
Department of Computer Science
Series of Publications A

Report A-2007-6

Middleware for Mobile Sensing

Applications in Urban Environments

Oriana Riva

Academic Dissertation

To be presented, with the permission of the Faculty of
Science of the University of Helsinki, for public criti-
cism in Auditorium XIV, University Main Building, on
November 2nd, 2007, at 12 o’clock noon.

University of Helsinki
Finland

Copyright c© 2007 Oriana Riva

ISSN 1238-8645
ISBN 978-952-10-4287-4 (paperback)
ISBN 978-952-10-4288-1 (PDF)
http://ethesis.helsinki.fi/

Computing Reviews (1998) Classification: C.2.4, D.2.11

Helsinki University Printing House
Helsinki, October 11 2007 (xvi + 195 pages)

Middleware for Mobile Sensing Applications in
Urban Environments

Oriana Riva
Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
oriana.riva@cs.helsinki.fi
http://www.cs.helsinki.fi/u/riva/

Abstract

Sensor networks represent an attractive tool to observe the physical
world. Networks of tiny sensors can be used to detect a fire in a
forest, to monitor the level of pollution in a river, or to check on the
structural integrity of a bridge. Application-specific deployments of
static-sensor networks have been widely investigated. Commonly,
these networks involve a centralized data-collection point and no
sharing of data outside the organization that owns it. Although this
approach can accommodate many application scenarios, it signifi-
cantly deviates from the pervasive computing vision of ubiquitous
sensing where user applications seamlessly access anytime, any-
where data produced by sensors embedded in the surroundings.

With the ubiquity and ever-increasing capabilities of mobile de-
vices, urban environments can help give substance to the ubiquitous
sensing vision through Urbanets, spontaneously created urban net-
works. Urbanets consist of mobile multi-sensor devices, such as
smart phones and vehicular systems, public sensor networks de-
ployed by municipalities, and individual sensors incorporated in
buildings, roads, or daily artifacts. My thesis is that “multi-sensor
mobile devices can be successfully programmed to become the under-
pinning elements of an open, infrastructure-less, distributed sensing
platform that can bring sensor data out of their traditional close-
loop networks into everyday urban applications”. Urbanets can sup-
port a variety of services ranging from emergency and surveillance
to tourist guidance, shopping, and entertainment. For instance,
cars can be used to provide traffic information services to alert
drivers to upcoming traffic jams, and phones to provide shopping
recommender services to inform users of special offers at the mall.

iii

iv

Urbanets cannot be programmed using traditional distributed
computing models, which assume underlying networks with func-
tionally homogeneous nodes, stable configurations, and known de-
lays. Conversely, Urbanets have functionally heterogeneous nodes,
volatile configurations, and unknown delays. More effectively, solu-
tions developed for sensor networks and mobile ad hoc networks can
be leveraged to provide novel architectures and models that address
Urbanet-specific requirements, while providing useful abstractions
that hide the network complexity from the programmer.

This dissertation presents two middleware architectures that can
support people-centric mobile sensing applications in Urbanets. Con-
tory offers a declarative programming model that views Urbanets
as a distributed sensor database and exposes a simple SQL-like in-
terface to application developers. Context-aware Migratory Services
provides a client-server model, where services are capable of migrat-
ing to different nodes in the network in order to maintain a contin-
uous and semantically correct interaction with clients. Compared
to previous approaches to supporting mobile sensing applications
in urban environments, our architectures are entirely distributed
and do not assume constant availability of Internet connectivity. In
addition, they allow on-demand collection of sensor data with the
accuracy and at the frequency required by every single application.

These architectures have been implemented in Java and tested
on smart phones. They have proved successful in supporting sev-
eral prototype applications and experimental results obtained in
ad hoc networks of phones have demonstrated their feasibility with
reasonable performance in terms of latency, memory, and energy
consumption.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.4 Computer-Communication Networks: Distributed

Systems
D.2.11 Software Engineering: Software Architectures

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Middleware, Pervasive
Computing, Context-awareness, Urban Environments,
Mobile Devices, Sensors

Acknowledgements

At the end of this long journey—roughly 6003 km by bike—I’m
happy to express my gratitude to many exceptional people without
whom this dissertation would not have been possible.

First and foremost, my very special thanks go to my advisor
Kimmo Raatikainen and my co-advisor Cristian Borcea. Kimmo
gave me the freedom to undertake research in any place, in any
way, and at any time I wished. I’m grateful to him for his generous
support throughout my PhD work, for always trusting me, and for
teaching me the importance of recognizing and carrying out “good”
research. Cristian has been a true mentor as well as an amazing
friend for me. I’m indebted to him for his constant encouragement,
his patience, and invaluable guidance throughout this research. His
critical feedback and insights had an essential impact on this dis-
sertation.

I also wish to thank Jari Porras and Jukka Riekki for reviewing
this dissertation and giving helpful comments to improve it.

The Department of Computer Science at the University of Hel-
sinki and the Helsinki Institute for Information Technology provided
an excellent working environment. My gratitude goes to Martti
Mäntylä, Jukka Paakki, Hannu Toivonen, and Esko Ukkonen for
making this work possible. A special thanks to Martti for his gener-
osity with his time and advice. Office staff and system administra-
tors are also acknowledged for keeping things running so smoothly.

I gratefully acknowledge the financial support of my hosting in-
stitutions through several projects I was involved in. In particular, I
benefited from the DYNAMOS project funded by Tekes, ICT-Turku,
Suunto, TeliaSonera and VTT under which a large part of the prac-
tical work of my PhD was carried out. I also express my gratitude
to Santtu Toivonen for managing the project team.

v

vi

During the last four years, I had the privilege to collaborate with
many excellent researchers and visit several research institutes. My
special thanks go to Liviu Iftode and to the Disco Lab at Rutgers
University. I’m truly grateful to Liviu for believing in me since
the very beginning of this work, for his generosity and vitality in
pushing me to achieve the best, and for our lively discussions. My
gratitude also goes to Valérie Issarny and to the ARLES group at
INRIA-Rocquencourt. I’m grateful to Valérie for simply being the
great woman she is, always available, always insightful, and so close
to all her students. Finally, I wish to acknowledge the ESF-funded
scientific program MiNEMA, which gave me the opportunity to in-
teract with many experts in my field.

Life at the department would not have been so efficient and en-
joyable without Tiina Niklander. I thank her for always finding the
time to instill in me self-worth in those hard moments a PhD is
made of. I thank my former colleagues Davide Astuti, Cristiano di
Flora, and Simone Leggio who have always supported me with great
enthusiasm. I thank my officemate Laila Daniel who has so warmly
helped me on more occasions than I can remember. I’m grateful
to the Fuego Core team and in particular to Jaakko Kangasharju
for his expert advice and his patience while dealing with me and
my bugs in many dark and cold Finnish afternoons. I owe a lot to
Michael Przybilski for always willingly lending a hand, solving my
electrical problems, and reminding me of “order and discipline”. A
special thanks to Evimaria Terzi for her true friendship, her con-
stant advice, and our Friday sessions.

I would like to thank all my friends, particularly in Helsinki and
Paris, for making my life during these years so memorable and
enjoyable. Thanks to the “Sxxxxx” gang and especially to Sabria for
always being so close to me. Thanks to my lively French community
and in particular to Agathe for her patience and encouragement.
Thanks to the “laiset” group and especially to Guido for those long
bike rides—in many of which I sonorously complained.

Finally, I owe eternal gratitude to my parents, Adele and France-
sco, for their love and understanding in these years far from home,
and to my brother, Claudio, for his support and for always remind-
ing me to close my laptop and get out of “that” office.

Helsinki, October 11th, 2007 Oriana Riva

Ai miei genitori.

viii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement 3
1.3 Contributions . 5
1.4 Research history . 7
1.5 Structure of the dissertation 7

2 Ubiquitous sensing in pervasive environments 9
2.1 Pervasive computing 9

2.1.1 Characteristics and challenges 11
2.1.2 Hardware and networking support 20
2.1.3 Middleware support 21

2.2 Ubiquitous sensing 24
2.2.1 Overview . 24
2.2.2 Wireless sensor networks 27
2.2.3 Mobile ad hoc networks 37
2.2.4 Differences between wireless sensor networks

and mobile ad hoc networks 49
2.3 Programming ubiquitous sensing applications 50

2.3.1 Programming support 51
2.3.2 Programming abstractions 53

2.4 Smart Messages platform 55
2.5 Concluding remarks 60

ix

x Contents

3 Programming challenges in Urbanets 61
3.1 Urbanets . 61
3.2 Mobile sensing applications in Urbanets 64
3.3 Middleware challenges 66

3.3.1 Network volatility 67
3.3.2 Sensor variability and fidelity 67
3.3.3 Naming . 68
3.3.4 Limited resources 68
3.3.5 Large data traffic 69

3.4 Related research on people-centric urban networks . 70
3.5 Concluding remarks 72

4 Contory 73
4.1 Motivating scenarios 74
4.2 Requirements study 75
4.3 Design principles . 77
4.4 Middleware architecture 78

4.4.1 Context items and context metadata 78
4.4.2 Context query language 79
4.4.3 Contory software architecture 81
4.4.4 Contory programming interface 88

4.5 Implementation . 89
4.5.1 Network communication modules 90
4.5.2 Distributed context provisioning 91

4.6 Experimental evaluation 94
4.6.1 SM experiments 95
4.6.2 Latency experiments 96
4.6.3 Energy consumption experiments 98
4.6.4 Experiments summary 103

