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1 Introduction

Internet-based social networking applications such as
Facebook (2004), MySpace (2003) and LinkedIn (2002)
have experienced a huge success during the last few years.
Existing location technologies (Bahl and Padmanabhan,
2000; Enge and Misra, 1999; LaMarca et al., 2005;
Priyantha et al., 2000), which proliferated on many mobile
devices such as smart phones, can be used to build on
this success and deliver location-aware social computing
applications. With research (Jones et al., 2007) showing
that users are increasingly willing to share their location
in return for services, these applications can provide
geo-social recommendations about people, places and events
of interests anytime, anywhere. The first steps in this direction
have already been taken by a number of context-aware
recommendation systems (Espinoza et al., 2001; Heijden
etal., 2005; Takeuchi and Sugimoto, 2005; Yang et al., 2008).
While these systems consider location or user preferences
when making recommendations, they do not take into account
group membership and associations between groups and
places. If captured and properly used, group membership
information can enhance the user profiles, thus improving
the quality of people-to-people recommendations (Jones
etal.,2004). Similarly, group-place associations can improve
the quality of place recommendations by enhancing the
semantics of the place with social information. However,
identifying social groups and their associated places is a
challenging task.

Social groups can be divided as either formal or informal.
Formal groups (e.g. students in a class, faculty members of
a department) have a formal organisational structure as well
as advertised meeting places and times. These groups and
their meeting places can easily be identified using web sites,
databases, notice boards or mailing lists. On the other hand,
informal groups are very hard to identify due to their volatile
or semi-permanent nature. Examples of informal groups
include a study group for a class, faculty that routinely have
lunch together, coworkers who play poker once in a while,
or neighbours who go together to the mall on Saturdays.
These groups tend to evolve out of collaborating individuals
with similar interests, and they are typically unknown to
people outside the group. Unlike formal groups, their
information (e.g. type, members, meeting places and times)
is not registered with an information database or service.
However, this information can be used, while respecting
privacy constraints, to provide valuable recommendations
that improve users’ geo-social experience. For example, new
students can learn about popular hangouts for social activities
on campus or faculty members can learn about groups of
students meeting to discuss a certain research topic.

This paper presents Group-Place Identification (GPI),
an algorithm for automatic identification of informal
social group members and group-place associations using
community mobility traces. GPI can be incorporated
in different location-aware social computing applications
that deliver geo-social recommendations. While users can
potentially provide data about informal social groups and
places, we believe that an automatic method is much more
accurate for two reasons. Firstly, it is possible that only
a small fraction of the users will introduce these data

manually. And secondly, the information introduced by users
can contain errors either by mistake or maliciously. GPI
can use mobility traces acquired from any type of location
technology. From a user privacy perspective, however,
systems that compute the location on the mobile devices
(e.g. Enge and Misra, 1999; La Marca et al.,, 2005) are
preferable because they give users control over what parts
of mobility trace are shared.

So far, mobility traces have only been used in algorithms
that identify significant places for individual users, such
as Kang et al. (2004) and Hightower et al. (2005).
To the best of our knowledge, no work has been done
on using community mobility traces to identify social
groups and places that have importance for a group of
people. While place identification algorithms typically deem
a place significant based on repeated patterns of user’s
presence at the place, identifying group members and
group-place associations is much harder because informal
groups do not have a clear pattern in terms of group
meeting times, group composition or group member
attendance. Therefore, GPI relies on repeated user
copresence at the same place to determine the group
members, and consequently the meeting places. The
underlying assumption is that group members have
a much higher Degree of Copresence (DCP) than
non-group members (i.e. the DCP is defined as the total
number of times two members were copresent divided by
the total number of group meetings). The fact that group
members are typically present only to a fraction of the
meetings and non-group members can possibly be present at
meetings raises the following question: What is the required
DCP between group members considered by GPI?

We performed a theoretical analysis that determined
the optimal required DCP that allows GPI to balance the
trade-off between group member identification percentage
and false positives percentage (i.e. non-group members
wrongly identified as group members). Based on this
analysis, we also calculated the expected results of the GPI
algorithm. We also implemented GPI and ran extensive
simulations. The results were in tune with the expected
theoretical values. GPI was able to identify between 90 and
96% of group members with negligible false positives when
the average meeting attendance was at least 50%.

Finally, we used the GPI implementation to identify
groups and places on our campus using mobility traces
collected from students and faculty. To successfully
integrate GPI into a mobile computing and communication
infrastructure, it is essential that this infrastructure provides
support to collect accurate and continuous user location data
both indoors and outdoors. The hardware infrastructure has
to be cheap and easily deployable in order to enable location
collection across large areas; as such, software solutions
that take advantage of existing hardware infrastructure are
preferable. Furthermore, systems that compute the location
on mobile devices and allow users to decide when and what
parts of the mobility traces are shared encourage the early
technology adoption for privacy-conscious users.

