers, and for a consistent low-latency 
file system. 

Distributed and network file system. Various distributed 
and network file systems [8, 13-20] allow users to 
access/share their files. However, these solutions are not ideal 
for offloaded tasks at the edge due to several reasons. First, 
the conventional distributed and network file systems do not 
provide support for tasks that have opened files during 
offloading. Second, these file systems do not provide an 
appropriate level of consistency with low latency: some of 
them [13-15] do not provide strong consistency; others [17-
19] provide the appropriate level of consistency, but either 
have high latency or require mobile apps to specifically call 
new APIs. OFS [9] and by extension MEFS, which leverages 
OFS in its design, provide the required level of strong 
consistency with relatively low overhead. Furthermore, apps 
are not required to use new API calls for reading or writing 
files (i.e., apps are unmodified). In addition, traditional cloud 
storage, network, and distributed file systems usually employ 
a file server: this adds extra overhead for sending any 
communication via the file server. Also, in case of network 
failures, these systems need to initiate an extra VM in the 
cloud for resuming the computation, which will result in 
additional latency for completing offloaded tasks. Fourth, 
traditional distributed file systems usually require client 
software to be installed and configured beforehand, which is 



highly inconvenient for offloading tasks to the edge. Through 
its design, MEFS avoid all these problems. 

Storage at the network edge. Few recent works focused 
on storing data at the edge of the network [21-23]. Similar to 
our work, several notable efforts have been proposed the 
usage of computational resources at the network edge for 
limited latency, as well as in order to exploit the usual high-
bandwidth between mobile devices and edge nodes. For 
instance, Lujic et al. [21] present a three-layer architecture for 
efficient data storage management in edge analytics: their 
algorithm performs real-time forecast by saving parts of data 
at the edge. Furthermore, the work is targeted to time series 
coming from IoT sensors and therefore does not face out other 
general problems of mobile devices, such as consistency and 
mobility. EdgeCourier [22] provides a personal storage 
system at the edge for personal office documents. To 
overcome the limitations due to high network traffic on mobile 
devices, the authors proposed an incremental sync approach at 
the edge of the network. In addition, they have implemented 
Edge-hosted personal services (EPS). An EPS runs on a 
network edge node, and performs a specific functionality for 
mobile users. A mobile user can start/stop his own EPS 
instance(s) on the edge node. vStore [23] is a framework that 
chooses the best storage location based on user context. In 
vStore, several rules are defined to take storage decisions: for 
instance, the authors proposed to store data at the edge during 
large-scale events. Unlike MEFS, aforementioned works do 
not attempt to provide a general and flexible filesystem 
interface for apps that can run concurrently at the mobiles and 
the edge. Moreover, they do not resolve the typical challenges 
of MEC networks, such as application portability and 
resilience. 

Summarizing the related work, although a few solutions 
have been proposed to contribute to the field of MEC by 
addressing challenges in storage and computation offloading, 
there is no ready-to-use solution to satisfy the requirements of 
supporting file system access for edge-assisted apps. As a 
consequence, we present MEFS to make computational 
offloading practical in the MEC environment. Compared to 
existing file system designs, MEFS takes into consideration 
the mobility of the users and the failures of MEC servers. 

III. MEFS REQUIREMENTS AND ARCHITECTURE 
MEFS aims at supporting edge-assisted mobile apps for 

MEC networks. MEFS provides support for mobility 
management and fault-tolerance, while offering strong 
consistency and low latency for concurrent file accesses. This 
section describes the main requirements for MEFS and 
presents its architectural model. 

A. MEFS Requirements 
From the user perspective, a critical use case regarding 

MEC is computation offloading, as this can save energy 
and/or speed up the computation. One recognized concern of 
computation offloading is the proper management of the 
associated latency: for applications with stringent response 
time constraints (e.g., gaming, multimedia, augmented 
reality), the high latency between mobile devices and the 
cloud is not tolerable and could be a significant obstacle to the 
users’ QoE. To better emphasize this concept, let us consider 
a typical real-time video analytics scenario: law-enforcement 
agencies may need to perform face recognition in real-time 
across large areas to identify potentially dangerous people. 