4.7 Application prototypes 104
4.8 Concluding remarks 107

5 Context-aware Migratory Services 109
5.1 Motivating scenarios 110
5.2 Requirements for services in ad hoc networks 112
5.3 Migratory Services model 114
5.4 Migratory Services framework 117

5.4.1 Context provisioning and monitoring 118
5.4.2 Context rules creation and validation 119

Contents xi

5.4.3 Client-service communication 121
5.4.4 Service reliability 122
5.4.5 Programming Migratory Services 123

5.5 Fault-tolerance support 125
5.5.1 Failure model 125
5.5.2 Service backup 126
5.5.3 Service recovery 131
5.5.4 Reliability Manager implementation 134

5.6 Experimental evaluation 136
5.6.1 Context rules validation experiments 137
5.6.2 Reliability experiments 138
5.6.3 Memory consumption experiments 141
5.6.4 Experiments summary 142

5.7 Application prototype 142
5.7.1 TJam application 143
5.7.2 TJam implementation 147
5.7.3 TJam evaluation 148

5.8 Concluding remarks 153

6 Conclusions 155
6.1 Contributions . 155
6.2 Open issues . 158
6.3 Future work . 161
6.4 Concluding remarks 162

References 165

xii Contents

List of Figures

2.1 The three core approaches to supporting ubiquitous
sensing. 25

2.2 Example of sensor node components. 31
2.3 Example of sensor network. 32
2.4 The Smart Messages architecture. 56
2.5 Smart Messages example: the IntruderTrackingSM

provides the motion path of a user-specified threat. . 57

3.1 Example Urbanet scenarios in a city. 65

4.1 Examples of context-based services provided by the
DYNAMOS platform in a sailing scenario. 76

4.2 The context item format and an example of location
item. 78

4.3 The Contory’s context query template. 79
4.4 Example of context query requesting speed measure-

ments from a remote region. 81
4.5 The Contory middleware architecture. 82
4.6 Example of merging of two context queries. 87
4.7 The ContextFactory interface. 88
4.8 Example of distributed context provisioning in a Con-

tory mobile ad hoc network. 93
4.9 The power measurements testbed. 99
4.10 The power consumption of the extInfra provision-

ing strategy in a test with 5 queries. 102
4.11 The power consumption of the BT-based intSensor

and adHocNetwork strategies in the presence of a
GPS failure. 102

xiii

xiv List of Figures

4.12 Two screenshots of the WeatherWatcher application. 104
4.13 Pseudo-code of the WeatherWatcher application. . . 105
4.14 Two screenshots of the RegattaClassifier application. 106

5.1 Examples of client-service interactions in Urbanets. . 110
5.2 Example of Migratory Services execution: a metaser-

vice instantiates a migratory service that migrates in
the network to satisfy the client request. 115

5.3 Sequence diagram of Migratory Services illustrating
three context-aware service migrations. 116

5.4 The Migratory Services framework. 117
5.5 Pseudo-code of a typical client application (A), metaser-

vice (B), and migratory service (C). 124
5.6 Sequence diagrams illustrating four Migratory Ser-

vices failure scenarios. 132
5.7 Software modules and interactions of the Migratory

Services frameworks at the primary and secondary
node. 135

5.8 The Migratory Services experimental testbed. 136
5.9 The latency of the checkpointing process at a dis-

tance of one and two hops. 138
5.10 Screeshots of the TJam application. 143
5.11 Example of execution of the TJam migratory service

prototype. 146
5.12 Pseudo-code of the TJam client sending to the TJam

migratory service a service request containing its con-
text information and context rules. 148

5.13 Pseudo-code of the TJam migratory service register-
ing a context rule with the Migratory Services frame-
work (MSF). 148

5.14 Pseudo-code of the TJam migratory service comput-
ing the traffic jam probability. 149

5.15 The initial network topology used in the TJam ex-
periments. 150

5.16 Location traces of the TJam migratory service fol-
lowing the user movement without any task inter-
ruption. 151

List of Tables

2.1 Characteristics and challenges of pervasive comput-
ing environments. 12

4.1 Example values for query clauses. 80
4.2 Technical specifications of the phones used in the ex-

periments. 95
4.3 Portable SM on Nokia 9500 phones: average latency

of basic TagSpace operations. 96
4.4 Portable SM on Nokia 9500 phones: average round-

trip time for different databrick sizes with cached code. 96
4.5 The average elapsed time of basic Contory operations

of both publisher and consumer nodes. 97
4.6 The average power consumption of five reference tests

on a Nokia 6630 phone. 100
4.7 The average energy consumption of the three context

provisioning mechanisms supported by Contory. . . . 101

5.1 The average latency for validating an increasing num-
ber of context rules. 137

5.2 The average latency of the entire recovery process
consisting of failover, secondary discovery at a dis-
tance of one hop, BackupSM migration, BackupSM
execution at the new secondary node, and reception
of the BackupSM’s acknowledgement. Tests for 5
different state sizes of the migratory service. 140

5.3 The average memory consumption of the Client,
MetaService, and MigratoryService components
for 5 different state sizes of the migratory service. . . 141

xv

xvi List of Tables

5.4 Results of the TJam migratory service experiments
in an ad hoc network of 11 HP iPAQs. 152

CHAPTER 1

Introduction

This dissertation proposes distributed middleware architectures for
the support of people-centric, mobile sensing applications in every-
day urban environments. In this chapter, we motivate our work,
describe our problem statement, summarize our contributions, and
present the organization of the dissertation.

1.1 Motivation

Advances in sensor technology, embedded computing, and wireless
networking have increasingly enabled the deployment of sensor net-
works across large geographical areas to provide accurate real-time
monitoring of the sensed environment. Sensor networks have been
considered in many different domains such as civil engineering (e.g.,
structural integrity of buildings), environmental monitoring (e.g.,
water pollution in rivers), or tracking systems (e.g., intrusion de-
tection in a restricted area).

With few exceptions, first-generation sensor networks have mainly
focused on accomplishing application-specific deployments of net-
works of static sensors. The regular model of operation involves
a centralized querying and data-collection point, and, typically,
sensed data are not disclosed to anyone outside the organization
that owns and controls the network. Although this operational
model can accommodate many application scenarios, it significan-
tly deviates from the pervasive computing vision of “ubiquitous

1

2 1 Introduction

sensing” where people seamlessly access anytime, anywhere data
produced by sensors embedded in the surroundings.

As wireless mobile devices become ubiquitous and computation-
ally more powerful, besides providing email and web access on-the-
go, they can begin to serve three new purposes:

• acting as collaborating, multi-sensor devices that provide sens-
ing coverage across cities,

• becoming dynamic points for collecting and sharing data pro-
duced by individual sensors or public sensor networks, and

• ultimately enabling users to benefit from a sensor-rich world
through novel mobile sensing applications (i.e., applications
based on sensor data collection and processing).

My thesis is that “multi-sensor mobile devices can be successfully
programmed to become the underpinning elements of an open, in-
frastructure-less, distributed sensing platform that can bring sensor
data out of their traditional close-loop networks into everyday urban
applications”.

In particular, smart phones and vehicular systems are becoming
attractive, convenient mobile sensor platforms. Compared to tiny,
energy-constrained sensors of regular sensor networks, smart phones
can support more complex computations, provide reasonable data
storage, and offer long-range communication. These phones already
have audio and video sensing capabilities, integrate GPS receivers,
and, in the near future, they will come equipped with other types of
sensors too. Power remains, however, a major constraint for them.
Vehicular systems, on the other hand, do not have energy restric-
tions, and offer powerful processors, significant memory, plenty of
storage capacity, and a variety of sensors.

Urban environments represent a perfect ground to build spon-
taneously created networks consisting of mobile multi-sensor plat-
forms, such as smart phones and vehicular systems, public sensor
networks deployed by municipalities, and individual sensors incor-
porated in buildings, roads, or daily artifacts. Sensor networks and
mobile ad hoc networks (MANETs) meet in the urban landscape
to create rich and open sensing environments, where people, mu-
nicipalities, and community organizations share their resources to

1.2 Problem statement 3

give mobile users real-time access to sensed data. We use the term
Urbanets to refer to this new type of spontaneous urban networks.

We envision a variety of Urbanet applications that will run, for
instance, on our personal mobile phones or computers embedded
in our cars. For example, using a collaborative network of sensor-
equipped cars, a personal driver assistant warns its driver about up-
coming traffic jams and provides route directions customized to the
present traffic conditions. In addition, the application detects traffic
hazards such as fog patches or icy roads by interacting with envi-
ronmental sensors such as humidity and temperature sensors along
the road. Another scenario draws a municipal weather monitoring
sensor network alerting cars passing by to a quickly-approaching
tornado. Finally, a last scenario is a crowded political convention
or manifestation, where policemen’s surveillance applications track
suspicious entities moving around by using a network of cameras
installed on police patrols and policemen’s helmets.

Although algorithms, protocols, architectures, and models de-
veloped for sensor networks and MANETs can be applied to Urba-
nets, Urbanets are intrinsically different from sensor networks and
MANETs. Urbanets differ from the first-generation sensor networks
in their goal to support concurrent people-centric sensing applica-
tions as well as in their hardware and software heterogeneity, high
volatility, and very large scale. Furthermore, while Urbanets greatly
enhance our ability to extend the sensing coverage and incorporate
sensed data in a large spectrum of mobile applications, they are not
expected to achieve the same level of sensing fidelity as in static
sensor networks composed of nodes primarily dedicated to sensing.
Urbanet applications are also different from traditional MANET
applications such as file transfers. Urbanet applications focus on
acquiring, processing, and distributing real-time sensing informa-
tion provided by devices located in the proximity of geographical
regions, entities, or activities of interest.