Considering these requirements, we chose the WiFi-based
Intel PlaceLab (LaMarca et al., 2005) location engine that
computes location on mobile devices using the position and
signal strength of visible access points. This system takes
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advantage of existing access points, which are relatively
densely deployed in cities. Therefore, it can work both
indoors and outdoors across large urban areas. In our
campus, we have at least three visible access points almost
everywhere, and consequently, we obtained an accuracy of
10-15 m, which is good enough for GPI. However, one
major concern with this location engine is that it could cause
significant battery consumption, especially when location
is computed and delivered to a server frequently. Our
experiments (Anand et al., 2007) using iMate KJam smart
phones showed that the battery lasts for about 5-6 hr when
location is computed and delivered every 30 sec, which is
sufficient for GPI. This result demonstrated that GPI and
geo-social mobile recommendation applications are feasible
with current technologies. We then collected mobility traces
over a one-month period from smart phones carried by users
on our campus. GPI successfully identified all groups that
met regularly during that period. Additionally, the group
places extracted from these traces were identified with good
accuracy.

The rest of this paper is organised as follows.
Section 2 presents a number of applications that motivate
the importance of identifying group membership and
group-place associations. Section 3 describes our algorithm.
Section 4 presents the theoretical analysis and provides
guidelines for setting the constants of our algorithm function
of the environment conditions. Section 5 shows simulation
and experimental results. Related work is discussed
in Section 6, and this paper concludes in Section 7.

2 Motivation

This section considers a college campus scenario to illustrate
the two main categories of applications that can benefit
from information about informal social group membership
and place-group associations. The GPI algorithm can assist
recommendation applications with information about groups,
such as

1 members and their profile information

2 type, which can possibly be inferred from user profiles
and the meeting place

3 meeting times.

Additionally, it can provide information about places,
such as

1 types of groups meeting at a place and their corresponding
meeting times

2 statistical information about groups that meet at a place,
such as the total number of groups and the average size of
groups.

Group/person recommendations

o For students: group membership information is leveraged
to build social networks. For example, if a student
needs help with a math assignment, an application
can analyse her social network and discover that one

of the members of her poetry reading group has
a friend who is a math major; subsequently, the
math major will be recommended to the person who
needs help. A different application is social matching
that provides recommendations for dating partners on
campus. For instance, people who are members of
the same groups are excluded from recommendations
(i.e. they know each other already), while people who
are members in similar groups and visit similar places are
higher ranked in recommendations.

e For faculty: a faculty member looking to recruit new
students to work in his/her lab is recommended a group of
students who meet routinely to discuss research papers.

e For administration: the identified groups are used for
group-centric information dissemination. For example,
research groups are notified about upcoming seminars
in their research area, and groups of students regularly
present on basketball courts are notified about an
upcoming intra-mural basketball tournament.

Place recommendations

e For students: a new student finds out information about
popular spots for social activities on campus. For instance,
a CS student could find out that the game room of the
student centre is generally occupied by other CS students
on Tuesday evenings.

e For faculty: a faculty member uses information about the
places where students from his department hang out to
post fliers about an upcoming course.

o For administration: the administration discovers places
that need improvement on campus by checking the
statistical information about places (e.g. type, size and
demographics of the groups that meet at a place). For
instance, the settings and ambiance in certain rooms of the
student centre can be modified according to the number
of students who spend time there.

3 The GPI algorithm

GPI takes as input the users’ mobility traces obtained via
any location technology. The mobility traces of the users
consist of an array of location points indexed by time. To
have enough data for GPI, mobility traces should be collected
over an extended period of time. The goal of GPI is to analyse
these traces to identify the members of informal groups and
the meeting places of these groups. To understand what type
of group information GPI can extract from mobility traces,
we start by presenting a characterisation of typical informal
groups.

o Member structure: the number of group members can
vary greatly. For instance, a study group could have
3-5 members, a basketball group could have
10-15 people, and a group of people attending
routinely seminars on wireless networks could go up to
30-50 people. Additionally, members are typically shared
among groups, and they join and leave groups frequently.
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Member attendance: group members do not have a pattern
for meeting attendance, with the attendance frequency
typically varying form 100% to 50%. Consequently, the
number of members at the group meetings keeps varying
over time.

Meeting time: unlike with the formal groups, there is
no guarantee that informal groups meet regularly
(e.g. weekly at the same time).

Meeting place: groups are expected to share meeting
places over time, such as different study groups in the
library. Even worse, different groups can meet at the same
place simultaneously. For instance, two different groups
of students regularly have lunch in the same part of the
cafeteria.

Since these characteristics emphasise the lack of patterns
of informal groups, we decided that the only characteristic
amenable to automatic identification is member copresence
at the group place. Routine copresence among group

Figure 1 GPI algorithm pseudo-code

members is almost guaranteed even though it might vary over
time. Therefore, GPI's challenge is to first detect repeated
copresence among users and then to analyse it to determine
the group members and the group places.

Figure 1 presents the pseudo-code for our algorithm. GPI
starts by identifying the important places for individual users.
For this purpose, we use the clustering algorithm proposed
by Kang et al. (2004). This algorithm performs time-based
clustering on users’ mobility traces; it starts by analysing
the trace points ordered by timestamps and adds them to
a cluster as long as the next point is within a permissible
distance d of the existing cluster. The cluster is closed if
the trace points move away from it. If the duration of such a
cluster is significant (more than time ¢), the cluster represents
a significant visit. The newly identified place is represented
by the average of the geographical coordinates of these points.
We set the distance threshold d to 30 m and the time threshold
t to 10 min as recommended by the authors.

