
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

MEFS: Mobile Edge File System for Edge-Assisted
Mobile Apps

Domenico Scotece*, Nafize R. Paiker†, Luca Foschini*,
Paolo Bellavista*, Xiaoning Ding†, and Cristian Borcea†	

∗Department of Computer Science and Engineering, University of Bologna, 40126 Bologna BO, Italy
†Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

Email:∗{domenico.scotece, luca.foschini, paolo.bellavista}@unibo.it,
†{nrp48, xiaoning.ding, borcea}@njit.edu

Abstract—Computation offloading is employed by mobile
apps running over resource-constrained devices to leverage the
cloud in overcoming their resource limits. The advent of the
Multi-access Edge Computing (MEC) paradigm further extends
the potential opportunities of mobile-cloud offloading, allowing
new service provisioning scenarios, such as mobile gaming and
multimedia, where responsiveness of mobile devices at the
network edge significantly benefits from low latency
interactions. However, state-of-the-art offloading platforms for
MEC architectures have not addressed the technical challenge
of supporting specific file systems for this MEC-enabled class of
applications, with components running at three hosting
environments, i.e., mobile, edge, and cloud. This paper proposes
the Mobile Edge File System (MEFS), an application-level
distributed file system designed to be highly resilient and able to
efficiently maintain consistency among the mobile, edge, and
cloud entities. MEFS supports application handoff through live
migration as end devices move between edges. The cloud
transparently helps with recovery from faulty edge nodes or in
the case of unavailability of edges in the user’s proximity. We
implemented a MEFS prototype in Android along with MEFS-
based MEC-enabled mobile apps. The experimental results
show how MEFS can achieve low latency and low overhead.

Keywords—MEC, cloud, mobile devices, task offloading, file
system, handoff, fault-tolerance

I. INTRODUCTION
During the past decade, the users’ requirements on data

rates and Quality of Service (QoS) have increased
substantially. Furthermore, the technological evolution of
smart phones has led to mobile apps requiring huge processing
power, while the battery life and power consumption still pose
significant technical challenges toward achieving optimal
users’ Quality of Experience (QoE). This motivates the idea
and development of Mobile Cloud Computing (MCC)
platforms [1], which allow mobile users to seamlessly
leverage powerful resources available in the cloud. MCC has
already demonstrated several advantages in terms of QoS,
QoE, and energy consumption; for instance, it enables
computation offloading from mobile users to the cloud [2-6].
However, MCC solutions often exhibit the drawback of
increased latency due to mobile-to-cloud communication. One
promising research direction is to leverage edge computing for
computation offloading in a mobile-edge-cloud architecture in
order to reduce the communication latency and the overall app
response time.

The edge computing paradigm enables the deployment of

middleboxes for supporting and enhancing service
provisioning at the locations of mobile users. This allows
improved scalability and reactivity in the interaction with
mobile nodes when control decisions are applicable. As an
architectural model and specification for edge computing,
Multi-access Edge Computing (MEC) [7] proposal by the
European Telecommunications Standards Institute (ETSI)
evolves the traditional two-layer MCC model with the
introduction of a third intermediate middleware layer that is
executed at the network edge and allows users to access the
services at the edge of the network, e.g., computation
offloading service for mobile apps.

Compared to MCC, MEC can offer significantly lower
latency and jitter; moreover, since MEC can be deployed in a
fully distributed manner, it can improve the overall scalability
for mobile apps. In the MEC paradigm, a MEC-enabled
application (referred to as edge-assisted app) can have
components running at three hosting environments, i.e., the
mobile device, the cloud, and the edge servers that are selected
based on the current location of the mobile device and may
change when the mobile device moves.

Despite the potential advantages of the MEC paradigm,
MEC platforms have not addressed yet the technical challenge
of supporting specific file systems for the envisioned MEC-
enabled class of applications. Therefore, computation
offloading cannot be employed for most mobile apps because
they need concurrent accesses to files from their hosting
environments across mobile devices, dynamically selected
edge servers, and the cloud.

With the growing amount of data available to mobile apps,
the problem of a MEC-enabled file system could not be
ignored anymore. Unfortunately, existing network file
systems, such as NFS [8] and Dropbox, are not effective in
handling file access for offloaded tasks of mobile apps due to
their limited support for remote file access. Recently, the
Overlay File System (OFS) [9] proposed support for
concurrent and consistent file access on both the mobile and
the cloud by working in conjunction with its task offloading
middleware. Despite its advancements, OFS and similar
solutions designed for MCC do not fit the MEC scenarios
primarily for two reasons: 1) they cannot handle the switch of
edge nodes when mobile users move; and 2) they are not
resilient to the faults in MEC edges.

By carefully considering these relevant gaps, this paper
proposes Mobile Edge File System (MEFS), a file system that

runs on mobile devices, edge nodes, and the cloud to
efficiently and seamlessly handle file accesses for edge-
assisted mobile apps. To the best of our knowledge, this is the
first work that presents the design, implementation, and
prototyping of such a system solution. MEFS supports file
accesses with low-latency for the components of a mobile app
that possibly offloads some tasks to either the edge or the
cloud (mobile-to-edge or mobile-to-cloud offloading), and
guarantees strong data consistency between these
components. It is fully compatible with the MEC standard
specifications. With MEFS, an entirely new class of mobile
apps (i.e., apps that need access to files) can take advantage of
the MEC infrastructure for faster response time and lower
energy consumption on mobiles.