1.2 Problem statement

Research work on sensor networks and mobile ad hoc networks has
been quite successful in designing device platforms, protocols, and
network architectures that can be applied to Urbanets. However,

4 1 Introduction

programming people-centric mobile sensing applications has so far
received only marginal attention. As the domain of possible Ur-
banet applications diversifies, it will be almost impossible to pro-
gram each application from scratch. Instead, application develop-
ers will require a common distributed computing platform that can
support the development and execution of such applications.

Urbanets cannot be programmed using traditional distributed
computing models, which assume underlying networks with func-
tionally homogeneous nodes, static resources, stable configurations,
and known delays. Conversely, Urbanets are composed of function-
ally heterogeneous nodes, have volatile configurations, and present
unknown delays; they evolve unpredictably over time and space,
making it hard to know the exact number or location of their re-
sources. In addition, Urbanets are required to support large data
traffic of concurrent user applications, they often consist of resource-
impoverished environments, and they present devices that are not
primarily dedicated to support sensing tasks (e.g., phones are pri-
marily used to make phone calls).

The questions that drive our research are:

• How do we support the development and execution of mobile
sensing applications in Urbanets? Instead of building every
application from scratch, a middleware platform is necessary
to provide common services, runtime mechanisms, and other
application-specific functions.

• Which programming abstractions are appropriate for Urba-
nets? Which protocols and algorithms do these abstractions
require to function correctly? Which part of the underlying
systems (networks, hardware, subsystems) should be exposed
to application developers? There exists a trade-off between
the ease of programming that programming abstractions can
provide, and the efficiency and flexibility that can be achieved.

• Which design strategies can allow resource-constrained mo-
bile devices to control and reduce their resource consumption
while running Urbanet applications? What should be the
trade-off between the quality of the produced results and the
utilization of network resources?

1.3 Contributions 5

1.3 Contributions

This dissertation focuses on providing middleware support and ap-
propriate programming abstractions to develop people-centric mo-
bile sensing applications in dense urban environments. Two mid-
dleware platforms that can effectively support the development and
execution of mobile sensing applications in our daily urban envi-
ronments are proposed. Our solutions assume cooperation among
Urbanet devices and can work without requiring any additional
infrastructure (i.e., only the resources of the Urbanet devices are
necessary). Therefore, they have the benefit of providing users with
real-time sensed data even when Internet connectivity is not avail-
able or is too expensive. Additionally, they allow on-demand collec-
tion of sensor data with the accuracy and at the frequency required
by every single application. These two middleware platforms incor-
porate two different programming models and offer support for a
wide variety of mobile sensing applications. To cope with the re-
source constraints of mobile devices and the volatility of the execu-
tion environment they integrate adaptation strategies and support
application-specific control policies.

The Contory (Context factory) [Riva, 2006] middleware sup-
ports a declarative programming paradigm that views Urbanets as
a distributed sensor database and exposes a simple SQL-like in-
terface to programmers. While other projects demonstrated how
declarative programming suits sensor networks well [Madden et al.,
2005], Contory seeks to adapt this model to highly mobile and het-
erogeneous networks. In addition, we devised and incorporated in
the Contory middleware reconfiguration strategies capable of cop-
ing with the dynamism of Urbanets. As a result, Contory allows
sensing applications to continuously monitor their surroundings de-
spite sensor failures and network volatility. Compared to other
platforms supporting sensor data collection and, in particular, con-
text-aware applications, Contory provides more flexibility and reli-
ability. Moreover, Contory specifically addresses the requirements
of resource-constrained mobile devices by dynamically adapting its
execution based on resource availability and device status.

The Context-aware Migratory Services [Riva et al., 2007] frame-
work provides a client-service model where services can migrate to
different nodes in the network to maintain a continuous and se-

6 1 Introduction

mantically correct interaction with clients. Although a migratory
service is physically located on different nodes over time, it con-
stantly presents a single virtual end point to the client. Compared
to classical client-server architectures, our approach provides two
advantages. First, when a node becomes unsuitable for hosting a
certain service any longer, the client application does not need to
perform any new service discovery because the current service can
migrate autonomously to a new node that is qualified for accom-
plishing the current task. Second, the migratory service incorpo-
rates all the state information necessary to resume the interaction
with the client after the migration to a different node has completed.
In addition, Migratory Services provides fault-tolerance to service
failures by integrating an adaptive primary backup mechanism.

We have implemented these middleware architectures and exper-
imented with them on modern smart phones. Using them, we have
prototyped several applications targeting real-life scenarios. TJam
dynamically predicts if traffic jams are likely to occur in a given
region of a highway by using only car-to-car short-range wireless
communication. WeatherWatcher allows users to retrieve weather
information relative to a certain geographical region of interest. The
DYNAMOS sailing application proactively provides mobile users
with information about nearby services that are of interest based
on the user’s current context and needs. Our middleware platforms
proved effective in easing application development. They decouple
application development from several underlying communication
modules, sensor technology, and hardware systems. Furthermore,
our programming abstractions provide powerful and simple primi-
tives to specify complex and dynamic concepts (e.g., geographical
regions to be monitored) and distributed tasks to be executed (e.g.,
tracking moving entities).

We evaluated the performance of our platforms in terms of la-
tency, memory, and energy consumption in small-scale ad hoc net-
works of phones. Our solutions proved to be feasible. Besides typi-
cal interference problems in places with high density of wireless de-
vices, energy consumption turned out to be the most constraining
technical factor. We reported on the difficulties, the lessons we have
learned, and our recommendations on how to best develop mid-
dleware architectures on smart phones in [Riva and Kangasharju,
2007].

1.4 Research history 7

1.4 Research history

A large part of the results presented in this dissertation have al-
ready been published in international conferences and journal arti-
cles. The contributions presented in this dissertation were produced
while working in two parallel projects.

The first part of the contributions has been produced in the con-
text of the 2-year DYNAMOS [DYNAMOS, 2007] (Dynamic Com-
position and Sharing of Context-Aware Mobile Services) project at
the Helsinki Institute for Information Technology (HIIT) in collabo-
ration with VTT Technical Research Centre of Finland, ICT-Turku,
Suunto and TeliaSonera. In the first year, the author designed, im-
plemented, and tested in two field trials the DYNAMOS sailing
application (see Section 4.2) running on mobile phones. An exten-
sive description and evaluation of this application was published
in [Riva and Toivonen, 2006, 2007]. Inspired by the experiences
of the first year, in the second year of the project, the author de-
signed and implemented Contory (see Chapter 4), a middleware for
the provisioning of context information on smart phones. This work
was published in [Riva, 2006; Riva and di Flora, 2006a].

The second part of the contributions for this dissertation has
been produced in collaboration with Rutgers University and New
Jersey Institute of Technology. The results of this collaboration
were Migratory Services [Riva et al., 2007] (see Chapter 5) and
the notion of people-centric mobile sensing applications in Urba-
nets [Riva and Borcea, 2007] (see Chapter 3). The contribution
of the author has been designing and carrying out the entire im-
plementation and experimentation of Migratory Services on mobile
devices. The author also contributed to test the Smart Messages
platform developed at Rutgers University on mobile phones (see
Section 4.6.1). Simulation results described in [Riva et al., 2007]
were produced by a co-author and have not been included in the
dissertation.

1.5 Structure of the dissertation

The rest of this dissertation is organized as follows. Chapter 2
provides background information for this dissertation. In the first

8 1 Introduction

part, it introduces the pervasive computing vision and its chal-
lenges, and gives a brief state-of-the-art on hardware, networking
and middleware support to accomplish such a vision. In the second
part, it presents the concept of ubiquitous sensing, and describes
architectures and protocols proposed in the domains of sensor net-
works and mobile ad hoc networks that can be used to accomplish
ubiquitous sensing. The chapter concludes by describing the Smart
Messages computing platform that was used in the implementa-
tion of our prototype systems. Chapter 3 introduces Urbanets,
spontaneous urban networks that can support mobile, people-cen-
tric sensing applications. It describes core characteristics of these
environments, example applications, and programming challenges
to be addressed. Our middleware architectures for the support
of Urbanet applications are presented in the following two chap-
ters. Chapter 4 presents Contory and Chapter 5 presents Context-
aware Migratory Services. Each chapter describes requirements,
design principles, software architectures, implementation, experi-
mental evaluation, and prototype applications running on top of
these middleware platforms. Finally, Chapter 6 concludes this dis-
sertation by summarizing the contributions of this work, discussing
open issues to fully accomplish our vision, and presenting future
work.

CHAPTER 2

Ubiquitous sensing in pervasive
environments

This chapter presents background research for the dissertation. It
introduces the vision of pervasive computing and, in particular,
the challenges its accomplishment involves. It presents the concept
of ubiquitous sensing and the role it plays in pervasive computing
environments. Then, it describes enabling technologies and state-
of-the-art research in ubiquitous sensing, with a special focus on
wireless sensor networks and mobile ad hoc networks. Finally, it
concludes by describing the Smart Messages computing platform
that was used in the implementation of our systems.