For each place that a user (say u;) visited, we check if
there are groups associated with this place. The function

Inputs

U = (uy...u,) — Input set of all users

M = (m;...m,) — Mobility traces for users (u; ...
Constants

t — Minimum time duration for significant cluster
d — Maximum distance between clusters
d., — Maximum distance between copresent users

M1 — Maximum number of iterations
EV F — Estimated group member visit frequency

The Algorithm
For each user u; in U

For each place P;; in SP;

Call IdentifyGroupMembers (u;, P;;)
While CI < M1

CI=CI+1
Call IdentifyMultipleGroups(DG M)
Output DGM

Function IdentifyGroupMembers(u;, P)
NV = NumberOfVisits(u;, P)
If NV>MVC

Add u; to DGM
For each user u; in U

If RCP <CP/EGM
Add u, to DGM
Remove data for user u; at place P from S P;
Mark u; as processed in DGM

t., — Minimum time overlap for user visits to determine copresence
RC P — Required degree of copresence to determine a group member

MYV C — Minimum visit count to determine a potential group place

S P; = IndividualPlaces(m;, t, d) /* Set of significant places for u; */
DGM = empty /* Set of discovered group members */

C1I = 1/* Current number of iterations to identify group members */

Pick u, /* Random unprocessed user from DGM */
Call IdentifyGroupMembers (uy, P;;)

EGM = NV /EV F /* Estimated total group meetings */

C P = CoPresenceCount(u;, uy, P, d.p, tp)
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IdentifyGroupMembers uses copresence information to
identify the group members. This function first checks if the
user u; has a significant number of visits at the place (say P) to
ensure that the algorithm has sufficient visit data for analysis.
This is done by setting a constant for the minimum number
of visits, Minimum Visit Count (MVC). Setting constants in
GPI is an essential part of the algorithm given the volatile
nature of informal social groups. With changing operational
environments, the constants can be set differently to achieve
better performance. Section 4 discusses the criteria used
to set the values of all constants in GPI. If the number of
visits of u; at P is at least MVC, the function calculates the
estimated number of group meetings based on the Estimated
Visit Frequency (EVF). Estimation of the group meetings is
required because it is not possible to determine the actual
number of group meetings from the place visit data of a user.

Next, for each other user uy, the function analyses her
place visit data to check potential copresence with u; at P.
This information is used to build a copresence matrix with
respect to u; and P as illustrated in Table 1. For copresence
to be considered in the matrix, the distance between the
identified places for two users should be less than d., and
the time overlap between the visits should be at least 7. The
function uses the copresence matrix to compute the DCP of
u; with all the other users. The DCP is defined as the total
number of times two users are copresent divided by the total
number of group meetings. If the calculated DCP between
u; and uy, is greater than the Required Degree of Copresence
(RCP), uy is added to the set Discovered Group Members
(DGM). Finally, the function removes the data for &, at place
P and marks the user as processed such that the algorithm
will not analyse u; at P again.

Table 1 Copresence matrix for user u; at place P, wherein 1
implies copresence with another user and 0 otherwise

Visit u; u Uz Uy
number

(u; at P)

1 1 1 1 1
2 0 1 1 0
3 1 1 0 0
4 1 1 0 1
5 1 0 1 0
6 0 1 0 1

In the main part of the algorithm, the function
IdentifyGroupMembers is repeated with an unprocessed user
from the set DGM to discover more group members. This is
necessary because it is possible that certain members were
not present at the group meetings when the first user was
present, but they were sufficiently copresent with the new
user picked up in this iteration. However, the probability of
encountering such users decreases significantly with every
subsequent iteration. To speed up the running time, this
process is repeated for Maximum Iterations (MI) times (less
than the number of users) because no new group members
are expected to be identified if more iterations are executed.

Finally, GPI analyses DGM to check for multiple groups
at the same place, by calling IdentifyMultipleGroups. In
rare cases, it is possible that the users in DGM belong to
two or more different groups at the same place. This may
happen when there are multiple groups at the same place,
and several shared members have sufficient copresence with
members of all the groups. However, it is easy to detect and
divide such groups considering the observation that besides
the shared members, members of one group do not have
enough copresence with members of another group. For
example, suppose that there are two groups (u1, U3, u3) and
(u3, us, us) that routinely hang out at the same place P. Then
u; and u, have significant copresence with each other and u3,
but not with u4 and us. Similarly u4 and us have significant
copresence only with each other and u3. We successfully
tested our procedure to split groups, but we do not present
the details due to the lack of space.

Once the algorithm completes, we need to define the
identified group place P. We compute the average of the
geographical coordinates of all trace points of all visits by all
users at P (let this be C). C is defined as a point, but most
applications are interested in well-defined places rather than
points. P is determined by looking at the actual geographies
around the point C. For example, if C falls inside an office
building, P is defined as all the rooms that overlap with a
circular area of radius E around C, where E is the maximum
error in determining C (i.e. this error is introduced by the
location technology). If the application needs to associate a
place with only one room, then P is considered to be the
room that contains C.