There are two major challenges in MEFS design. One is
how to manage automatically session handoff between edge
nodes; and the other is how to tolerate the faults in edge nodes
and prevent data loss. MEFS manages automatic session
handoff between edge nodes by following the user’s node
mobility. To minimize service downtime, it monitors and
predicts the mobility path of each mobile node, and uses a
mechanism similar to VM live migration to migrate file data
and metadata, as well as session state, between the edge nodes
along the mobility path.

To prevent the data loss caused by the faults in edge nodes
(e.g., node crashes or becoming unreachable from the mobile
node), the fault-tolerance design in MEFS uses a log-based
approach: edge nodes send write operations to the cloud; when
an edge node goes down or there are no available edge nodes
in the mobile user’s area, the cloud is able to restore the edge
session by exploiting its log.

MEFS contributes to the literature in the field in multiple
ways. First, the paper proposes and designs MEFS to make it
possible that the components in edge-assigned apps can access
files concurrently and consistently from cloud, edge, and
mobile nodes. Second, we have implemented a MEFS
prototype based on Android. This paper also presents the
insight of MEFS implementation. Third, in order to test the
MEFS design, we have implemented MEC-enabled mobile
apps, one of which is a real-time video analytics mobile app.
Each app can utilize the assistance from either the edge or the
cloud, such that we can use the app to compare the
performance of MEFS with that of a mobile-cloud file system
and demonstrate the benefits of MEFS. Forth, we have
conducted extensive experiments with a test app and real
mobile user traces, to validate the functionality and
performance of MEFS. The collected experimental results
demonstrate that 1) the total time of handoff is about 300ms
for more than 100 read/write operation messages processed,
and 2) the cost to recover data and system state when an edge
node fails does not exceed 130KB for more than 100 operation
messages. Therefore, we conclude that MEFS works well in
practice, achieving low latency with a small overhead.

The remainder of this paper is organized as follows.
Section II provides the necessary background material, and
shows an overview of the most important related literature.
The requirements and the architecture of MEFS are described
in Section III. Section IV presents the implementation
highlights of our prototype. Section V reports the performance
results. The paper concludes in Section VI.

II. RELATED WORK
Existing solutions for MCC offloading. Computational

offloading for MCC is addressed, among the others, in
CloneCloud [6], MAUI [5], ThinkAir, [10] and COMET [4],
which propose task offloading onto a centralized surrogate in
the cloud. CloneCloud migrates threads to application-level
VMs. MAUI and ThinkAir adopt the offloading approach
with method granularity. COMET provides distributed shared
memory to support thread offloading. Even though all of them
have shown the benefits of offloading for speedup and energy
savings, this only holds for cases in which little shared state
synchronization between mobile devices and the cloud is
necessary. MEFS solves this problem by providing strong
consistency for concurrent file access.

Exploiting network edges. As an evolution to the above
solutions for MCC, a few frameworks have been already
proposed with a MEC or Fog oriented approach.

MECO (Mobile-edge computation offloading) [11] is a
technique proposed for prolonging the battery life and
enhancing the computational capacity of mobile nodes. It aims
at minimizing mobile energy consumption by considering the
computation overhead and the available resources at MEC.
The proposed algorithm calculates an offloading priority for
each user. In addition, MECO is focused on model aspects and
does not consider MEC challenges such as app portability and
resiliency. MEFS, on the other hand, overcomes these
challenges and guarantees consistency and low latency as
well. CloudAware [12] presents a programming model and a
framework that directly fit the common app developer’s
mindset to design elastic and scalable MEC-based mobile
applications with extremely low response time, e.g.,
multimedia applications. But these applications are typically
stateless since the server is agnostic of the client state.
Therefore, if the applications need to keep server-side state, a
mobility management technique is needed to manage
service/state migration. Unlike CloudAware, MEFS provides
support for mobility management with state migration, which
is transparent for developers, and for a consistent low-latency
file system.

Distributed and network file system. Various distributed
and network file systems [8, 13-20] allow users to
access/share their files. However, these solutions are not ideal
for offloaded tasks at the edge due to several reasons. First,
the conventional distributed and network file systems do not
provide support for tasks that have opened files during
offloading. Second, these file systems do not provide an
appropriate level of consistency with low latency: some of
them [13-15] do not provide strong consistency; others [17-
19] provide the appropriate level of consistency, but either
have high latency or require mobile apps to specifically call
new APIs. OFS [9] and by extension MEFS, which leverages
OFS in its design, provide the required level of strong
consistency with relatively low overhead. Furthermore, apps
are not required to use new API calls for reading or writing
files (i.e., apps are unmodified). In addition, traditional cloud
storage, network, and distributed file systems usually employ
a file server: this adds extra overhead for sending any
communication via the file server. Also, in case of network
failures, these systems need to initiate an extra VM in the
cloud for resuming the computation, which will result in
additional latency for completing offloaded tasks. Fourth,
traditional distributed file systems usually require client
software to be installed and configured beforehand, which is

highly inconvenient for offloading tasks to the edge. Through
its design, MEFS avoid all these problems.