2.1 Pervasive computing

In 1991, M. Weiser described his vision of ubiquitous computing as
the creation of environments saturated with a variety of computing
and communication capabilities, which seamlessly integrate with
the physical world [Weiser, 1991].

Technological advances, especially in the sector of microelec-
tronics, have been essential to foster ubiquitous computing envi-
ronments. Computers get smaller, cheaper, and more powerful.
Therefore, computation gets ubiquitous. Likewise, networking tech-
nology gets smaller, cheaper, and more powerful. Therefore, more
and more everyday artifacts are capable of autonomously network-
ing together.

9

10 2 Ubiquitous sensing in pervasive environments

Weiser considers ubiquitous computing the third wave of com-
puting [Weiser and Brown, 1997]. The first era of computing is that
of mainframe computing, which can be described by the relation-
ship “one computer, many people”. The second era of computing is
that of personal computers, characterized by the relationship “one
computer, one user”. Ubiquitous computing, the third era of com-
puting, incarnates the relationship “one user, many computers”.
Embedding computation into the surrounding environments and
everyday objects can enable people to exploit available computing
capabilities in an unobtrusive manner, so that ubiquitous comput-
ing systems ultimately become an invisible technology and interac-
tions with computers become invisible and natural [Weiser, 1994].
In Weiser’s terms, the challenge is making technology “calm”:

“The most profound technologies are those that disap-
pear. They weave themselves into the fabric of everyday
life until they are indistinguishable from it.” [Weiser,
1991]

Computing utilities of ubiquitous environments include tradi-
tional desktop devices, wireless mobile devices, digital assistants,
game players, wrist watches, clothing, sensors, RFIDs, cars, con-
sumer electronics (e.g., TV, microwave), etc. For example, an in-
telligent microwave can download recipes and automatically set the
time, adjust the power, and do the roasting by the time the user
is back home. Or an intelligent pen can automatically transmit
a quote from a newspaper to the office with the swipe of it over
the newspaper. In particular, in recent years, we have observed an
enormous success of many portable devices such as mobile phones,
personal digital assistants (PDAs), and laptop computers. Together
with wireless connectivity, Internet, and environmental embedded
sensors, they are expected to drive this major technological change.

Many terms and definitions exist to refer to the trend that Weiser
initially called ubiquitous computing. L. Kleinrock spoke about
nomadic computing [Bagrodia et al., 1995]. IBM coined the term
pervasive computing. The European Commission spoke about am-
bient intelligence [Ducatel et al., 2001]. The Wireless World Re-
search Forum (WWRF) defined the I-centric communication model
where adaptable, personalized, and ambient-aware services are sup-
ported [Arbanowski et al., 2004; Tafazolli, 2004, 2006]. Although

2.1 Pervasive computing 11

these visions use different names and focus on different aspects, the
underlying assumptions remain the same. In this dissertation, we
choose to use the term “pervasive computing” to refer to this tech-
nological trend and all the challenges it subsumes. Even though
the terms pervasive computing and ubiquitous computing are com-
monly used interchangeably, we share the thought of those who be-
lieve that pervasive computing incarnates a more practical approach
than ubiquitous computing, less centered on the idea of calmness
and invisibility and more focused on the enabling technologies to
allow computation and interaction anytime, anywhere.

In the following, we start by summarizing main characteristics
and challenges of pervasive environments, and we then briefly re-
view existing hardware, networking and middleware support for
pervasive applications.

2.1.1 Characteristics and challenges

M. Satyanarayana characterizes pervasive computing as a deciding
step of an evolutionary process started in the mid-1970s [Satya-
narayanan, 2001]. A preliminary step of this evolution was the de-
sign of distributed systems. Distributed computing [Couloris et al.,
2001] permitted connecting remote users and resources in a trans-
parent, open, fault-tolerant, scalable, and secure way. In the early
1990s, the advent of laptops and WLANs gave substance to distri-
buted systems with mobile clients. The new field of mobile com-
puting therefore emerged with the goal of providing mobile users
with access to computing and communication capabilities anytime,
anywhere. However, mobility complicated the design of distributed
systems due to the unpredictable variability of network connectiv-
ity and reliability as well as several resource constraints of mobile
devices, such as power consumption, reduced security, and low ro-
bustness [Kleinrock, 2003; Satyanarayanan, 1996].

Pervasive computing incorporates characteristics of distributed
computing and mobile computing, but also presents several distin-
guishing characteristics [Bagrodia et al., 1995; Ducatel et al., 2001;
Katz, 1994; Satyanarayanan, 2001; Wireless World Research Fo-
rum, 2001]. In the following, we list several core characteristics of
pervasive environments and identify for each of them the challenges
that they arise. Characteristics and challenges are also summarized

12 2 Ubiquitous sensing in pervasive environments

in Table 2.1.

Table 2.1: Characteristics and challenges of pervasive computing
environments.

Characteristics Challenges

Resource constraints Adaptability

(tiny sensors and mobile devices Resource management

of small form factor) Energy-awareness

Lossy wireless communication

Mobility Disconnections

Reconfigurability

Context-awareness

Proactivity

User-centricity Scalability

Calmness and invisibility

Privacy

Interoperability

Heterogeneity Service discovery

Portability

Resource naming

Spontaneous interactions Security

Trust

Resource constraints

A user in a pervasive environment typically owns multiple comput-
ing devices, which over time and space need to interact with several
other devices. User’s devices can sense their environment and col-
lect inputs that guide their actions. Specifically, they probe their
surroundings to look for peripherals such as processors and reposi-
tories, or input/output devices such as displays, microphones, and
video cameras. Every time a resource becomes unavailable or a new
one appears, the device needs to adapt accordingly.

2.1 Pervasive computing 13

Pervasive environments are populated by a variety of devices
with different resource constraints. These devices can be classified
in three categories [Kehr et al., 1999]:

• Sensors: They represent the main input for pervasive appli-
cations. Typically, they offer limited computing power and
wired-based or wireless, low-bandwidth communication. In
recent years, sensor technology has greatly advanced in terms
of size, power consumption, processing capabilities, and low
cost. This has made possible the integration of sensors in
the physical environment, in common everyday artifacts, and
in handheld devices. Sensors range from positioning sensors
such as GPS devices, to environmental sensors such as Mica
motes [Hill and Culler, 2002], to biosensors on users, to Smart-
Its artefacts [Smarts-Its, 2007] for augmenting daily objects
with a digital presence (e.g., the MediaCup [Beigl et al., 2001]
at the University of Kalsruhe).

• Actuators: They are complementary to sensors, in the sense
that they are capable of receiving commands and data to con-
trol certain entities. Examples include ambient displays, tan-
gible interfaces, home and office appliances, etc.

• Information-processing devices: Users of pervasive computing
environments often act not only as regular information con-
sumers, but also as active providers of information and ser-
vices (i.e., they are “thin servers” [Weiser and Brown, 1997]
capable of providing resources and hosting services for oth-
ers). Their devices need to have reasonable computational
and communication resources to accomplish their tasks au-
tonomously or through interaction with available infrastruc-
tures. Examples of this kind of devices include smart phones
and PDAs as well as more powerful vehicular computers. Yet,
given the computation and communication load, mobile de-
vices of small form factor need to take into account their re-
source constraints and constantly adapt to their executing en-
vironment (e.g., by saving local resources as much as possible
and exploiting external resources whenever available).

It is important to emphasize the role played by smart phones
among all information-processing devices. Smart phones have been

14 2 Ubiquitous sensing in pervasive environments

considered as “the first realistic platform for everyday pervasive
computing applications” [Abowd et al., 2005]. These devices are al-
ready available to a large part of the global population and integrate
several types of ubiquitous connectivity technologies, such as Blue-
tooth and WiFi. One of the most interesting of its potential uses is
as an end point for information services such as navigators, recom-
menders, cognitive assistance, and health-care monitoring. [Roussos
et al., 2005]

However, even though smart phones are becoming increasingly
more powerful, in order to not comprise their portability and usabil-
ity, they will always be constrained in terms of physical dimensions.
This leads to constraints in their computing and communication
capabilities, battery lifetime, screen and keyboard size. Processor
capacity will continuously increase, but also applications will be
more and more demanding in terms of processing and communica-
tion resources [Want et al., 2002]. A proof of this is the fact that
smart phones are becoming more and more multi-functional with
the integration of diverse services in a single general-purpose device.

While processing capability has followed Moore’s law for the last
30 years, battery energy density is the slowest trend in mobile com-
puting [Paradiso and Starner, 2005]. Although new technologies
will improve the situation in the time to come, there will always
be an even higher demand for “mobile energy”. Mechanisms to
control and reduce energy consumption on mobile devices are nec-
essary at all levels of the system [Flinn and Satyanarayanan, 2004],
including circuit design, hardware, and operating systems [Olsen
and Narayanaswami, 2006]. Middleware and applications should be
lightweight as much as possible and also be aware of the available
resources (e.g., bandwidth, CPU cycles, battery power) in order to
trade off application fidelity and energy [Noble et al., 1997]. Power
management techniques need to be applied mostly to processing,
storage, and communication components. All these components of-
fer potentials for power optimization, but at the cost of an increased
complexity of software interfaces. However, given the heterogene-
ity of pervasive systems it is essential to provide uniform interfaces
that programmers can utilize everywhere. Power management tech-
niques can also involve offloading of computing to servers available
in the environment. This approach is called cyber foraging [Balan
et al., 2002].