GPI executes off-line, and as such, its running time is
not essential for the applications. Nevertheless, we analysed
its complexity to estimate how long it would take to identify
groups and places for a large user population. The asymptotic
running time of the algorithm is O (n* x v + nt), where n is
the number of users, v is the maximum number of significant
visits for a user and ¢ is the maximum number of mobility
trace points for a user. For instance, let us assume that the
user population is 10, 000, and we collect location data for
every user at every 10 sec, for 6 hr a day, during one month
period. Running on a medium size server, GPI will complete
in several hours, which is acceptable considering that it is
executed rarely.

4 Analysis of constants in GPI

As discussed in the previous section, GPI uses six constants
(RCP, MVC, EVF, MI, d,, tp) that affect significantly the
performance of the algorithm. It is important to note that
the values of these constants do not change once they have
been set for a certain environment. However, with changing
operational environments, it is possible to achieve better
identification results by altering the values of these constants.
For example, if we know that people meet more frequently
in a particular environment, we can set the estimated group
member visit frequency, EVF, higher. Similarly, we can set
the MVC higher, if we know that groups meet very frequently.

Our goal in this section is to provide the reader with an
understanding of how these constants affect the algorithm,
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a theoretical analysis that can be used to alter the values of
these constants with changing environments and guidelines
for setting these values such that the algorithm works well in
most situations. We start with several definitions and lemmas
that will be used in our analysis. For the sake of brevity, we
omit the straightforward proofs of the lemmas.

Definition 1: The expected number of visits at a group
meeting by a user X is defined as XF x TGM, where XF
is the visit frequency and T G M is the total number of group
meetings.

Definition 2: We define two random variables, C P and
Degree of Copresence (DCP), as follows:

o CP =lifusers X andY are copresent at a group meeting
and 0 otherwise.

o DCP, the DCP between X and Y w.rt. TGM, is defined
as the number of times X and Y were copresent divided
by the total number of group meetings.

Lemma 1: At any group meeting, the probability that X
and Y are copresent is P[CP = 1] = XF x YF, and
the probability that they are not copresent is P[CP = 0] =
1—-XF xYF.

Lemma 2: The expected DCP between X and Y w.r.t. the
total number of group meetings is EIlDCP] = XF x YF.

Lemma 3: The probability that the DCP between X and Y
wrt. TGM is at most A is given by P[DCP < A] =

S AXTGM TCZ?M) x (P[CP = 1])) x (P[CP =

i=0
O])TGMfi.

Lemma 4: The probability that the DCP between X and Y
with respect to TGM is at least A is given by P[DCP >

Al=YToM ( TfM )x(P[CP — 1])i x (P[CP =

O])TGM—i.

4.1 Required degree of copresence (RCP)

GPI assumes that group members must have a DCP of at
least RCP. Finding an ideal value for RCP is hard as the
DCP among group members and between a group member
and a nongroup member varies with different groups. Using
the assumption that group members would generally be
copresent more than non-group members, the ideal value of
RCP should be set such that the RCP for all group members
is greater than RCP and for non-group members is less than
RCP. As Lemmas 3 and 4 show, this degree is a function of
the frequency of group place visits; generally, this frequency
is higher for a group member (GMF) than a non-group
member (NGMF).

Let us assume that all non-group members have
NGMF= 0.1 and all group members have GMF = 0.5. These
values are relatively high for non-group members and low
for group members. As such, this example is close to a worst
case scenario. Using Lemma 3, given the total number of
group meetings and the visit frequencies of two members,
we can calculate the probability that DCP is greater than a
certain value A. For example, let us consider a random group

member X and TGM= 20. The probability that the DCP
between X and any other group member is greater than 0.2 is
0.77. Therefore, since X was selected randomly, we expect
to identify 77% of the group members. Note that this analysis
also shows that the identification percentage is independent of
the group size. In the same way, we compute the probability
that the DCP between a non-group member and any group
member is greater than RCP= 0.2. This probability gives
us the percentage of false positives (i.e. non-group members
wrongly identified as group members), which in this case
is only 1.5%.

As we will discuss later in this section and in the following
section, the identification percentage is much higher (up to
98%) when GMF is between 0.7 and 0.9. We can achieve
similar results even for GMF= 0.5, as shown in Figure 2
by setting RCP= 0.1, but the number of false positives
increases significantly in this case (Figure 3). A better
solution for a higher identification percentage, while
maintaining a low percentage of false positives, is to run
the algorithm for several iterations as explained in Section 3.