This scenario requires very low latency because the output of 
the analytics is used to interact with users (i.e., law-
enforcement officers), requires high bandwidth for high-
definition video streaming, and requires computation at the 
edge to enable low usage of the cloud. With this scenario in 
mind, we created MEFS to provide file system support 
required by edge-assisted mobile apps, which can offload 
components to edge nodes. In this way, offloading becomes 
practical for a larger class of applications by including apps 
that need access to files. 

MEFS provides full infrastructure support for MEC 
environments and addresses three main technical 
requirements: 

• Strong consistency: Platforms that offload resource-
demanding tasks of mobile apps to the cloud or the edge 
[4, 5, 6, 24] lead to a scenario were computation tasks run 
concurrently on both the mobile and the cloud/edge. These 
tasks may need to access files on both these entities. 
However, the offloading platforms either do not support 
offloading of tasks with file I/O [4, 24] or allow access 
only to the files that are available locally [4, 10]. MEFS 
employs our OFS system [9], which is an application level 
file system that sits between mobile-cloud apps and the 
offloading middleware. OFS allows mobile-cloud apps to 
access files from both mobile and cloud concurrently, 
while providing strong consistency and low latency. 

• Application portability: MEFS can portably transfer apps 
between MEC servers. It overcomes the application 
portability challenge by creating a set of APIs useful for 
developers to manage user mobility. Once the handoff is 
started, MEFS automatically communicates with its 
MEFS module at the new edge node and transparently 
moves the app. Handoff is the process of switching one 
connection end-point from one edge node to another in the 
midst of communication. More specifically, MEFS 
transfers the file system state and associated metadata, 
while the offloading middleware transfers the app state 
(i.e., app variables). 

• Resilience: To protect against node or communication 
failures, MEFS leverages the cloud, as a controller entity, 
to provide fault-tolerance in two cases. First, if a MEC 
node fails, the cloud is in charge of restoring the affected 
app either in the cloud or at a new MEC node. Second, if 
the user moves away from the current MEC node and there 
is no other MEC node available in her proximity (single-
hop coverage range), the app is again restored in the cloud. 
To this end, MEFS provides a transparent mechanism that 
synchronizes the file system state and associated metadata 
between edge nodes and the cloud. 

B. MEFS Architecture 
MEFS leverages OFS [9], our previous mobile-cloud file 

system, to manage remote file access and file sharing among 
the distributed components of edge-assisted mobile apps. 
Furthermore, it provides support for application portability 
and resilience. 

Figure 1 depicts the general architecture of our solution, 
with MEFS and the offloading middleware deployed on 
mobiles, edges nodes, and the cloud; in this scenario, a mobile 
app can offload its computation to a nearby edge node. The 
cloud is used as a controller that helps with fault-tolerance, but 
is not generally involved in app computation. When the user 



moves from one edge node to another (e.g., from Edge1 to 
Edge2 in the figure), MEFS is able to seamlessly perform 
handoff in order to maintain communication locality and low 
latency. The figure also shows the interaction between MEFS 
and the employed offloading middleware, which is kept 
independent of the MEC-enabled file system design and 
implementation. In our prototype, we assumed the Avatar 
offloading middleware [25,26]. Unlike aforementioned 
proposals [11-13], in this work we rely on the MEC 
architecture to not only host our framework at the edge, but 
also to manage the mobility management and the fault-
tolerance. In fact, MEFS contains support modules to 
overcome these MEC challenges. 

Figure 2 details the MEFS architectural components. To 
provide strong consistency, MEFS uses OFS, which is 
designed and implemented as an event-driven middleware. 
The components of OFS are shown at the bottom of Figure 2.  
The events handled by OFS can be divided into two 
categories: Control events generated by OFS and the 
offloading middleware, and messages that represent file I/O 
operations generated by the apps. OFS has four major 
components: native/OFS switch, session management, buffer 
management, and consistency management. The native/OFS 
switch is included in the mobile-cloud app as a support library. 
It decides whether the file can be accessed locally or from 
OFS. The session management manages file states by 
maintaining file sessions. The buffer manager oversees the 
block buffer that contains file blocks that are currently being 
accessed through OFS. It also maintains metadata for each file 
block. Finally, the consistency manager maintains consistency 
between file I/O operations from tasks running on both mobile 
and cloud. It implements a delayed-update consistency 
algorithm which combines write-update and write-invalidate 
consistency policies [9]. 