Storage at the network edge. Few recent works focused
on storing data at the edge of the network [21-23]. Similar to
our work, several notable efforts have been proposed the
usage of computational resources at the network edge for
limited latency, as well as in order to exploit the usual high-
bandwidth between mobile devices and edge nodes. For
instance, Lujic et al. [21] present a three-layer architecture for
efficient data storage management in edge analytics: their
algorithm performs real-time forecast by saving parts of data
at the edge. Furthermore, the work is targeted to time series
coming from IoT sensors and therefore does not face out other
general problems of mobile devices, such as consistency and
mobility. EdgeCourier [22] provides a personal storage
system at the edge for personal office documents. To
overcome the limitations due to high network traffic on mobile
devices, the authors proposed an incremental sync approach at
the edge of the network. In addition, they have implemented
Edge-hosted personal services (EPS). An EPS runs on a
network edge node, and performs a specific functionality for
mobile users. A mobile user can start/stop his own EPS
instance(s) on the edge node. vStore [23] is a framework that
chooses the best storage location based on user context. In
vStore, several rules are defined to take storage decisions: for
instance, the authors proposed to store data at the edge during
large-scale events. Unlike MEFS, aforementioned works do
not attempt to provide a general and flexible filesystem
interface for apps that can run concurrently at the mobiles and
the edge. Moreover, they do not resolve the typical challenges
of MEC networks, such as application portability and
resilience.

Summarizing the related work, although a few solutions
have been proposed to contribute to the field of MEC by
addressing challenges in storage and computation offloading,
there is no ready-to-use solution to satisfy the requirements of
supporting file system access for edge-assisted apps. As a
consequence, we present MEFS to make computational
offloading practical in the MEC environment. Compared to
existing file system designs, MEFS takes into consideration
the mobility of the users and the failures of MEC servers.

III. MEFS REQUIREMENTS AND ARCHITECTURE
MEFS aims at supporting edge-assisted mobile apps for

MEC networks. MEFS provides support for mobility
management and fault-tolerance, while offering strong
consistency and low latency for concurrent file accesses. This
section describes the main requirements for MEFS and
presents its architectural model.

A. MEFS Requirements
From the user perspective, a critical use case regarding

MEC is computation offloading, as this can save energy
and/or speed up the computation. One recognized concern of
computation offloading is the proper management of the
associated latency: for applications with stringent response
time constraints (e.g., gaming, multimedia, augmented
reality), the high latency between mobile devices and the
cloud is not tolerable and could be a significant obstacle to the
users’ QoE. To better emphasize this concept, let us consider
a typical real-time video analytics scenario: law-enforcement
agencies may need to perform face recognition in real-time
across large areas to identify potentially dangerous people.

This scenario requires very low latency because the output of
the analytics is used to interact with users (i.e., law-
enforcement officers), requires high bandwidth for high-
definition video streaming, and requires computation at the
edge to enable low usage of the cloud. With this scenario in
mind, we created MEFS to provide file system support
required by edge-assisted mobile apps, which can offload
components to edge nodes. In this way, offloading becomes
practical for a larger class of applications by including apps
that need access to files.

MEFS provides full infrastructure support for MEC
environments and addresses three main technical
requirements:

• Strong consistency: Platforms that offload resource-
demanding tasks of mobile apps to the cloud or the edge
[4, 5, 6, 24] lead to a scenario were computation tasks run
concurrently on both the mobile and the cloud/edge. These
tasks may need to access files on both these entities.
However, the offloading platforms either do not support
offloading of tasks with file I/O [4, 24] or allow access
only to the files that are available locally [4, 10]. MEFS
employs our OFS system [9], which is an application level
file system that sits between mobile-cloud apps and the
offloading middleware. OFS allows mobile-cloud apps to
access files from both mobile and cloud concurrently,
while providing strong consistency and low latency.

• Application portability: MEFS can portably transfer apps
between MEC servers. It overcomes the application
portability challenge by creating a set of APIs useful for
developers to manage user mobility. Once the handoff is
started, MEFS automatically communicates with its
MEFS module at the new edge node and transparently
moves the app. Handoff is the process of switching one
connection end-point from one edge node to another in the
midst of communication. More specifically, MEFS
transfers the file system state and associated metadata,
while the offloading middleware transfers the app state
(i.e., app variables).

• Resilience: To protect against node or communication
failures, MEFS leverages the cloud, as a controller entity,
to provide fault-tolerance in two cases. First, if a MEC
node fails, the cloud is in charge of restoring the affected
app either in the cloud or at a new MEC node. Second, if
the user moves away from the current MEC node and there
is no other MEC node available in her proximity (single-
hop coverage range), the app is again restored in the cloud.
To this end, MEFS provides a transparent mechanism that
synchronizes the file system state and associated metadata
between edge nodes and the cloud.

B. MEFS Architecture
MEFS leverages OFS [9], our previous mobile-cloud file

system, to manage remote file access and file sharing among
the distributed components of edge-assisted mobile apps.
Furthermore, it provides support for application portability
and resilience.

Figure 1 depicts the general architecture of our solution,
with MEFS and the offloading middleware deployed on
mobiles, edges nodes, and the cloud; in this scenario, a mobile
app can offload its computation to a nearby edge node. The
cloud is used as a controller that helps with fault-tolerance, but
is not generally involved in app computation. When the user

moves from one edge node to another (e.g., from Edge1 to
Edge2 in the figure), MEFS is able to seamlessly perform
handoff in order to maintain communication locality and low
latency. The figure also shows the interaction between MEFS
and the employed offloading middleware, which is kept
independent of the MEC-enabled file system design and
implementation. In our prototype, we assumed the Avatar
offloading middleware [25,26]. Unlike aforementioned
proposals [11-13], in this work we rely on the MEC
architecture to not only host our framework at the edge, but
also to manage the mobility management and the fault-
tolerance. In fact, MEFS contains support modules to
overcome these MEC challenges.