Figure 2 Expected percentage of group members identified in
the first iteration

XF=0.5 YF=0.5

2 —+— TGM =10
%13100% R —&— TGM = 15
5 2 gng —&— TGM =20
83 70% —e— TGM =50
£3 60% '
c .2 ()
85 50%
o 5 40%
5 2 30%
QL o 20%
8 € 10%
g 0%
L

0.1 0.2 0.3 0.4

RCP — Required degree of copresence between
Xand Yw.rt. TGM

Figure 3 Expected percentage of false positives in the first

iteration
a XF=0.5 YF=0.1
3 —+—TGM =10
?  100% —&—TGM =15
S 3 90% —
29 2%/ TGM =20
= @ 80%
o 8 70% —8—TGM = 50
2.8 60%
< 2 50%
g 5 40%
o € 30%
2§ 20%
o E 10%
S 0%
o
& 0.1 0.2 0.3 0.4
RCP — Required degree of copresence between
Xand Yw.rt. TGM

For instance, the identification percentage goes up from 77%
to 90% after the second iteration. Let us assume that a group
member X was identified in the first iteration and another
group member Y was not identified. If we start the second
iteration with X, the probability that Y is identified in the
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second iteration can be computed as the product of three
terms:

1 the probability that X was identified in the first iteration

2 theprobability that Y was notidentified in the first iteration
(obtained using Lemma 3)

3 the probability that Y is identified in second iteration.

For TGM= 20, GMF= 0.5 and RCP= 0.2, this product
is 0.13. Therefore, we expect to pick up 13% more group
members in the second iteration and about 1.2% more
non-group members. Figures 4 and 5 show the results
after two iterations while varying RCP and TGM. We note
that as TGM increases, GPI is expected to pick up more
members when the required RCP is close to the expected DCP
(the expected degree can be calculated using Lemma 4). This
result is explained by the law of large numbers (Casella and
Berger, 2001). We performed a similar analysis for the next
few iterations and discovered that the expected identification
percentage of group members goes up by only 2% in the third
iteration and does not increase significantly after that.

Figure 4 Expected percentage of group members identified
in the second iteration

XF=0.5YF=05

—4—TGM =10
| —@—TGM =15
—&— TGM =20
—&— TGM = 50

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

OO/O

Expected percentage of group
members discovered

0.1 0.2 0.3 0.4
RCP — Required degree of copresence between
Xand Yw.rt. TGM

Figure 5 Expected percentage of false positives in the
second iteration

o XF =0.5, YF=0.1
3 —+—TGM =10
?  100% —8—TGM = 15
S 3 90% 3
c g 80"/0 TGM =20
N (]
g 3 70% —&— TGM =50
22 60%
£ 5 50%
§ 5 40%
) -g 30%
o5 20%
o € 10%
3 0%
[eR
] 0.1 0.2 0.3 0.4
RCP — Required degree of copresence between
Xand Yw.rt. TGM

Considering the results presented so far and the
trade-off between high identification percentage and
low false positive percentage, RCP= 0.2 provides the best
results when GMF= 0.5 and NGMF= 0.1. We performed a

similar analysis, by selecting different visit frequencies for
group members. Table 2 shows the acceptable RCP values
for each of these cases, where the criteria for acceptance
are: more than 85% of group members and less than 3% of
non-group members are expected to be identified in the first
iteration, and more than 95% of group members and less than
6% of non-group members are expected to be identified by
the third iteration. These results and the simulation results
from the following section made us decide that RCP= 0.2 is
a value that works well in most situations.

Table 2 Acceptable values for RCP when TGM= 20

GMF (XF, YF) RCP
(0.7,0.5) 0.2-0.25
(0.7,0.7) 02-04
(0.9, 0.5) 0.25-0.35
(0.9,0.7) 0.25-0.5
(0.9, 0.9) 0.25-0.7

4.2  Estimated group member visit
frequency (EVF)

EVF is computed as the number of times a group member
attends a group meeting divided by the total number of
group meetings. Using this value and the actual number of
user visits, we compute the estimated total number of group
meetings EGM. For example if the actual number of user
visits at a place is 10 and the estimated group member visit
frequency is 0.5, then the estimated total number of group
meetings will be 20. Note that when we analyse users’ visit
data, it is not possible to determine the actual visit frequency
of group members and the total number of group meetings.

We recommend setting EVF to the mean value of 0.5
since this value implies the least expected variation in the
performance of the algorithm. Note that EVF is used to
estimate EGM, which is further used to calculate DCP and
compare it with RCP. If EVF= 0.5 and the actual visit
frequency is 0.7, we overestimate the total number of group
meetings EGM. Therefore, if RCP= 0.2, the algorithm
would behave as if RCP was set to 0.28. Similarly, if actual
visit frequency is 0.9, the effective value of RCP is 0.36.
Comparing these values with the results from Table 2, we
observe that they are within the range of acceptable values
for RCP.

4.3  Minimum visit count (MVC)

MVC denotes the minimum number of visits a user should
have at a place before analysing it as a group place;
it ensures sufficient user presence at the potential group
place and sufficient data for analysis. As Figure 3 shows,
the performance deteriorates significantly in terms of the
expected percentage of identified group members when
TGM= 10. This is primarily due to smaller data sets,
which lead to higher variance from the expected value. The
performance is, however, more stable when TGM is 15 or
higher. Therefore, we recommend setting MVC to 7.
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4.4  Maximum iterations (MI)

By extending the analysis presented in Figures 2-5, we
observed that subsequent iterations after the third one do not
significantly increase the expected identification percentage,
but on the other hand, increase the expected percentage
of false positives. Therefore, we recommend setting the
maximum number of iterations MI to 3.