To ensure that MEFS works on 5G MEC architecture, we 
need to provide support for mobility and for fault-tolerance. 
Thus, MEFS, in addition to OFS and the offloading 
middleware, includes two other main modules: the mobility 
manager module and the fault-tolerance manager module. 
These modules are shown in the middle part of Figure 2. 

The mobility manager module guarantees the application 
portability required by the MEC standard. Specifically, in a 
MEC environment, the mobile users may change their 
location, which makes the system location dependent. That is 
why this module has to manage the handoff process. The 
module is composed of three components: monitoring, trigger, 
and management. The monitoring component monitors users’ 
location in order to predict their movement. Several 
monitoring strategies have been proposed in the literature, and 

we designed the mobility manager module to work with any 
such strategy. The trigger component is in charge of 
determining the appropriate time to initiate the handoff. 
Particularly, this component collects information about users 
and calculates several metrics to start the handoff process. 
Management is the component that executes the handoff 
process between edge nodes. Moreover, this component 
defines the information flows between the system entities, 
which guarantee the correct and efficient execution of handoff 
among them.  

The fault-tolerance manager module is in charge of 
managing the recovery from faults that may occur at the edge 
nodes. According to the MEC standard, the system resilience 
is a mandatory requirement. For this purpose, we have 
implemented this module with two main components: 
monitoring and mechanism. The monitoring component needs 
to figure out when faults happened. In the literature, several 
strategies have been proposed in order to overcome system 
failures. MEFS is designed to be agnostic to these strategies. 
The mechanism component defines the algorithm used for 
maintaining system consistency and for restoring the session 
during the recovery process. 

IV. MEFS IMPLEMENTATION HIGHLIGHTS 
We have implemented an MEFS prototype in Java on 

Android. However, it can be adapted to other mobile OSs. We 
integrated the MEFS stub in the existing native/OFS module 
switch using AspectJ [27]. MEFS uses an IPC service to 
communicate with other apps, a network service to 
communicate with the edge and the cloud, and runs the 
mobility manager module and fault-tolerance manager 
module as Android application services, which run perform 
long-running operations in the background. Lastly, we used 
Android’s Binder IPC mechanism for IPC and a NIO-based 
TCP library named Kryonet [28], which provides high 
network throughput and low latency, for the network service. 

A. Mobility Management 
The MEFS mobility management is targeted to 5G 

networks and is fully compliant with the ETSI MEC technical 
requirements for managing end-to-end mobility aspects 
between edge nodes [29]. ETSI MEC has defined the 
requirements for mobility such as: continuity of service, 
mobility of application, and mobility of application-specific 
user-related information. Moreover, it specifies the standard 
end-to-end information flows between edge nodes that 

Fig. 2  MEFS Architectural Components 

Fig. 1  Overall Architecture of MEFS for MEC Environment 



systems have to manage. The flow is composed of five macro 
functionalities: (1) user bearer change detection, (2) service 
relocation management, (3) application instance relocation, 
(4) updating traffic rules, (5) terminating the source service. 
The MEFS handoff protocol was built on these specifications. 

For stateful apps, such as the apps that use files, it is 
beneficial migrating user’s data and state from edge_node1 to 
edge_node2 as a consequence of the associated handoff, in 
order to support the efficient continuation of the offloaded 
computation with reduced latency. For this purpose, MEFS 
defines and implements a reactive handoff protocol, as 
depicted in Figure 3. In general, the handoff can be triggered 
in two ways: one is infrastructural-dependent, where the 
system starts the handoff; the other is triggered by the mobile 
node. In previous works, we faced the problem of handoff 
triggering from infrastructure [30, 31]. In MEFS, we present a 
solution for triggering the handoff from the mobile node based 
on the user’s mobility path (explained in the next paragraph). 
Thus, the mobile node starts the handoff process by sending a 
specific handoff message to the old edge node (step 1). After 
that, the old edge node sends the service to the target edge 
node (steps 2, 3). Let us note that we use the MEC term service 
to denote the offloaded app tasks that run at the MEC nodes. 