2.1 Pervasive computing 15

Mobility

User mobility or nomadicity [Kleinrock, 2003] is a fundamental
source of dynamism for pervasive systems. As users move, applica-
tions have to cope with dynamically changing resource availability.
Systems have to learn to exploit computing, storage, and commu-
nication opportunities whenever available, and survive when these
resources are not available anymore. With portable wireless de-
vices, disconnections and device failures have to be treated as part
of normal operation. Disconnections can occur either accidently
due to loss of wireless connectivity or voluntarily to save battery
or reduce connection costs. In addition, wireless communication
can be temporarily degraded due to signal interference and cause
packet losses, variable bandwidth, and high error rates.

In order to cope with this dynamism, each time the execution en-
vironment changes, the change must be detected and if it is perma-
nent enough to trigger a reconfiguration, then the behaviour of the
application must change accordingly. There are several strategies
for adaptation in pervasive computing [Satyanarayanan, 2001]. One
possibility is to delegate reconfiguration and in particular resource
management to the operating system or to underlying middleware
layers thus making the application entirely transparent. Alterna-
tively, policy-based approaches [Sloman, 1994; Wies, 1994] allow
applications to specify the desired behaviour of the system, which
is then translated in a set of reconfiguration rules to be enforced by
the system at runtime [Bellavista et al., 2006]. Learning resource us-
age, predicting resource impoverishment, and anticipating changes
of the application’s requirements are all important challenges to
accomplish efficient reconfigurability.

User-centricity

In pervasive environments, users focus on their activities and not
on computers [Weiser, 1994]. The individual user has to be put at
the center of the service provisioning process [Arbanowski et al.,
2004]. Ideally, the system must determine which actions can help
the user by monitoring the user’s behaviour, by inferring the user’s
needs, and by predicting the user’s intent.

Interactions in pervasive environments follow a proactive ap-

16 2 Ubiquitous sensing in pervasive environments

proach [Lyytinen and Yoo, 2002; Saha and Mukherjee, 2003] aimed
to continuously and autonomously make information, resources,
and services available while minimizing users’ distraction and max-
imizing users’ expectation. This is usually referred to as the invisi-
bility or calmness property of pervasive environments. Specifically,
calmness entails calm timing and calm interaction [Riekki et al.,
2004]. Calm timing means that the application interacts with the
user in the situation in which it is needed. Calm interaction means
that during the interaction only relevant information is provided
and only relevant inputs are required from the user.

Pervasive computing takes place in so-called smart spaces. Smart
spaces are ordinary indoor or outdoor spaces, such as classrooms
or parking areas, equipped with sensors, actuators, communicators,
cameras, microphones, speakers, displays, RFID tags, etc. By em-
bedding sensing, actuation, and computation capabilities in build-
ings and daily artifacts, spaces acquire autonomous sensing and
actuation capabilities thus becoming “smart”. Therefore, they are
capable of perceiving and reacting to their inhabitants’ behaviour.
In such spaces, objects act as pervasive computing nodes while serv-
ing their conventional purposes [Kindberg and Fox, 2002]. For ex-
ample, a smart coffee cup [Beigl et al., 2001] can integrate sensing,
computing, and networking elements to communicate its state (e.g.,
full or empty). Or a smart meeting room [Abowd, 1999; Cooper-
stock et al., 1997] can be aware of users’ presence and record actions.
In addition, chairs, tables, whiteboards, and projectors in the room
can also be augmented with smartness.

Compared to classical mobile applications, an essential require-
ment of pervasive applications is the need to sense their environ-
ment and act upon that. In other words, these systems must per-
form a continuous monitoring of the environment while consuming
almost no power and promptly react when relevant events are de-
tected [Estrin et al., 2002].

Context is the term generally used to define any available, de-
tectable, and relevant piece of information that can be used to char-
acterize the situation of an entity [Dey et al., 2001]. B.N. Schilit
identifies three categories of context [Schilit et al., 1994]:

1. User context : user profile, location, people nearby, social sit-
uation, activity, health conditions, agenda setting, etc.

2.1 Pervasive computing 17

2. Execution context : network traffic, device status, resource
availability, communication costs, etc.

3. Environment context : weather, light, noise level, tempera-
ture, time, etc.

Context provisioning is the process by which context information is
acquired, processed, and made available for use. Finally, a system
is said to be context-aware if it uses context information to provide
relevant services to the user, where relevancy depends on the user’s
current task [Dey and Adowd, 1999].

Depending on the definition of context within a system, context
information can be exploited at different levels of a system. At the
OS and middleware level, context has a meaning in terms of proces-
sor, memory, power consumption, network resources, etc. [Capra
et al., 2003]. At the application level, context awareness can highly
enhance adaptive applications and attenuate the problem of service
overload [Riekki et al., 2003] (i.e., users are overloaded with many
services, but do not use them because they can hardly locate them,
they do not know about their existence, or do not remember how
to use them). At the user interface level, context enables a shift
from explicit to implicit human-computer interaction, towards less
visible user interfaces [Schmidt, 2000]. Among all possible context
parameters, location has been considered the fundamental one for
its outstanding richness in triggering system reconfiguration and
selecting devices, resources, and information which are relevant to
the user.

An additional requirement of smart spaces is that they need to
accommodate an increasing number of interacting users, applica-
tions, and devices. As the smartness of an environment grows, the
number of interacting devices and the frequency of human interac-
tions increase. A pervasive environment needs to scale (i) in terms
of physical extension and (ii) in terms of “computers per cubic cen-
timeters”. Specifically, interactions in pervasive environments are
predominantly local, thereby they need to be closed after the device
has moved away [Satyanarayanan, 2001]. Nevertheless, for wireless
mobile users, scalability must take into account energy consump-
tion, bandwidth, and signal interference problems.

Finally, pervasive systems have a significant impact on the so-
cial environments where they are deployed [Banavar and Bernstein,

18 2 Ubiquitous sensing in pervasive environments

2002]. For example, to control a certain environment, a pervasive
system necessitates sensors in such an environment. Sensors embed-
ded in the house can be used to automatically adjust the lighting
system or to detect a fire. However, privacy concerns arise when
storage, control, and access of such data are uncertain. In addition,
the feeling of observability due to the constant presence of moni-
toring sensors can lead to undesirable psychological feelings. Even
sensors that are highly desirable by all participants may become
socially unacceptable [Grudin, 2002].

Heterogeneity

Assuming that uniform implementations of smart environments are
not achievable, pervasive computing must devise mechanisms to
mask this heterogeneity, also called “uneven conditioning” [Satya-
narayanan, 2001], and smooth the “smartness gap‘” between diffe-
rent environments. Pervasive environments are heterogeneous both
in terms of networking infrastructures and interaction protocols.
Network heterogeneity arises from the use of various wireless tech-
nologies (e.g., cellular networks, WiFi, Bluetooth), from the adop-
tion of different management models (e.g., infrastructure-based or
ad hoc networks), and from the variable support for IP-level com-
munication and configuration functions (e.g., IP multicast, DHCP).
This heterogeneity leads to many independent networks being avail-
able to users at a location. One consequence of this is that as users
can only be connected to a limited number of networks at the same
time (often a single one), many services are often not accessible (i.e.,
not IP reachable). The heterogeneity of interaction protocols arises
from the concurrent use of different middleware platforms (e.g., Jini,
UPnP, Web Services). Due to incompatible data representation and
communication formats, these protocols do not interoperate with
each other. For example, users are able to discover only services
that are advertised with the service discovery protocol(s) they sup-
port [Raverdy et al., 2006].

A core objective of pervasive computing is “serendipitous inter-
operability”, interoperability under “unchoreographed” conditions,
meaning that functionally heterogenous devices designed by diffe-
rent manufacturers and for different purposes can come together
and interoperate. To understand and use the resources offered

2.1 Pervasive computing 19

by other devices it is necessary to agree on a common commu-
nication language capable of describing characteristics of such de-
vices and their interfaces. The Composite Capability/Preference
Profile (CC/PP) [Kiss, 2006] of W3C and the User Agent Profile
(UAProf) [WAP Forum, 2001] of OMA’s WAP Forum are RDF-
based schemes [WRC, 2007] for representing devices characteristics.
Moreover, several consensus ontologies have been proposed for per-
vasive environments. Examples include SOUPA [Chen et al., 2005],
FIPA QoS ontology [Foundation for Intelligent Physical Agents,
2002b], and FIPA Device ontology [Foundation for Intelligent Phys-
ical Agents, 2002a].

Finally, heterogeneity must be handled at the application level
too. Pervasive applications are typically developed for specific de-
vice types or platforms. Many separate versions of the same appli-
cation exist, e.g., for handheld or desktop devices. As heterogeneity
increases it becomes difficult to deploy portable applications that
can run across all platforms and on new devices as they appear.
Application development needs to be as much as possible indepen-
dent on the device’s technology and development platform. Even
if an enterprise could generate new applications as fast as new de-
vices appear, programming the application’s logic only once would
solve many application scalability problems. Likewise, as the num-
ber and type of devices increase, explicitly distributing, installing,
and updating applications for each device will become unmanage-
able [Saha and Mukherjee, 2003].

Spontaneous interactions

Mobility and ubiquitous connectivity make pervasive environments
very dynamic in the number and type of devices interacting at any
point in time and location. Components of a pervasive system act-
ing as clients, services or resources need to spontaneously interact in
a volatile environment, where some components can change their
properties, appear, or disappear [Kindberg and Fox, 2002]. New
naming conventions are needed to uniquely identify resources and
services, as IP addresses do not scale well to highly dynamic envi-
ronments and adequate service discovery mechanisms are necessary.