4.5 Maximum distance between copresent
users (d.,)

dcp is the maximum distance between copresent users and
is affected by two factors. The first is the actual geography
of the place where the algorithm operates. For example, if
the group places are big halls, even users that are quite far
apart are copresent, and therefore, d, should be set high.
On the other hand, if the places are regular size offices, setting
d.p too high might wrongly suggest copresence. The second
factor is the accuracy of the location engine. For example, if
the location engine has an average accuracy of E metres, it is
possible that two users who are actually D metres apart could
be detected at a distance of 2E + D. While D might be less
than d.,, D + 2E may be greater than d., and copresence
might not be detected. Since the geography of the place is
hard to quantify, we recommend to set d.;, to 30 m based on
the accuracy of our location engine. The same threshold is
recommended by Kang et al. (2004) when using the same
location engine.

4.6  Minimum time overlap for copresent
Visits (1)

Icp is the minimum time overlap between visits at the
same place by two users such that the users are considered
copresent. An optimal value depends on the typical duration
of an informal group meeting. Assuming that a group
meeting would last at least 20 min, and users would be
present for at least 50% of the time, we recommend setting 7.,
to 10 min.

5 Evaluation

The goals of GPI are to achieve

1 high percentage of group member identification, while
maintaining a low percentage of false positives

2 identify the place of the group meetings with good
accuracy.

To demonstrate the performance of GPI with respect to these
two goals, we first ran simulations to get group identification
results for a large population of users under various scenarios.
These results matched well with the expected values derived
from the theoretical analysis presented in the previous
section. Then, we obtained experimental results by running
the algorithm over mobility traces collected using smart
phones carried by users on campus for one month. These
experiments validated the theoretical and simulation results
for group identification. They also showed that the average
place identification error was less than the error introduced
by the location technology.

5.1 Simulations
5.1.1 Setup

We use 40 users (U;...Uy), 5 groups (G;...Gs) and
10 places (P;...Pjp) with minimum distance of 30 m
between each place. At any point, a user can be in any of
the ten possible places, according to their mobility traces.
These traces are generated randomly, while taking into
account GMF and NGMF. If for instance GMF= 0.5 and
NGMF= 0.1, a group member is present at the group place
with probability 0.5 (we assume that all meetings for a group
take place at the same place) and at any of the remaining nine
places with probability 0.5. Similarly, a non-group member
is present at the group place with probability 0.1 and at any
of the remaining nine places with probability 0.9. The groups
are classified into three categories:

1 groups that do not share users and meeting places
with other groups (G)

2 groups that share wusers with other
(G2 and G3)

groups

3 groups that share users as well as meeting places
with other groups (G4 and Gs).

The composition of the groups is as follows.

e G has members (U;...Ujp) and meeting place P;.
e G; has members (Uy;...Uyp) and meeting place P».
e G3 has members (Ujg...Uss) and meeting place Ps.
e G4 has members(Uys...Uss) and meeting place Py.

e G5 has members(Us;...Ug) and meeting place Pj.

Note that we do not vary the size of the groups because the
theoretical analysis demonstrated that the group size does not
affect the identification or false positives percentages. The
meeting time for each group is generated randomly, while
ensuring that two groups that share members do not meet at
the same time.

5.1.2  Results

We set the GPI constants according to the recommendations
from the previous section (EVF= 0.5, MVC= 7, d., = 30,
tep = 10, MI= 3). Figures 6 and 7 show the identification
percentage and the false positive percentage, respectively,
as function of RCP for TGM= 20. Figures 8 and 9 present
results for TGM= 50. The plotted curves are for GMF set to
0.3,0.5,0.7 and 0.9. We set NGMF to 0.1 in all cases. From
these graphs, we observe that:

e Setting RCP= 0.2, as recommended in the previous
section, yields the best overall performance in terms
of identification percentage and false positives percentage.

e When GMF is over 0.7, GPI identifies almost all group
members (over 96%), while the false positives are under
1%. Even in the very unlikely case when GMF= 0.3, GPI
still indentifies over 70% of the members, with 7% false
positives.
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o GPI performs better when the groups meet more
times. As TGM increases, the identification
percentage increases, and the false positives
percentage decreases.

o These results are in tune with the theoretical
analysis. The maximum variation is 6 — 8%, which
is expected given the relatively small size of our user
population.

Figure 6 Average percentage of group members identified
when TGM = 20
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Figure 8 Average percentage of group members identified
when TGM = 50
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Figure 9 Average percentage of false positives
when TGM = 50
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5.2 Experimental evaluation
5.2.1 Setup

To collect location data, we used HTC TyTN smart phones
running the WiFi-based Intel’s PlaceLab (LaMarca et al.,
2005) location engine. The mobility traces were collected
on our university campus, which typically has at least three
visible WiFi access points at every place. The location
accuracy ranged from 10 to 15 m. The phone battery lasted
for about 5-6 hr with the location computation frequency
set to 10 sec (note that we send this location to a server in
real-time).