Given that the overhead of step 2 might be high, to reduce 
the associated cost, we implemented a proactive migration 
strategy, which involves the cloud that proactively installs 
services on the target edge node. Figure 4 explains how our 
user mobility path strategy works. When possible, mobile 
nodes provide their expected route to the MEFS infrastructure 
at the starting of a new session. For example, if the mobile 
node has to go from A to B, the cloud knows that in the path 
there are edge_node2 and edge_node3 and it can proactively 
install the needed app components there. In principle, the 
target edge nodes can be reasonably well predicted based on 
the Received Signal Strength Indication (RSSI) or TCP 
throughput on the expected user’s path. In the current 
implementation of MEFS, the prediction is based on user 
history of previously explored paths and on application-
specific path constraints that may be defined at configuration 
time. We can also base the construction of the user’s path on 

our previous project on mobile crowd sensing [32]; the 
prediction logics can be easily improved and extended in the 
future without changing the remainder of MEFS and its APIs, 
which are prediction logic-independent. An incorrect 
prediction can result in extra-overhead: either the state is 
transferred to an edge node unnecessarily or the edge node 
does not benefit from proactive migration and needs to 
retrieve the state from the cloud on-demand, as described in 
Section IV.B for failures. 

Steps 5-7 identify the core of the migration phase. In 
MEFS, this phase involves both user’s data and state. In OFS, 
data about computation are contained in the BufferManager, 
while the state is stored in the SessionManager. To ensure 
that the target edge can restore the computation offloading 
process after handoff, MEFS moves the Buffer and Session 
objects from the old edge to the target edge. This is 
implemented via an abstraction, called Handoff, which 
contains the Buffer, the Session, and an associated manager 
class. The primary APIs of the manager class are: 

TABLE I.  LIST OF METHODS FOR SUPPORTING USER MOBILITY 

METHOD Description 
prepareHandoff This method is in charge of converting the handoff 

object to a Parcelable Android object. Parcelable is 
a class used in Android for more efficient object 
serialization. 

sendHandoff This method allows to send the handoff object 
from the old edge node to the target edge node. 
The object is sent via the OFS event support. In 
particular, we have defined a new event, called 
HANDOFF, that is useful for managing the entire 
handoff process. 

restoreHandoff This method runs at the target edge node and is in 
charge of receiving the handoff object and 
restoring the session and buffer. After that, the 
method sends a HELLO message to the mobile 
node in order to establish a new connection and 
sends the HANDOFF_FINISHED message to the 
old edge to inform it that the handoff is completed. 

 

Thus, when a handoff request occurs, the old edge node 
invokes the prepareHandoff method to create the proper 
handoff object. To send it, the edge uses the sendHandoff 
method. Lastly, when the target edge receives the handoff 
object, it can invoke restoreHandoff to restore the session and 
to start a new connection with the mobile node. 

Another important aspect of any MEC-related handoff 
process is which type of migration is performed. In the 
literature on VM/container migration, two different migration 
types are emerging as dominant: kill/restart and live 
migration. In particular for containers, one can simply kill the 
targeted container at the source edge and spawn a new one at 
the target edge. This implies that, in the case a container/VM 

Fig. 4  User Mobility Path Strategy 

Fig. 3  Basic Handoff Protocol 



is running at source edge, during the handoff process there is 
a non-null slice of time when the associated service is 
unavailable for final end users (downtime).  

The kill/restart type typically works well if the aim is to 
minimize the total handoff time [33]. In contrast, live 
migration has become recently the most common type for VM 
migration [34]. In live migration, the execution and memory 
states need to be copied, storage IO redirected, and network 
connections re-established. Among these, the memory copy 
usually takes the longest time. 

MEFS implements its specific mechanism for live 
migration in the case of task offloading. Figure 5 shows an 
overview of the phases of our live migration implementation. 
When the handoff process is started, we put the MEFS 
middleware into a special state (“handoff_mode”); in this 
mode, the edge node stores each file access request sent by the 
mobile user in a specific queue called DirtyQueue, without 
performing the associated request. When the mobile node 
performs the connection handoff from the old edge to the 
target edge, the DirtyQueue is sent to the target edge. After 
that, the target edge can restore all the requests contained in 
DirtyQueue. In this way, we guarantee a short service 
downtime, practically almost the same with the short time 
interval when the mobile node is temporarily with no 
connection. This mechanism works coupled with a symmetric 
one running at the target edge. 