Furthermore, in such environments, it becomes common for a
node to encounter entities never met before. There is a need to

20 2 Ubiquitous sensing in pervasive environments

establish trustworthy relationships among them as well as to guar-
antee security. Moreover, since providing information, services,
resources to others implies a cost, incentive mechanisms for co-
operation are needed. A possible solution to this is to introduce
service charge: every time a node requests a service to a node,
it needs to reward it [Buttyán and Hubaux, 2003; Zhong et al.,
2003]. However, interactions among devices might last only few
seconds or minutes, therefore techniques to support trust, security,
and cooperation should not affect performance by introducing delay
and intensive computations on resource-constrained mobile devices.
Privacy is another critical issue. Personal data such as context in-
formation, and in particular location, will need to be shared and it
is therefore necessary to control the access to such data.

2.1.2 Hardware and networking support

When in 1991, M. Weiser articulated his vision of ubiquitous com-
puting, this was a vision far ahead of its time. The hardware
technology for its support did not exist. After years of hardware
progress, the hardware technology needed is becoming a reality.
The two most important enablers of such a vision are computing
devices that are becoming increasingly more powerful, smaller, and
affordable thus allowing a large deployment of them in everyday
environments, and wireless networking technologies capable of sup-
porting many different types of interactions occurring in such envi-
ronments.

Advances in processing capabilities have followed Moore’s law
stating that “the number of active devices we can place on a given
area of silicon doubles every 18 months”. Hence, we can increase
the number of components into a single chip and obtain compact
and multi-functional devices operating at higher speed. In addi-
tion, storage capacity has showed a rate of improvement faster than
Moore’s law, thus becoming a much less critical obstacle for per-
vasive applications [Want et al., 2002]. However, battery energy
density has advanced very slowly [Paradiso and Starner, 2005] and
therefore represents a serious constraint for battery-powered devices
such as smart phones.

Wireless communication is constantly advancing. With the emer-
gence of WiMax (IEEE 802.16) and other IEEE 802 broadband

2.1 Pervasive computing 21

technologies (IEEE 802.20, IEEE 802.11n) as well as the forthcom-
ing 3G/4G/next generation cellular networks and Unlicensed Mo-
bile Access (UMA), broadband connectivity has quickly improved.
ZigBee (IEEE 802.15.4) and the upcoming IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN), to send and receive
IPv6 packets over IEEE 802.15.4 based networks, aim to allow low-
rate wireless connectivity for devices with very limited form factor.

Wireless connectivity provides flexibility and is essential to sup-
port not only basic device-to-device communication, but also more
advanced services. Moreover, wireless networking opens the way to
two models of network management. The former is an infrastructure-
based approach in which devices interact through an infrastructure,
which offers several common facilities to multiple applications. The
latter is an infrastructure-less approach in which devices sponta-
neously network together and interact autonomously, without any
centralized control. Hence, this second model can provide more
flexibility and higher availability. These two network management
models are complementary and more or less convenient depending
on the amount and type of resources available in the environment.

Other relevant advances in hardware support include sensor tech-
nology, high-quality displays, and wearable computers.

2.1.3 Middleware support

Middleware platforms that can abstract the underlying software
and hardware complexity of a system and provide core services to
application programmers can effectively facilitate the application
development process.

Research on middleware for mobile computing seeks to address
many issues that arise due to host mobility such as network discon-
nections, server unreachability, lower and inconstant availability of
high-bandwidth networks, and inadequacy of synchronous commu-
nication. More discussion on middleware platforms for mobile com-
puting can be found in [Davies et al., 1998; Mascolo et al., 2002;
Noble and Satyanarayanan, 1999].

Middleware platforms have also been adopted also in pervasive
computing. K. Raatikainen et al. [Raatikainen, 2005; Raatikainen
et al., 2002] identify several requirements that middleware platforms
for pervasive computing need to address, such as context-awareness,

22 2 Ubiquitous sensing in pervasive environments

personalization, adaptability to changes in the execution and com-
munication capabilities, efficient use of communication resources,
dynamic system configuration, robustness, high availability, and
fault-tolerance. S.S. Yau et al. [Yau et al., 2002] highlight the im-
portance of the following four requirements for pervasive middle-
ware: (i) uniform and common development support despite the
heterogeneity of operating systems, programming languages, and
environments, (ii) application-specific context provisioning, (iii)
context-driven execution, and (iv) transparent support for ad hoc
communication, proactive resource discovery, and interoperability.
Moreover, in contrast to the general tendency of traditional mid-
dleware for mobile computing that seeks to provide complete trans-
parency to the application, with pervasive applications it is neces-
sary to balance awareness and transparency. For example, L. Capra
et al. [Capra et al., 2003] propose reflection and metadata to allow
applications to inspect the system’s execution context and adapt
the middleware behaviour accordingly.

Many projects on middleware for pervasive computing have fo-
cused on resource management and resource discovery issues, and in
particular on how to facilitate the on-the -fly integration of a device
into a new environment. For example, to support efficient resource
discovery in rapidly changing environments, the middleware needs
to constantly monitor the type and quality of available resources
and services [Bellavista et al., 2003; Chakraborty and Finin, 2006;
Liu and Issarny, 2005]. In addition, middleware architectures have
been devised to mask the heterogeneity of several resource discovery
mechanisms and provide interoperability [Raverdy et al., 2006].

Due to its central role in pervasive computing environments,
the support for context-awareness has been integrated in many
middleware architectures. The core objective has been how to
support acquisition, representation, and use of multiple fragments
of context information gathered from multiple sources in a mo-
bile environment. Examples of proposed approaches include the
Reconfigurable Context-Sensitive Middleware (RCSM) [Yau and
Karim, 2004; Yau et al., 2002], Gaia [Ranganathan and Campbell,
2003; Roman et al., 2002], Solar [Chen et al., 2004], the Sentient
Model [Biegel and Cahill, 2004], MiddleWhere [Ranganathan et al.,
2004], the Blackboard-based software framework [Korpipää, 2005],
the Java Context Awareness Framework (JCAF) [Bardram, 2005],

2.1 Pervasive computing 23

and the ContextPhone [Raento et al., 2005]. An extensive list of
references of works focusing on context-awareness support can be
found in [Riva, 2007].

Security and privacy issues for pervasive systems are particularly
exacerbated by the application’s access to preferences, context in-
formation, and personal profiles of users [Campbell et al., 2002].
Confab [Hong and Landay, 2004] is an example of middleware ar-
chitecture addressing this kind of issues.

A number of leading research institutes have focused on provid-
ing support for the deployment and execution of mobile and perva-
sive computing applications. Examples include Project Aura [Aura,
2007] at Carnegie Mellon University, Cooltown [Cooltwon, 2007] at
Hewlett-Packard, EasyLiving [EasyLiving, 2007] at Microsoft Re-
search, Endeavour [Endeavour, 2007] at the University of California
at Berkeley (UC Berkeley), Oxygen [Oxygen, 2007] at the Massa-
chusetts Institute of Technology (MIT), Portolano [Portolano, 2007]
and OneWorld [Grimm et al., 2004; Grimm and et al, 2001] at the
University of Washington.

Finally, software engineering tools to aid application develop-
ment are extremely important for pervasive computing. J.A. Lan-
day and G. Borriello [Landay and Borriello, 2003] pointed out the
importance of design patterns as an effective way to share solu-
tions of pervasive systems’ design problems. They also proposed
several interaction patterns for pervasive computing and user inter-
faces. This initial idea was further extended in [Chung et al., 2004],
where the authors defined a pattern language of 45 pre-patterns de-
scribing application genres, physical-virtual spaces, interaction and
systems techniques for managing privacy, and techniques for fluid
interactions. The goal was to evaluate the effectiveness of design
patterns in assisting designers developing applications for pervasive
computing in terms of learning about a new domain, communicat-
ing with one another, evaluating existing designs, and generating
designs. A complementary study [Riva and di Flora, 2006b] pro-
posed a method to unearth design patterns from existing pervasive
computing systems. In particular such a method was applied to
identify GOF design patterns [Gamma et al., 1995] as well as novel
patterns for the support of context-awareness.

In this dissertation, we focus on middleware platforms and the
support that we can offer at such a level to develop and execute

24 2 Ubiquitous sensing in pervasive environments

pervasive applications.

2.2 Ubiquitous sensing

As discussed in the previous chapter, one of the key requirement to
accomplish the pervasive computing vision lies in the ability of ap-
plications to seamlessly access anytime, anywhere data produced by
sensors embedded in the surroundings. We refer to this capability
with the term “ubiquitous sensing” and we call “sensing applica-
tions” those applications that make use of this capability. Ubiq-
uitous sensing enables a large variety of sensing applications rang-
ing from traditional context-aware applications (e.g., tourist guides,
personal assistants, or gaming) to vehicular information systems
(e.g., dynamic route planning or traffic jam detection), to social
networking (e.g, recommenders or community-based interactions).
This section discusses existing approaches to support ubiquitous
sensing in pervasive environments, and, in particular, work done on
wireless sensor networks and mobile ad hoc networks.

2.2.1 Overview

Ubiquitous sensing defines the capability of a system to access any-
time, anywhere data produced by sensors carried by entities or em-
bedded in the physical environment. An application that performs
ubiquitous sensing is called sensing application.