Seven users carried the phones for one month. For every
place where they spent more than 20 min, they recorded the
date and time of visit on a log sheet. This log sheet was used
to verify the place visit data extracted by the algorithm. The
users were part of two different groups and their composition
was as follows:

e Uy, Us and U, are graduate students who are part of
the same research group and routinely visit the same
research lab (Lab;). They form Group;. U; is a
professor who occasionally visits (Lab;) and
therefore is a non-group member. Table 3 presents the
user visit data at Lab;.

o Us, Ug and U; are graduate students who routinely
visit another research lab (Lab,) that is about
50 m away from (Lab,). These users form Group;.

To increase the user population, one of the authors carried
multiple phones representing ‘dummy’ users for about a
month. For each user, we had a preset visit frequency at
the group place. For each day, the visits were determined
by a random visit generator similar to the one used in
the simulations. There were 16 users Us...U,s with the
following visit patterns.

e Us ...U;; form Groups. They have GMF= 0.5 for Ug and
Uy and GMF= 0.7 for U;y and U;;. U;3 and Uy4 are non-
group members with NGMF= 0.1. U5 is a non-group
member with NGMF= 0.2.

[ U16 e Ugo form Group4 and have GMF= 0.6. U21 e U23
are non-group members with
NGMF = 0.1.
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Table 3  Visit data at Lab,

Date U, U, U; U,
28-June 2PM-5PM 3PM-5PM 2PM-5PM

29-June 11 AM-5PM

2-July 6 PM -9 PM 3PM-5PM 10 AM -4 PM 3PM-8PM
3-July 3PM -8 PM 10 AM -4 PM 5 PM -6 PM
5-July 2PM-8PM 11 AM -5PM 3PM-5PM
6-July 11 AM -6 PM

9-July 11AM-5PM

10-July 12PM -4 PM 1PM-5PM 3PM-10PM
11-July 9AM -3 PM 6 PM -7 PM
12-July 2 PM -4 PM
13-July 1 PM-7PM 3PM-6PM
17-July 11AM — 3 PM

18-July 11 AM -5PM 3PM-5PM

19-July 10 AM -5 PM 4PM - 10 PM

23-July 3PM-5PM
24-July 10AM -1 PM 3PM-10PM
25-July 11 AM -3 PM 11AM-5PM 2PM-5PM
27-July 9AM -3 PM 2PM-5PM

5.2.2  Results

We tested the algorithm by setting RCP to 0.1 and 0.2 to see if
the results match the theoretical analysis and the simulation
study. The other three constants d.,, EVF and MVC were set
to 30, 0.5 and 10, respectively. For RCP = 0.1, GPI identified
all group members, but there were several false positives,
U, for Groupy, Uj, and U5 for Groups and U, and U,; for
Groupy. However, for RCP= 0.2, GPI worked very well,
identifying all group members without any false positives.

5.3 Accuracy of place identification

Assuming that the accuracy of the location technology is
E metres, there are two types of visits at a place:

1 The user stays in the same spot for the visit. The location
points for this user will be spread in a circular area with
radius E. The error between the detected location and the
actual location is at most E (the worst case happens when
all location points are at the same point at a distance E
from the actual point).

2 The user moves in different spots (S ... S,) during the
visit. The average of the geographical coordinates of these
different spots is the actual visit place S. The detected
location D is the average of the geographical coordinates
of all the identified spots. In the worst case, all the detected
points could suffer a geometric translation along a certain
vector at a distance E. Therefore, the maximum distance
between the detected location D and actual location
Sis E.

The group place is calculated as the average of the
geographical coordinates of the different spots for all visits
by all detected group members. The situation is similar to a
single user visiting different spots, and the error can be at
most E. We compared our experimental results with this
bound and found a mean error of 8.6 m. This value is indeed

less than the maximum expected error (10-15 m for our
location engine).

6 Related work

Our system leverages work and has similarities with
a number of projects in the following areas: location
technologies, individual place identification and
context-aware recommendation systems. Additionally,
privacy (and especially location privacy) is an issue that has
to be discussed due to the potentially sensitive nature of group
and place recommendations.

The current suite of location technologies offer varying
degrees of accuracy, availability, ease of deployment and
privacy. Since users want to have control over their location
for privacy reasons, we discuss just the systems that
compute the location on user devices. In this way, users
can decide what parts of the mobility traces are made
available to an application that uses our algorithm. GPS
(Enge and Misra, 1999) offers 1015 m accuracy, but requires
additional hardware and does not work indoors. Rosum’s
TV-GPS (Rabinowitz and Spilker, 2002) is another outdoor
technology that uses digital TV synchronisation signals and
provides 5-25 m accuracy. RADAR (Bahl and Padmanabhan,
2000) and (Haeberlen et al., 2004; Hightower and Borriello,
2004; Krumm and Horvitz, 2004; Ladd et al., 2002) are
WiFi-based technologies that work indoors and provide
3-20 m accuracy, but require collection of significant
statistical data about the operational environment.
MIT’s Cricket (Priyantha et al., 2000) works in indoor
environments and offers accuracy of a few centimetres,
but it requires additional hardware and considerable effort
to deploy on a larger scale. Finally, PlaceLab (LaMarca
et al., 2005) is a WiFi-based technology that provides
10-15 m accuracy when enough access points are visible
form the mobile device, works both indoors and outdoors, and
does not require additional hardware. PlaceLab also works
using GSM signals. In our experiments we used this system
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because we considered that it answers well the requirements
for availability, ease of deployment and privacy, while the
accuracy is reasonably good.