After the mobile node has completed its handoff from the 
old edge node to the target edge node, it cannot perform any 
request at the target edge before the DirtyQueue is restored. 
MEFS has two types of requests: READ and WRITE. It is 
easy to understand that one cannot perform a consistent 
READ operation if there are WRITE operations in the 
DirtyQueue. To overcome this problem, we create a new 
special state for our offloading middleware called 
“restore_mode”: when the old edge notifies the target edge of 
the intent to perform the handoff, the target edge enables the 
“restore_mode”: once the mobile node connects to the target 
edge and the “restore_mode” is active, all requests performed 
by the mobile node are stored to a specific queue called 
DelayedQueue. The requests are still stored into the 

DelayedQueue until the DirtyQueue is restored. Finally, the 
target edge node can restore the DelayedQueue and can 
deactivate the “restore_mode”.  

Migration can also be done by saving the latest data and 
state from one edge node into the cloud and restoring them 
onto the other edge node. Such a saving and restoring 
mechanism has already been designed and implemented in 
MEFS for fault-tolerance (Sec. IV-B). MEFS chooses to not 
involve the cloud in migration management for three reasons: 
1) the network latency is usually lower between edge nodes 
than that between an edge node and the cloud; 2) a 
decentralized design has better scalability; 3) the way that 
edge nodes work autonomously and separately from the cloud 
provides additional reliability. 

B. Fault-tolerance 
Failures may happen in a MEC environment due to various 

reasons. One of the common reasons is network coverage. For 
example, a mobile node is connected with an edge node in a 
certain location and then is moving to a location where there 
are no new edge nodes. Another common reason for failures 
is a crash of an edge node. 

In the case of a failure, MEFS works to prevent the latest 
states of the files at the edge nodes from being lost or 
becoming inaccessible, such that MEC-enabled mobile apps 
can continue to run correctly on the smart phone alone or via 
offloading to another edge. As shown in Figure 1, MEFS 
exploits the cloud for this solution. At the beginning of the 
session, the mobile node connects both with the cloud and the 
edge and starts the session normally with the edge. The basic 
idea is to maintain data/state consistency between the edge and 
the cloud; this can be modeled as a traditional problem of 
coherency between storage at different network layers. Given 
that it is recognized that there is no best solution for every 
deployment environment and application domain to detect 
which data to move from the edge to the cloud and how 
frequently to do it, we have decided to implement a solution 
based on the Log-structured file system [35]. In particular, our 
MEFS support for fault tolerance sends to the cloud each 
WRITE operation performed by the edge; note that WRITE 
operations are smaller and faster than a backup of the whole 
data. In the case of a failure, the cloud will perform all the 
received WRITE operations in order to restore the same 
data/state conditions at the edge. 

By delving into finer implementation details, we have 
implemented a FaultToleranceManager that offers several 
methods for handling failures, which may be invoked during 
the four phases of our fault tolerance protocol:  

1) Send WRITE operation: This is a functionality in the 
FaultToleranceManager module that sends each WRITE 
operation from the edge to the cloud. We have also created a 
new event named FAULT_TOLERANT that contains the 
WRITE operation. Each WRITE operation sent to the cloud 
is stored in a queue named operationQueue. 

2) New block: When the edge node creates a new file 
block (this may happen when the edge node tries to write 
more than 8KB, which is the standard block size) there is a 
functionality that sends that block to the cloud. A new event 
is created to support this: FAULT_TOLERANT_BLOCK. 

3) PUSH message: Each time the edge node sends a 
PULL request (i.e., the edge node retrieves the latest blocks 

Fig. 5  Live Migration Overview 



from the mobile node) to the mobile node, or the mobile node 
sends a PUSH operation (i.e., the mobile node sends the latest 
blocks to the edge node) to the edge node, we have to 
propagate these operations via an associated PUSH operation 
that sends all interested blocks to the cloud. Hence, the cloud 
must clear the operationQueue (associated with the 
PUSH_CLEAR event) because with this event it already has 
the latest version of the blocks. 