Figure 2 details the MEFS architectural components. To
provide strong consistency, MEFS uses OFS, which is
designed and implemented as an event-driven middleware.
The components of OFS are shown at the bottom of Figure 2.
The events handled by OFS can be divided into two
categories: Control events generated by OFS and the
offloading middleware, and messages that represent file I/O
operations generated by the apps. OFS has four major
components: native/OFS switch, session management, buffer
management, and consistency management. The native/OFS
switch is included in the mobile-cloud app as a support library.
It decides whether the file can be accessed locally or from
OFS. The session management manages file states by
maintaining file sessions. The buffer manager oversees the
block buffer that contains file blocks that are currently being
accessed through OFS. It also maintains metadata for each file
block. Finally, the consistency manager maintains consistency
between file I/O operations from tasks running on both mobile
and cloud. It implements a delayed-update consistency
algorithm which combines write-update and write-invalidate
consistency policies [9].

To ensure that MEFS works on 5G MEC architecture, we
need to provide support for mobility and for fault-tolerance.
Thus, MEFS, in addition to OFS and the offloading
middleware, includes two other main modules: the mobility
manager module and the fault-tolerance manager module.
These modules are shown in the middle part of Figure 2.

The mobility manager module guarantees the application
portability required by the MEC standard. Specifically, in a
MEC environment, the mobile users may change their
location, which makes the system location dependent. That is
why this module has to manage the handoff process. The
module is composed of three components: monitoring, trigger,
and management. The monitoring component monitors users’
location in order to predict their movement. Several
monitoring strategies have been proposed in the literature, and

we designed the mobility manager module to work with any
such strategy. The trigger component is in charge of
determining the appropriate time to initiate the handoff.
Particularly, this component collects information about users
and calculates several metrics to start the handoff process.
Management is the component that executes the handoff
process between edge nodes. Moreover, this component
defines the information flows between the system entities,
which guarantee the correct and efficient execution of handoff
among them.

The fault-tolerance manager module is in charge of
managing the recovery from faults that may occur at the edge
nodes. According to the MEC standard, the system resilience
is a mandatory requirement. For this purpose, we have
implemented this module with two main components:
monitoring and mechanism. The monitoring component needs
to figure out when faults happened. In the literature, several
strategies have been proposed in order to overcome system
failures. MEFS is designed to be agnostic to these strategies.
The mechanism component defines the algorithm used for
maintaining system consistency and for restoring the session
during the recovery process.

IV. MEFS IMPLEMENTATION HIGHLIGHTS
We have implemented an MEFS prototype in Java on

Android. However, it can be adapted to other mobile OSs. We
integrated the MEFS stub in the existing native/OFS module
switch using AspectJ [27]. MEFS uses an IPC service to
communicate with other apps, a network service to
communicate with the edge and the cloud, and runs the
mobility manager module and fault-tolerance manager
module as Android application services, which run perform
long-running operations in the background. Lastly, we used
Android’s Binder IPC mechanism for IPC and a NIO-based
TCP library named Kryonet [28], which provides high
network throughput and low latency, for the network service.

A. Mobility Management
The MEFS mobility management is targeted to 5G

networks and is fully compliant with the ETSI MEC technical
requirements for managing end-to-end mobility aspects
between edge nodes [29]. ETSI MEC has defined the
requirements for mobility such as: continuity of service,
mobility of application, and mobility of application-specific
user-related information. Moreover, it specifies the standard
end-to-end information flows between edge nodes that

Fig. 2 MEFS Architectural Components

Fig. 1 Overall Architecture of MEFS for MEC Environment

systems have to manage. The flow is composed of five macro
functionalities: (1) user bearer change detection, (2) service
relocation management, (3) application instance relocation,
(4) updating traffic rules, (5) terminating the source service.
The MEFS handoff protocol was built on these specifications.

For stateful apps, such as the apps that use files, it is
beneficial migrating user’s data and state from edge_node1 to
edge_node2 as a consequence of the associated handoff, in
order to support the efficient continuation of the offloaded
computation with reduced latency. For this purpose, MEFS
defines and implements a reactive handoff protocol, as
depicted in Figure 3. In general, the handoff can be triggered
in two ways: one is infrastructural-dependent, where the
system starts the handoff; the other is triggered by the mobile
node. In previous works, we faced the problem of handoff
triggering from infrastructure [30, 31]. In MEFS, we present a
solution for triggering the handoff from the mobile node based
on the user’s mobility path (explained in the next paragraph).
Thus, the mobile node starts the handoff process by sending a
specific handoff message to the old edge node (step 1). After
that, the old edge node sends the service to the target edge
node (steps 2, 3). Let us note that we use the MEC term service
to denote the offloaded app tasks that run at the MEC nodes.

Given that the overhead of step 2 might be high, to reduce
the associated cost, we implemented a proactive migration
strategy, which involves the cloud that proactively installs
services on the target edge node. Figure 4 explains how our
user mobility path strategy works. When possible, mobile
nodes provide their expected route to the MEFS infrastructure
at the starting of a new session. For example, if the mobile
node has to go from A to B, the cloud knows that in the path
there are edge_node2 and edge_node3 and it can proactively
install the needed app components there. In principle, the
target edge nodes can be reasonably well predicted based on
the Received Signal Strength Indication (RSSI) or TCP
throughput on the expected user’s path. In the current
implementation of MEFS, the prediction is based on user
history of previously explored paths and on application-
specific path constraints that may be defined at configuration
time. We can also base the construction of the user’s path on

our previous project on mobile crowd sensing [32]; the
prediction logics can be easily improved and extended in the
future without changing the remainder of MEFS and its APIs,
which are prediction logic-independent. An incorrect
prediction can result in extra-overhead: either the state is
transferred to an edge node unnecessarily or the edge node
does not benefit from proactive migration and needs to
retrieve the state from the cloud on-demand, as described in
Section IV.B for failures.