The notion of ubiquitous sensing is conceptually close to that
of context and context-awareness, but more focused on the aspects
of provisioning and dissemination of sensor information than those
of reasoning and classification of raw sensor data into higher-level
context information. Moreover, ubiquitous sensing and context-
awareness are overlapping fields depending on the definition of con-
text in use. In most of the cases, the notion of context in ubiqui-
tous sensing means low-level sensor data and it refers to entities,
resources, and environments that can be close to the user’s current
location, but also relatively far (e.g., the number of free spots in
the restaurant’s parking area). In context-aware computing, the
notion of context can refer to raw data as well as to semantically-
represented information and very often concerns only the user’s

2.2 Ubiquitous sensing 25

Service

infrastructure

Application

Sensor

Monitoring

Sensor Data

Dissemination

Sensors in the

environment

Application

Sensor Data

Processing

Application

Sensors

on the device

Sensing

Module
Sensing

Module

Sensors in the

environment

a) Local sensing b) Infrastructure-based sensing

Sensing

Module Sensing

Module

Sensors

on the device

Sensors

on the device

Application

Sensing

Module

Application

Sensing

Module

Sensors in the

environment

c) Infrastructure-less sensing

Application

Sensing

Module

Application

Sensing

Module

Application

Sensing

Module

Application

Sensing

Module

Application

Sensing

Module

Figure 2.1: The three core approaches to supporting ubiquitous
sensing.

close proximity (e.g., how many persons are in the same room where
the user is). Hereafter, we will use the term context as understood
by ubiquitous sensing.

When speaking about ubiquitous sensing, the term “sensor” can
mean different things depending on the subject. If the subject is a
sensor network, sensors are tiny sensor devices with wireless con-
nectivity, such as Intel motes [Intel Mote, 2007]. If the subject is
a mobile device, sensors can be either local such as GPS receivers
embedded in a phone and on-board sensors for vehicle parameters
(e.g., speed, gear position, throttle position, acceleration, or brake
pressure), or external and connected to the actual device using, for
example, Bluetooth (e.g., BT-enabled GPS receivers or environ-
mental sensors).

To support ubiquitous sensing on a mobile device, we identify
the three following strategies, also illustrated in Figure 2.1:

26 2 Ubiquitous sensing in pervasive environments

• Local sensing : this is the first basic strategy and consists of
deploying specialized sensing modules to be installed on the
device. As illustrated in Figure 2.1a, different types of sensing
modules monitor the local sensors, process the acquired raw
data, and make them available to the application. The direct
integration of these sensing modules into the application may
comport increased complexity, loss of generality and reuse, ex-
pensive and time-consuming application development. There-
fore, these modules are more conveniently organized in li-
braries, toolkits [Dey et al., 2001], frameworks [Schmidt et al.,
1999], middleware architectures [Yau and Karim, 2004]. How-
ever, a limitation of this approach is that, in many situations,
it is unrealistic to assume that individual mobile devices will
constantly carry any type of conceivable sensor or will be ca-
pable of interacting with any type of sensor embedded in the
surrounding environment. The computational load on the
mobile device might also be excessive for its limited capabili-
ties.

• Infrastructure-based sensing : this strategy consists of deploy-
ing external service infrastructures, meaning autonomous sens-
ing servers that run on remote devices and are accessible by
multiple applications while being independent of each applica-
tion logic. This type of approach is depicted in Figure 2.1b).
The service infrastructure is in charge of discovering suit-
able sensor devices and processing, storing, and disseminating
gathered sensor data. Multiple applications can contact (or
subscribe with) the infrastructure to retrieve sensor informa-
tion related to certain entities or geographical regions. This
model has been employed to support sharing of context data
among context-aware applications through many different ser-
vice infrastructures [Bardram, 2005; Hong and Landay, 2001,
2004] and context servers [Hohl et al., 2002; Want et al., 1992]
as well as to enable sharing of sensor data in urban environ-
ments [Hull et al., 2006; SenseWeb, 2007]. On the one hand,
by sharing sensors and computing resources, this approach
reduces the computational load on single devices and makes
applications less tied to a specific sensor platform. On the
other hand, relying on a centralized system presents scalabil-

2.2 Ubiquitous sensing 27

ity, extensibility, and fault-tolerance issues. In addition, these
approaches typically require Internet connectivity.

• Infrastructure-less sensing : in this approach, depicted in Fig-
ure 2.1c), the basic idea is to use a network of sensing devices
to collect and disseminate sensor data available in the environ-
ment. Individual sensing devices as well as groups of sensor
nodes can sense data, process them, and make them avail-
able to other entities. Counting on the cooperation of these
entities, these networks can spontaneously form to provide a
common service. Alternatively, they can be deployed to ac-
complish application-specific tasks over long periods of time.
The advantages of this approach are distribution, flexibility,
lower cost, and the capability to operate also when Internet
connectivity is not available. Mobile ad hoc networks and
sensor networks are two good examples of infrastructure-less
sensing approaches.

While the first two types of sensing strategies are well-known and
have been widely employed to support context-awareness in various
types of pervasive applications, infrastructure-less sensing is more
challenging due to several issues that its deployment involves. In
the following sections, we will discuss existing technologies that
can be used to achieve infrastructure-less sensing both in static
and mobile environments. We start with reviewing characteristics,
challenges, and envisaged applications of wireless sensor networks
and then pass to mobile ad hoc networks. In the conclusion of
this section, we will also summarize the main differences between
wireless sensor networks and mobile ad hoc networks. Indeed, while
in the literature these two terms are often used to indicate the same
type of network, in our work they play two distinguishing roles in
supporting ubiquitous sensing. Their roles will be further clarified
in the next chapter too.

2.2.2 Wireless sensor networks

Wireless sensor networks (WSNs), or shortly sensor networks, are
distributed, wireless networks of small, low-cost, tiny sensors, which
are capable of collecting and disseminating observations across large
and remote physical environments. The nodes in the network are

28 2 Ubiquitous sensing in pervasive environments

called sensor nodes. Due to their scarce resources, each sensor
node is capable of only a limited amount of computation. However,
sensor nodes can be coordinated to carry out specific tasks over
wide geographical regions.

Sensor network applications

Deploying a network of sensors to monitor an environment is a com-
mon practice. For example, cameras in museums, supermarkets, or
buildings are installed for surveillance purposes. Real-time images
are gathered in a central system that can remotely control the entire
environment. However, while a decade ago, most deployed sensor
networks involved a limited number of sensors, wired to a central
processing unit, nowadays, the focus is on wireless, distributed,
sensing nodes.

D. Estrin and co-authors identified several reasons that make dis-
tributed, wireless sensing [Estrin et al., 2001] necessary. First, dis-
tribution is needed when the precise location of a signal of interest
is unknown in a certain monitored region. Distribution guarantees
higher SNR and improved opportunities for line of sight. Second,
in many situations, the environment to be monitored does not have
an existing infrastructure for communication or energy, therefore
sensor nodes must rely on their local, finite sources of energy and
wireless communication capabilities. Third, not only sensors, but
also data processing needs to be distributed. Collecting measure-
ments and transferring them to a central processing unit can turn
out highly energy-consuming, for example for sensors that need to
communicate over long distances.

WSNs enable a variety of applications categorized by D. Culler
et al. [Culler et al., 2004] in the following way:

• Monitoring physical spaces: this includes environmental mon-
itoring [Cardell-Oliver et al., 2005; Lundquist et al., 2003],
habitat monitoring [Cerpa et al., 2001; Mainwaring et al.,
2002; Szewczyk et al., 2004], precision agriculture [Burrell
et al., 2004; Mayer et al., 2004; Zhang et al., 2004], indoor cli-
mate control [Ozdemir et al., 2005], seismic detection [Werner-
Allen et al., 2006], surveillance [He et al., 2004], etc;

• Monitoring things: this includes structural monitoring [Chin-

2.2 Ubiquitous sensing 29

talapudi et al., 2006; Xu et al., 2004], condition-based equip-
ment maintenance [Krishnamurthy et al., 2005; Tiwari et al.,
2007], medical diagnostics [Baldus et al., 2004], etc; and

• Monitoring the interaction of things with each other and the
encompassing space: this includes monitoring of activities
and wildlife habitats [Juang et al., 2002], disaster manage-
ment, emergency response [Lorincz et al., 2004], rescue oper-
ations [Michahelles et al., 2003], healthcare, etc.

A more comprehensive comparison of several sensor network ap-
plications can be found in [Römer and Mattern, 2004].

Sensor network characteristics and challenges

Despite the diversity of sensor network applications, WSNs present
one or more of the following characteristics [Estrin et al., 2001]:

• Untethered for energy and communication: there is no energy
source, therefore energy resources must be carefully managed;

• Ad hoc deployment : there is no supporting infrastructure or
predefined topology (e.g., sensors can be tossed from an air-
plane on the sea);

• Unattended operation: sensor networks are self-organizing,
i.e., configuration occurs without human intervention; and

• Dynamic operation: the network must be capable of adapting
over time to changing connectivity and environmental condi-
tions.

Given these characteristics, as summarized in several survey pa-
pers [Akyildiz et al., 2002; Chong and Kumar, 2003; Culler et al.,
2004; Hadim and Mohamed, 2006; Tubaishat and Madria, 2003],
the deployment of WSNs needs to address the following challenges:

• Low energy use: many sensor network deployments are in re-
mote regions where physical contact for replacement or main-
tenance may not be possible. The lifetime of a node is deter-
mined by its energy consumption and wireless communication
is the only way for remote accessibility. Therefore, a sensor

30 2 Ubiquitous sensing in pervasive environments

node should accomplish sensing, data processing, and com-
munication tasks while minimizing the energy consumption.