4) Restore: To detect failures at edge nodes, we have 
implemented a simple mechanism based on ACK message 
exchange between the edge node and the cloud. If the cloud 
does not receive ACK messages from the edge after a 
configurable time threshold, the cloud is triggered to restore 
the session by performing all the operations in the 
operationQueue; after that, the cloud starts a new connection 
with the targeted mobile node. 

V. MEFS PERFORMANCE EVALUATION 
The goals of our experiments are three-fold: (1) evaluate 

the MEFS mobility management performance, with a focus on 
service downtime due to migration; (2) evaluate the MEFS 
fault tolerance performance, with a focus on overhead; and (3) 
compare the performance of MEFS on MEC vs. OFS on 
MCC.  

For experiments, we built two mobile apps: an edge-
assisted test app that replays the file access traces of real 
mobile users and a video analytics app, assisted by the edge or 
the cloud. We use the first app to evaluate the performance of 
mobility management and test the overhead incurred by the 
fault-tolerance mechanism in MEFS, and use the second app 
to compare MEFS with OFS.  

The experiments use a prototype implementation of MEFS 
running on Android smart phones and Android x86 virtual 
machines (VMs). The phones act as mobile nodes, and the 
VMs act as edge nodes and cloud nodes. The VMs are hosted 
in a Linux OS. Each VM runs a 64-bit Android-x86 OS 
version 6.0, and has 2 virtual CPUs and 2 GB of RAM. The 
phones communicate with the edge nodes and cloud nodes 
using a secure WiFi network. The communication between 
edge nodes and cloud nodes is through wired connections. 

A. Mobility Management Performance 
To verify that the migration process of an app component 

from one edge node to another does not impose significant 
impact to the quality of user experience, we run several 
experiments, in which an edge-assisted app performs different 
file I/O operations when the mobile device switches the edge 
node it uses. We measured the service downtime and the total 
time used for migration in two scenarios: (1) the app performs 
READ operations on the mobile device at different rates: (2) 
the app performs WRITE operations on the mobile device at 
different rates. Selecting these two scenarios is to examine the 
impact of migration separately for READ and WRITE 
operations. The service downtime is the time period during 
which MEFS cannot respond to any file access requests from 
the edge component of the app. The total time used for 
migration is the time period between the creation of a handoff 
request and the time when the mobile node is connected to a 
new edge node and the latter finishes the restore phase.  

The results in Figure 6 show that MEFS works well during 
migrations, and thus it is practical in real-life scenarios. 
Migrations impose minimal service downtime, which is 
usually lower than 150ms. For user QoE, 300ms is considered 

(a) Overhead of fault tolerance mechanism 

(b) Restore time at the cloud 

Fig.7  Fault-tolerance performance evaluation. The overhead was 
calculated with several payload sizes. The restore time depends linearly on 
the number of messages to restore. 

(a) The edge-assisted app performs READ operations 

(b) The edge-assisted app performs WRITE operations 

Fig. 6  Service downtime and total time of migration when the number of 
file operations performed by an edge-assisted app is varied  from 0 to 200 
operations/second. 



as an acceptable delay [36, 37]. The service downtime of 
MEFS incurred by migration is lower than this value. The total 
time used for migration is larger than the service downtime. It 
is longer than 300ms when the app performs more than 100 
READ or WRITE operations per second. However, this does 
not reduce QoE. Since migrations happen in the background 
and are transparent to apps, except for the service downtime, 
users may not experience any degraded service for most of the 
time. 

We also notice that the total time to finish a migration is 
higher when the app performs WRITE operations than that 
with READ operations. This is because the total time used for 
migration is mainly determined by the amount of data that 
MEFS must copy from one node to the other. When the app 
performs WRITE operations, there will be more data to be 
copied to the destination edge node. 

B. Fault-tolerance Performance of MEFS 
MEFS sends WRITE operations from an edge node to the 

cloud to tolerate faults at the edge layer. The cost of this 
mechanism is determined by the amount of data to be 
transferred between the edge node and the cloud (i.e., the total 
number of messages and the data’s payload). To evaluate the 
cost, we have measured the amount of data transfer in a few 
experiments. 