Steps 5-7 identify the core of the migration phase. In
MEFS, this phase involves both user’s data and state. In OFS,
data about computation are contained in the BufferManager,
while the state is stored in the SessionManager. To ensure
that the target edge can restore the computation offloading
process after handoff, MEFS moves the Buffer and Session
objects from the old edge to the target edge. This is
implemented via an abstraction, called Handoff, which
contains the Buffer, the Session, and an associated manager
class. The primary APIs of the manager class are:

TABLE I. LIST OF METHODS FOR SUPPORTING USER MOBILITY

METHOD Description
prepareHandoff This method is in charge of converting the handoff

object to a Parcelable Android object. Parcelable is
a class used in Android for more efficient object
serialization.

sendHandoff This method allows to send the handoff object
from the old edge node to the target edge node.
The object is sent via the OFS event support. In
particular, we have defined a new event, called
HANDOFF, that is useful for managing the entire
handoff process.

restoreHandoff This method runs at the target edge node and is in
charge of receiving the handoff object and
restoring the session and buffer. After that, the
method sends a HELLO message to the mobile
node in order to establish a new connection and
sends the HANDOFF_FINISHED message to the
old edge to inform it that the handoff is completed.

Thus, when a handoff request occurs, the old edge node
invokes the prepareHandoff method to create the proper
handoff object. To send it, the edge uses the sendHandoff
method. Lastly, when the target edge receives the handoff
object, it can invoke restoreHandoff to restore the session and
to start a new connection with the mobile node.

Another important aspect of any MEC-related handoff
process is which type of migration is performed. In the
literature on VM/container migration, two different migration
types are emerging as dominant: kill/restart and live
migration. In particular for containers, one can simply kill the
targeted container at the source edge and spawn a new one at
the target edge. This implies that, in the case a container/VM

Fig. 4 User Mobility Path Strategy

Fig. 3 Basic Handoff Protocol

is running at source edge, during the handoff process there is
a non-null slice of time when the associated service is
unavailable for final end users (downtime).

The kill/restart type typically works well if the aim is to
minimize the total handoff time [33]. In contrast, live
migration has become recently the most common type for VM
migration [34]. In live migration, the execution and memory
states need to be copied, storage IO redirected, and network
connections re-established. Among these, the memory copy
usually takes the longest time.

MEFS implements its specific mechanism for live
migration in the case of task offloading. Figure 5 shows an
overview of the phases of our live migration implementation.
When the handoff process is started, we put the MEFS
middleware into a special state (“handoff_mode”); in this
mode, the edge node stores each file access request sent by the
mobile user in a specific queue called DirtyQueue, without
performing the associated request. When the mobile node
performs the connection handoff from the old edge to the
target edge, the DirtyQueue is sent to the target edge. After
that, the target edge can restore all the requests contained in
DirtyQueue. In this way, we guarantee a short service
downtime, practically almost the same with the short time
interval when the mobile node is temporarily with no
connection. This mechanism works coupled with a symmetric
one running at the target edge.

After the mobile node has completed its handoff from the
old edge node to the target edge node, it cannot perform any
request at the target edge before the DirtyQueue is restored.
MEFS has two types of requests: READ and WRITE. It is
easy to understand that one cannot perform a consistent
READ operation if there are WRITE operations in the
DirtyQueue. To overcome this problem, we create a new
special state for our offloading middleware called
“restore_mode”: when the old edge notifies the target edge of
the intent to perform the handoff, the target edge enables the
“restore_mode”: once the mobile node connects to the target
edge and the “restore_mode” is active, all requests performed
by the mobile node are stored to a specific queue called
DelayedQueue. The requests are still stored into the

DelayedQueue until the DirtyQueue is restored. Finally, the
target edge node can restore the DelayedQueue and can
deactivate the “restore_mode”.

Migration can also be done by saving the latest data and
state from one edge node into the cloud and restoring them
onto the other edge node. Such a saving and restoring
mechanism has already been designed and implemented in
MEFS for fault-tolerance (Sec. IV-B). MEFS chooses to not
involve the cloud in migration management for three reasons:
1) the network latency is usually lower between edge nodes
than that between an edge node and the cloud; 2) a
decentralized design has better scalability; 3) the way that
edge nodes work autonomously and separately from the cloud
provides additional reliability.

B. Fault-tolerance
Failures may happen in a MEC environment due to various

reasons. One of the common reasons is network coverage. For
example, a mobile node is connected with an edge node in a
certain location and then is moving to a location where there
are no new edge nodes. Another common reason for failures
is a crash of an edge node.

In the case of a failure, MEFS works to prevent the latest
states of the files at the edge nodes from being lost or
becoming inaccessible, such that MEC-enabled mobile apps
can continue to run correctly on the smart phone alone or via
offloading to another edge. As shown in Figure 1, MEFS
exploits the cloud for this solution. At the beginning of the
session, the mobile node connects both with the cloud and the
edge and starts the session normally with the edge. The basic
idea is to maintain data/state consistency between the edge and
the cloud; this can be modeled as a traditional problem of
coherency between storage at different network layers. Given
that it is recognized that there is no best solution for every
deployment environment and application domain to detect
which data to move from the edge to the cloud and how
frequently to do it, we have decided to implement a solution
based on the Log-structured file system [35]. In particular, our
MEFS support for fault tolerance sends to the cloud each
WRITE operation performed by the edge; note that WRITE
operations are smaller and faster than a backup of the whole
data. In the case of a failure, the cloud will perform all the
received WRITE operations in order to restore the same
data/state conditions at the edge.