Some of the initial work on place extraction was done
using GPS, where loss of GPS signal was used to infer
important indoor locations. Marmasse and Schmandt (2000)
introduced this technique, but it struggled with recognising
places larger than a typical home. Ashbrook and Starner
(2003) improved the mechanism to overcome this problem,
but their algorithm was still unable to infer important
outdoor locations or multiple places within a single building.
Laasonen et al. (2004) and Hightower et al. (2005) presented
fingerprinting based techniques that collect data such a GPS
signals and radio beacons from WiFi towers for all the places
the user visits, and then use statistical inference techniques
to recognise repeated visits to the same places. Finally,
Hariharan and Toyama (2004) and Kang et al. (2004) use time
and location information to find places where the user spends
a significant amount of time (called stays). Then, they cluster
the stays and find places where a user has experienced more
than one stay to infer a significant place. This technique works
for us since it provides geographical location information
about the significant place, time information for all the stays
at the place and it works both indoors and outdoors. Both
these algorithms provide similar results, but we chose the
algorithm by Kang et al. (2004) because they used PlaceLab
like us and their algorithm is less computationally expensive.

Context-aware  recommendation  systems provide
information tailored to user’s context (e.g. location,
preferences, copresent users) or environmental context
(e.g. time). GPI can enhance these systems with additional
contextual information, namely user presence in a group or
place. GeoNotes (Espinoza et al., 2001) allows users to post
virtual notes at places, which can be read by other users
visiting the same place. For instance, GPI can enhance it
such that group members can post information that only
other group members can read. Similarly, the location-based
reminding service presented in Sohn et al. (2005) can use GPI
to deliver reminders when the user is at a group place or to all
members of a particular group. Heijden et al. (2005) and Yang
et al. (2008) present context-aware recommender systems
that can assist users with shopping. GPI can enhance them to
offer information such as group discounts when copresence
of a group member is detected.

Increasingly, location-aware recommendation systems
such as the ones discussed above require the user to share
location data, presenting a difficult privacy trade-off where
disclosing location could be risky but at the same time
valuable. Results from a study by Consolvo et al. (2005)
show that users were willing to share information that could
be useful to a requester that is socially connected to the
user, depending on who was requesting it and why they
were requesting it. Another study, done in Manhattan by
Grandhi et al. (2005), shows that over 84% of the 500+
respondents were willing to share location with a system
to obtain services such as information about occupancy and
crowding in public places and over 77% were willing to share
location with others in exchange of a service. However, we
still need to understand user’s privacy concerns and design
systems to address them. A study by Marmasse and Schmandt
(2000) shows that user’s privacy preferences depend on the

person requesting it rather than the situation in which it
was requested. Barkhuus and Dey (2003) present a study
that advocates the development of position-aware services
that rely on the device’s knowledge of its own location
rather than location-tracking services that are based on other
parties tracking the user’s location (we used this approach).
Langheinrich (2002) presents an architecture that allows
users to keep track of privacy sensitive information that is
used by the system. Confab, proposed in Hong and Landay
(2004), is a generic toolkit that can be used to facilitate
the development of privacy sensitive ubiquitous computing
applications, and Myles et al. (2003) presents a system
that allows users to define rules for sharing location
information and thereby minimises the system-user
interaction for information sharing. Krumm (2007) presents
an evaluation of different mechanisms for privacy protection
of location data.

7 Conclusions and future work

This paper presented GPI, an algorithm for automatic
identification of informal social groups and their associated
places. GPI is enabled by fundamental properties of mobile
computing such as mobility and location-awareness, and its
results can be used in a large spectrum of applications that
provide geo-social recommendations about people, groups
and places. We presented a theoretical analysis of the
performance of the algorithm in terms of identification
accuracy of group members and group places. The simulation
results matched very closely the expected theoretical values
and demonstrated that 90 — 96% of group members can
be identified with negligible false positives when the user
meeting attendance is at least 50%.

We also demonstrated that GPI works in real-life
conditions with existing technologies. In our case, we
took advantage of complete WiFi coverage across the
campus to compute and collect location data from smart
phones distributed to students and faculty. The experimental
results demonstrated that we can achieve good location
accuracy, 10-15 m, and the phone battery lasts 5-6 hr
when collecting location data every 30 sec. Under these
conditions, GPI identified all groups that met during the
one-month period of collected mobility traces. Furthermore,
the place identification error was less than the error
introduced by our location technology. In the near
future, we will integrate GPI into our mobile social
computing middleware developed for the SmartCampus
project (SmartCampus, 2005). This middleware allows rapid
development of mobile social applications for large user
communities. We plan to have several hundred users carrying
smart phones that run such applications. In this way, we will
be able to perform more detailed user studies to validate GPI’s
performance in conjunction with geo-social recommendation
applications.
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