Figure 7 shows the amount of data transfer when the 
number of messages is varied from 1 to 200, and the payload 
size is varied from 10B to 8KB. The highest overhead (2MB) 
is incurred when the number of messages is 200 and payload 
is 8KB. Since this overhead happens over the wired network, 
we consider it acceptable for fault-tolerance. The overhead is 
not proportional to the payload sizes. This is because the 
overhead is determined by message sizes, which are not 
proportional to the payload, as shown in Table II. 

TABLE II.   SIZE (IN BYTE) OF THE WRITE MESSAGES 

 

We also measured the time to restore the state of MEFS in 
an edge node based on the data saved in the cloud, and show 
the results in Figure 7. The restore time is also determined by 
the amount of data to be copied between the cloud and the 
edge node (i.e., the total number of messages and the data’s 
payload). The restore time increases with the number of 
messages, as shown in Figure 7 (the size of each message is 
1376 Byte). When more than 100 messages are needed, the 
restore time increases to more than 300ms. Thus, we noted 
that to limit the restore time within 300ms, the amount of data 
transferred between the cloud and the edge node could be 
smaller than 200KB.  

C. Comparison of MEFS on MEC vs. OFS on MCC 
To evaluate the benefits of using MEC and MEFS over 

MCC and OFS, we have developed a video analytics 
application for face recognition purpose. According to 
Ananthanarayanan et al [38], large-scale video analytics may 
well represent the killer application for edge computing. The 
app captures real-time video streams received by a mobile 

user, analyzes the video streams for faces, recognize people 
from these faces, and displays the faces. The core component 
of this app for analyzing the streams, including face 
recognition with a machine-learning algorithm, runs at in the 
edge/cloud. The progressive knowledge is also kept in the 
edge/cloud. On the mobile side, the app component is mainly 
to send real-time video streams to the edge/cloud, and receive 
the photos generated by the analysis. 

In our tests, the cloud entity is a virtual machine hosted on 
Amazon Web Services Cloud equipped with 8 GB RAM and 
4 virtual cores; the edge is a Linux box (Ubuntu 16.04 
distribution) with 3.1 GHz Intel Core i5 and 4 GB RAM. The 
mobile node is connected to the edge node via WiFi, and the 
edge node is connected to the cloud via Ethernet. We have 
recorded continuous videos for 10 minutes with three different 
video qualities: a low quality video with 720x480 resolution, 
a medium quality video with 1280x720 resolution, and a high 
quality video with 1920x1080 resolution. 

We have measured the response time of the app from the 
mobile component of the app streaming the video to its 
edge/cloud component until it receives the photos. The 
response times are shown in Figure 8. Compared to offloading 
to the cloud, offloading to the edge can significantly reduce 
the time spent on data transfers and thus reduce response time. 
For the videos with different qualities, when offloading tasks 
to the cloud, the response times are dominated by network 
communication. Due to the high network overhead, the 
powerful computation capabilities at the cloud cannot 
effectively reduce the response times. When offloading tasks 
to the edge, the communication bottleneck can be effectively 
mitigated. Though the edge node is not as powerful as the 
cloud node, and the edge node spends more time on 
computation than the cloud node, the overall response times 
are lower when offloading tasks to the cloud. The advantage 
of using edge is more pronounced for the video with the 
highest quality. The response time with the edge is 50% lower 
than that with the cloud. 

These tests highlight the necessity of using MEC for data-
intensive apps and justify the design of MEFS. 

VI. CONCLUSION 
This paper presented MEFS, the first mobile edge file 

system for edge-assisted mobile apps. MEFS provides strong 
consistency with low latency, and it overcomes MEC 
challenges such as mobility management and fault-tolerance. 
Furthermore, MEFS is completely transparent for edge-
assisted mobile apps developers. We have implemented the 

PAYLOAD SIZE OF MESSAGE 
10 1376 

1024 2388 
2048 3412 
4096 5460 
8192 9556 

Fig. 8  Average response time of the video analytics app 



MEFS in Android, and we evaluated it under several 
experimental scenarios based on real apps and real mobile user 
traces. The experimental results demonstrated that MEFS can 
effectively support user’s mobility and fault-tolerance at the 
edge nodes. Moreover, we proved that MEFS works with low 
latency at the edge nodes. Therefore, MEFS can be used for 
many types of context-aware mobile apps, including apps that 
have tight real-time constraints such as video streaming, 
augmented reality, and mobile gaming. 
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