By delving into finer implementation details, we have
implemented a FaultToleranceManager that offers several
methods for handling failures, which may be invoked during
the four phases of our fault tolerance protocol:

1) Send WRITE operation: This is a functionality in the
FaultToleranceManager module that sends each WRITE
operation from the edge to the cloud. We have also created a
new event named FAULT_TOLERANT that contains the
WRITE operation. Each WRITE operation sent to the cloud
is stored in a queue named operationQueue.

2) New block: When the edge node creates a new file
block (this may happen when the edge node tries to write
more than 8KB, which is the standard block size) there is a
functionality that sends that block to the cloud. A new event
is created to support this: FAULT_TOLERANT_BLOCK.

3) PUSH message: Each time the edge node sends a
PULL request (i.e., the edge node retrieves the latest blocks

Fig. 5 Live Migration Overview

from the mobile node) to the mobile node, or the mobile node
sends a PUSH operation (i.e., the mobile node sends the latest
blocks to the edge node) to the edge node, we have to
propagate these operations via an associated PUSH operation
that sends all interested blocks to the cloud. Hence, the cloud
must clear the operationQueue (associated with the
PUSH_CLEAR event) because with this event it already has
the latest version of the blocks.

4) Restore: To detect failures at edge nodes, we have
implemented a simple mechanism based on ACK message
exchange between the edge node and the cloud. If the cloud
does not receive ACK messages from the edge after a
configurable time threshold, the cloud is triggered to restore
the session by performing all the operations in the
operationQueue; after that, the cloud starts a new connection
with the targeted mobile node.

V. MEFS PERFORMANCE EVALUATION
The goals of our experiments are three-fold: (1) evaluate

the MEFS mobility management performance, with a focus on
service downtime due to migration; (2) evaluate the MEFS
fault tolerance performance, with a focus on overhead; and (3)
compare the performance of MEFS on MEC vs. OFS on
MCC.

For experiments, we built two mobile apps: an edge-
assisted test app that replays the file access traces of real
mobile users and a video analytics app, assisted by the edge or
the cloud. We use the first app to evaluate the performance of
mobility management and test the overhead incurred by the
fault-tolerance mechanism in MEFS, and use the second app
to compare MEFS with OFS.

The experiments use a prototype implementation of MEFS
running on Android smart phones and Android x86 virtual
machines (VMs). The phones act as mobile nodes, and the
VMs act as edge nodes and cloud nodes. The VMs are hosted
in a Linux OS. Each VM runs a 64-bit Android-x86 OS
version 6.0, and has 2 virtual CPUs and 2 GB of RAM. The
phones communicate with the edge nodes and cloud nodes
using a secure WiFi network. The communication between
edge nodes and cloud nodes is through wired connections.

A. Mobility Management Performance
To verify that the migration process of an app component

from one edge node to another does not impose significant
impact to the quality of user experience, we run several
experiments, in which an edge-assisted app performs different
file I/O operations when the mobile device switches the edge
node it uses. We measured the service downtime and the total
time used for migration in two scenarios: (1) the app performs
READ operations on the mobile device at different rates: (2)
the app performs WRITE operations on the mobile device at
different rates. Selecting these two scenarios is to examine the
impact of migration separately for READ and WRITE
operations. The service downtime is the time period during
which MEFS cannot respond to any file access requests from
the edge component of the app. The total time used for
migration is the time period between the creation of a handoff
request and the time when the mobile node is connected to a
new edge node and the latter finishes the restore phase.

The results in Figure 6 show that MEFS works well during
migrations, and thus it is practical in real-life scenarios.
Migrations impose minimal service downtime, which is
usually lower than 150ms. For user QoE, 300ms is considered

(a) Overhead of fault tolerance mechanism

(b) Restore time at the cloud

Fig.7 Fault-tolerance performance evaluation. The overhead was
calculated with several payload sizes. The restore time depends linearly on
the number of messages to restore.

(a) The edge-assisted app performs READ operations

(b) The edge-assisted app performs WRITE operations

Fig. 6 Service downtime and total time of migration when the number of
file operations performed by an edge-assisted app is varied from 0 to 200
operations/second.

as an acceptable delay [36, 37]. The service downtime of
MEFS incurred by migration is lower than this value. The total
time used for migration is larger than the service downtime. It
is longer than 300ms when the app performs more than 100
READ or WRITE operations per second. However, this does
not reduce QoE. Since migrations happen in the background
and are transparent to apps, except for the service downtime,
users may not experience any degraded service for most of the
time.

We also notice that the total time to finish a migration is
higher when the app performs WRITE operations than that
with READ operations. This is because the total time used for
migration is mainly determined by the amount of data that
MEFS must copy from one node to the other. When the app
performs WRITE operations, there will be more data to be
copied to the destination edge node.

B. Fault-tolerance Performance of MEFS
MEFS sends WRITE operations from an edge node to the

cloud to tolerate faults at the edge layer. The cost of this
mechanism is determined by the amount of data to be
transferred between the edge node and the cloud (i.e., the total
number of messages and the data’s payload). To evaluate the
cost, we have measured the amount of data transfer in a few
experiments.

Figure 7 shows the amount of data transfer when the
number of messages is varied from 1 to 200, and the payload
size is varied from 10B to 8KB. The highest overhead (2MB)
is incurred when the number of messages is 200 and payload
is 8KB. Since this overhead happens over the wired network,
we consider it acceptable for fault-tolerance. The overhead is
not proportional to the payload sizes. This is because the
overhead is determined by message sizes, which are not
proportional to the payload, as shown in Table II.

TABLE II. SIZE (IN BYTE) OF THE WRITE MESSAGES

We also measured the time to restore the state of MEFS in
an edge node based on the data saved in the cloud, and show
the results in Figure 7. The restore time is also determined by
the amount of data to be copied between the cloud and the
edge node (i.e., the total number of messages and the data’s
payload). The restore time increases with the number of
messages, as shown in Figure 7 (the size of each message is
1376 Byte). When more than 100 messages are needed, the
restore time increases to more than 300ms. Thus, we noted
that to limit the restore time within 300ms, the amount of data
transferred between the cloud and the edge node could be
smaller than 200KB.

C. Comparison of MEFS on MEC vs. OFS on MCC
To evaluate the benefits of using MEC and MEFS over

MCC and OFS, we have developed a video analytics
application for face recognition purpose. According to
Ananthanarayanan et al [38], large-scale video analytics may
well represent the killer application for edge computing. The
app captures real-time video streams received by a mobile

user, analyzes the video streams for faces, recognize people
from these faces, and displays the faces. The core component
of this app for analyzing the streams, including face
recognition with a machine-learning algorithm, runs at in the
edge/cloud. The progressive knowledge is also kept in the
edge/cloud. On the mobile side, the app component is mainly
to send real-time video streams to the edge/cloud, and receive
the photos generated by the analysis.

In our tests, the cloud entity is a virtual machine hosted on
Amazon Web Services Cloud equipped with 8 GB RAM and
4 virtual cores; the edge is a Linux box (Ubuntu 16.04
distribution) with 3.1 GHz Intel Core i5 and 4 GB RAM. The
mobile node is connected to the edge node via WiFi, and the
edge node is connected to the cloud via Ethernet. We have
recorded continuous videos for 10 minutes with three different
video qualities: a low quality video with 720x480 resolution,
a medium quality video with 1280x720 resolution, and a high
quality video with 1920x1080 resolution.

We have measured the response time of the app from the
mobile component of the app streaming the video to its
edge/cloud component until it receives the photos. The
response times are shown in Figure 8. Compared to offloading
to the cloud, offloading to the edge can significantly reduce
the time spent on data transfers and thus reduce response time.
For the videos with different qualities, when offloading tasks
to the cloud, the response times are dominated by network
communication. Due to the high network overhead, the
powerful computation capabilities at the cloud cannot
effectively reduce the response times. When offloading tasks
to the edge, the communication bottleneck can be effectively
mitigated. Though the edge node is not as powerful as the
cloud node, and the edge node spends more time on
computation than the cloud node, the overall response times
are lower when offloading tasks to the cloud. The advantage
of using edge is more pronounced for the video with the
highest quality. The response time with the edge is 50% lower
than that with the cloud.

These tests highlight the necessity of using MEC for data-
intensive apps and justify the design of MEFS.

VI. CONCLUSION
This paper presented MEFS, the first mobile edge file

system for edge-assisted mobile apps. MEFS provides strong
consistency with low latency, and it overcomes MEC
challenges such as mobility management and fault-tolerance.
Furthermore, MEFS is completely transparent for edge-
assisted mobile apps developers. We have implemented the

PAYLOAD SIZE OF MESSAGE
10 1376

1024 2388
2048 3412
4096 5460
8192 9556

Fig. 8 Average response time of the video analytics app

MEFS in Android, and we evaluated it under several
experimental scenarios based on real apps and real mobile user
traces. The experimental results demonstrated that MEFS can
effectively support user’s mobility and fault-tolerance at the
edge nodes. Moreover, we proved that MEFS works with low
latency at the edge nodes. Therefore, MEFS can be used for
many types of context-aware mobile apps, including apps that
have tight real-time constraints such as video streaming,
augmented reality, and mobile gaming.

ACKNOWLEDGMENT
This research was supported by the National Science

Foundation (NSF) under Grants No. CNS 1409523, SHF
1617749, and DGE 1565478. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF.

REFERENCES
[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud

computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–
1611, 2013.

[2] I. Zhang, A. Szekeres, D. Van Aken, I. Ackerman, S. D. Gribble, A.
Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in OSDI’14, 2014, pp.97–
112.

[3] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and H.
Debnath, “Avatar: Mobile distributed computing in the cloud,” in
MobileCloud ’15, 2015.

[4] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in
OSDI ’12, 2012, pp. 93–106.

[5] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in MobiSys ’10, 2010, pp. 49–62.

[6] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in EuroSys 2011,
2011, pp. 301–314.

[7] “Mobile-Edge Computing – Introductory Technical White Paper”:
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-
edge_computing_-_introductory_technical_white_paper_v1%2018-
09-14.pdf, [Online; accessed 23-Jan-2019].

[8] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D.
Noveck, D. Robinson, and R. Thurlow, “The NFS version 4 protocol,”
in SANE 2000, 2000.

[9] N. R. Paiker, J. Shan, C. Borcea, N. Gehani, R. Curtmola and X. Ding,
“Design and Implementation of an Overlay File System for Cloud-
Assisted Mobile Apps,” in IEEE Transactions on Cloud Computing,
2017.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Infocom ’12, 2012, pp. 945–953.

[11] C. You and K. Huang, “Multiuser Resource Allocation for Mobile-
Edge Computation Offloading,” 2016 IEEE Global Communications
Conference (GLOBECOM), 2016, pp. 1-6.

[12] G. Orsini, D. Bade and W. Lamersdorf, “Computing at the Mobile
Edge: Designing Elastic Android Applications for Computation
Offloading,” 2015 8th IFIP Wireless and Mobile Networking
Conference (WMNC), Munich, 2015, pp. 112-119.

[13] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the
coda file system,” ACM TOCS, vol. 10, no. 1, pp. 3–25, 1992.

[14] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan, “Exploiting
weak connectivity for mobile file access,” SIGOPS Oper. Syst. Rev.,
vol. 29, no. 5, pp. 143–155, 1995.

[15] R. Tobbicke, “Distributed file systems: Focus on andrew file
system/distributed file service (AFS/DFS),” in MSST’94, 1994, pp.
23–26.

[16] Y. Dong, H. Zhu, J. Peng, F. Wang, M. P. Mesnier, D. Wang, and S.

C. Chan, “RFS: A network file system for mobile devices and the
cloud,” SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 101–111, 2011.

[17] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu, “Reliable,
consistent, and efficient data sync for mobile apps,” in FAST’15, 2015,
pp. 359–372.

[18] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V. Madhyastha,
and C. Ungureanu, “Simba: Tunable end-to-end data consistency for
mobile apps,” in EuroSys ’15, 2015, pp. 7:1–7:16.

[19] B. Atkin and K. P. Birman, “MFS: an adaptive distributed file system
for mobile hosts,” in Cornell University Technical Report, 2003.

[20] E. B. Nightingale and J. Flinn, “Energy-efficiency and storage
flexibility in the blue file system,” in OSDI ’04, 2004, pp. 363–378.

[21] I. Lujic, V. D. Maio and I. Brandic, “Efficient Edge Storage
Management Based on Near Real-Time Forecasts,” 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC),
Madrid, 2017, pp. 21-30.

[22] P. Hao, Y. Bai, X. Zhang, and Y. Zhang, “Edgecourier: an edge-hosted
personal service for low-bandwidth document synchronization in
mobile cloud storage services,” ACM/IEEE Symp. Edge Computing
(SEC '17).

[23] J. Gedeon, N. Himmelmann, P. Felka, F. Herrlich, M. Stein, M.
Mühlhäuser, “vStore: A Context-Aware Framework for Mobile Micro-
Storage at the Edge,” Mobile Computing, Applications, and Services.
MobiCASE 2018.

[24] A. Zanni et al., “Automated Offloading of Android Applications for
Computation/Energy-usage Optimizations,” in Infocom Demo Papers,
2017.

[25] M. A. Khan et al., “Moitree: A Middleware for Cloud-Assisted Mobile
Distributed Apps,” 2016 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud), Oxford,
2016, pp. 21-30.

[26] H. Debnath et al., “Collaborative Offloading for Distributed Mobile-
Cloud Apps,” 2018 6th IEEE Int. Conf. Mobile Cloud Computing,
Services, and Engineering (MobileCloud), 2018, pp. 87-94.

[27] “Aspectj,” https://www.eclipse.org/aspectj/, [Online; accessed 23-Jan-
2019].

[28] “Kryonet,” https://github.com/EsotericSoftware/kryonet, [Online;
accessed 23-Jan-2019].

[29] “ETSI GR MEC 018, ”
https://www.etsi.org/deliver/etsi_gr/MEC/001_099/018/01.01.01_60/
gr_MEC018v010101p.pdf, [Online; accessed 23-Jan-2019].

[30] P. Bellavista, A. Corradi and C. Giannelli, “A Unifying Perspective on
Context-Aware Evaluation and Management of Heterogeneous
Wireless Connectivity,” in IEEE Communications Surveys &
Tutorials, vol. 13, no. 3, pp. 337-357.

[31] P. Bellavista, A. Corradi and C. Giannelli, “Differentiated
Management Strategies for Multi-Hop Multi-Path Heterogeneous
Connectivity in Mobile Environments,” in IEEE T. Network and
Service Management, vol. 8, no. 3, pp. 190-204, September 2011.

[32] G. Cardone, A. Corradi, L. Foschini and R. Ianniello, “ParticipAct: A
Large-Scale Crowdsensing Platform,” in IEEE T. Emerging Topics in
Computing, vol. 4, no. 1, pp. 21-32, Jan.-March 2016.

[33] Y. C. Tay, K. Gaurav and P. Karkun, “A Performance Comparison of
Containers and Virtual Machines in Workload Migration Context,”
2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW), Atlanta, GA, 2017, pp. 61-66.

[34] C. Clark , K. Fraser , S. Hand , J. G. Hansen , E. Jul , C. Limpach , I.
Pratt , A. Warfield, “Live migration of virtual machines,” Proceedings
of the 2nd conference on Symposium on Networked Systems Design
& Implementation, p.273-286, May 02-04, 2005.

[35] M. Rosenblum and J. K. Ousterhout. 1992. “The design and
implementation of a log-structured file system,” ACM Trans. Comput.
Syst. 10, 1 (February 1992), 26-52.

[36] “Quality of Service Design Overview,”
http://www.ciscopress.com/articles/article.asp?p=357102, [Online;
accessed 27-Feb-2019].

[37] S. J. Thorpe and M. Fabre-Thorpe, “Seeking Categories in the Brain,”
American Association for the Advancement of Science, vol. 291, no.
5502, pp. 260-263, January 2001.

[38] G. Ananthanarayanan et al., “Real-Time Video Analytics: The Killer
App for Edge Computing,” in Computer, vol. 50, no. 10, pp. 58-67,
2017.