• Data aggregation: to save communication resources, interme-
diate nodes in the network can aggregate the sensed data,
summarize the data (e.g., average or max/min) and then
transmit the aggregated information.

• Self-organization and fault-tolerance: nodes in the network
can physically deteriorate or exhaust their energy, or new
nodes can appear in the network. As manual configuration
of such networks is not feasible, nodes must be able to pe-
riodically reconfigure. Fault-tolerance is then defined as the
capability to sustain a reasonable level of network functional-
ity without any interruption due to sensor failures.

• Querying ability : a sensor network can be abstracted as a dis-
tributed database. Data are dynamically sensed and distri-
buted across the nodes. Users need a simple interface to task
and query the network. Challenges include query language
design, query compilation, task allocation, and caching.

• Scalability : sensor networks might contain thousands of nodes.
Therefore, scalability is a crucial issue as well as mechanisms
to efficiently exploit high density of nodes to save network
resources.

• Security : the deployment of sensor networks in hostile and
harsh environments as well as the utilization of the wireless
media increase the probability of malicious intrusions and at-
tacks. Network techniques are needed to ensure survivability
and security while consuming few network resources.

Sensor network architecture

A WSN consists of sensors communicating using wireless connec-
tivity. Sensor nodes are battery-powered, wireless computers. As
shown in Figure 2.2, they typically consist of four main compo-
nents [Akyildiz et al., 2002]:

• Sensing unit : it consists of a group of sensors and analog-to-
digital converters (ADCs). ADC converts the analog signals

2.2 Ubiquitous sensing 31

Sensor ADC

Sensing Unit

Processing Unit

Power Unit

Positioning

system

Processor

Storage

Transceiver

Power

generator

Figure 2.2: Example of sensor node components.

measured by the sensor to digital signals that are passed to
the processing unit for further elaboration.

• Processing unit : it manages collaboration among sensors to
carry out the assigned task. It also includes a storage unit.

• Transceiver unit : it connects the node to the network. Typi-
cally, three communication schemes are available for sensors:
optical communication (laser), infrared, and radio frequency.

• Power unit : it consists of a battery that supplies power to the
node. Optionally, the power unit can be connected to a power
generator. Since this is rarely available, modern sensors are
able to renew their energy from solar or vibration energy [Hill,
2003]. Additionally, a sensor node can be connected to a po-
sitioning system as many algorithms used in sensor networks
require location-awareness.

Sensor nodes must be small (a few cubic centimeters), light, con-
sume low power (a few tens of milliwatts instead of tens of watts for
a common laptop computer), operate in high volumetric densities,
and have low production cost.

Sensor network nodes (also called “motes”) have been devel-
oped in numerous universities and companies. Pioneering work [Hill
et al., 2000] in this field has been carried out at UC Berkeley in col-
laboration with Intel Research Berkeley laboratory. They designed
Mica motes [Hill and Culler, 2002] along with TinyOS [Levis et al.,
2004; TinyOS, 2007], an operating system specifically designed to

32 2 Ubiquitous sensing in pervasive environments

Figure 2.3: Example of sensor network.

run on highly resource-constrained motes. Intel motes [Intel Mote,
2007; Kling, 2003] constitute an enhanced generation of the original
mote technology. Other sensor devices are Smart-Its [Smarts-Its,
2007], BTNodes [BTnodes, 2007], Ember [Ember, 2007], and MITes
(MIT environmental sensors) [MITes, 2007].

WSNs are typically deployed across large, remote, and unat-
tended geographical areas. Sensors are generally static and are ei-
ther physically positioned or randomly distributed across the area
of interest. As illustrated in Figure 2.3, the regular model of op-
eration for a sensor network involves nodes communicating with
each other and exchanging data. Data from individual nodes are
typically aggregated in super-nodes with greater processing capa-
bilities. Super-nodes can cache, process, filter the data to extract
more meaningful information. These super-nodes are then in charge
of delivering the collected data to a root node that acts as a gateway
to an IP-network to which users connect.

In order to reduce energy consumption in the network and ex-
tend nodes’ lifetime, nodes are turned off when possible. Through
this technique, energy dissipation at the MAC-layer protocol can
be reduced by employing protocols such as PAMAS [Singh and
Raghavendra, 1998] and S-MAC [Ye et al., 2002]. Likewise, topol-
ogy control protocols such as ASCENT [Cerpa and Estrin, 2004]

2.2 Ubiquitous sensing 33

and STEM [Schurgers et al., 2002] turn off nodes while guarantee-
ing full connectivity in the network. In addition, as discussed in
the next section, energy can be saved using energy-aware routing
protocols.

Sensor data dissemination and collection

To accomplish dissemination and collection of data from the sensor
network, flooding and gossiping are two basic and simple mecha-
nisms that do not require any routing algorithm or topology main-
tenance.

To disseminate a piece of data (e.g., a task or an alarm) with
the flooding protocol, the root node broadcasts the data to all of
its neighbors; upon receiving a piece of data, each node stores and
sends a copy of the data to all its neighbors, and so forth thus
reaching more distant nodes. The protocol requires no state at
any node, and can disseminates data rather quickly in a network
where bandwidth is not scarce and links are not loss-prone. How-
ever, flooding presents several deficiencies [Heinzelman et al., 1999]:
(i) implosion, when duplicated packets are sent to the same node;
(ii) overlap, when two nodes monitoring the same region sense and
transmit the same data, at the same time, and to the same node;
and (iii) resource blindness, if the dissemination protocol does not
take into account the available network resources. Dissemination
can also be exploited to build network routes. During the dissem-
ination process, each node records its neighbors closer to the root
and can then use this information to build a tree for data collection
(e.g., to route back data to the root).

A derivation of flooding is gossiping [Hedetniemi et al., 1988] in
which nodes do not broadcast data, but send the data to a ran-
domly selected neighbor. Through this random selection (rather
than broadcasting), gossiping does not incur in the problem of im-
plosion, but can cause data propagation delays.

Numerous routing protocols have been proposed for sensor net-
works [Akyildiz et al., 2002; Culler et al., 2004] and most of them
can be classified as data-centric, hierarchical or location-based to-
gether with few distinct ones based on network flow or QoS aware-
ness [Akkaya and Younis, 2005]. In the following, we briefly discuss
some of these approaches.

34 2 Ubiquitous sensing in pervasive environments

Unlike typical Internet architectures, in sensor networks, com-
munication is not address-based, but data-centric because it is very
hard to maintain global identifiers in the network. In data-centric
routing, each sink sends queries to certain regions and waits for data
from the sensors located in the selected regions. Attribute-based
naming is used to specify the properties of the requested data. For
example, in Directed Diffusion [Intanagonwiwat et al., 2000], one of
the most important data-centric protocols, nodes are identified by
properties such as their location or sensor features. Data generated
by the nodes are named by attribute-value pairs and an “interest”
(i.e., a list of attribute-value pairs describing the task) is propagated
in the network for named data. Data that match this interest are
routed towards the source. SPIN [Heinzelman et al., 1999] is the
first data-centric protocol that has been proposed. Many other
protocols [Braginsky and Estrin, 2002; Chu et al., 2002; Sadagopan
et al., 2005] have been then developed following these or similar
principles.

Hierarchical protocols aim at grouping the nodes in clusters,
where each cluster head performs data aggregation and fusion in or-
der to reduce the number of transmitted packets. LEACH [Heinzel-
man et al., 2000] is one of the first hierarchical protocol for sensor
networks that has been proposed.

Location-based protocols use the location information to propa-
gate queries only across regions of interest and hence save energy.
For example, GEAR (Geographical Energy-Aware Routing) [Yu
et al., 2001] uses the location and energy information to select its
neighbors and balance the energy consumption among them. GAF
(Geographical Adaptive Fidelity) [Xu et al., 2001] uses the location
information to build a geographical grid such that only one node is
turned on in each cell while maintaining an equivalent routing tree
in the network.

Query processing in sensor networks

Sensor networks can be abstracted as large distributed databases
for the environment where they are deployed [Bonnet et al., 2001].
As we will discuss later in this section, this observation led many
research groups to utilize a declarative paradigm for programming
sensor networks. TinyDB [Madden et al., 2002, 2003, 2005] and

2.2 Ubiquitous sensing 35

Cougar [Fung et al., 2002; Yao and Gehrke, 2002] are two well-
known query-processing systems for extracting data from a net-
work of sensor devices. Specifically, applications generate queries
to input into the network through a simple interface, typically an
SQL-like interface, such that the network can then extract and re-
turn the data of interest. In the query, the application specifies
which data should be collected and how they should be combined
and summarized.

According to TinyDB’s database abstraction, sensor values be-
long to a table called sensors which, virtually, has one row per
each node per instant in time, with one column per each attribute
sensed by the sensor device (e.g., temperature, light, etc.). Concep-
tually, the sensors table is an unbounded, continuous data stream
of values, where reading out the sensors at a node can be considered
as adding a row to sensors. Note that, as in classical database sys-
tems, the application specifies the type of data is interested in, but
does not select the software algorithm that the system must use to
collect the results.

Let us consider an example of query in TinyDB taken from [Mad-
den et al., 2005]. A user wants to monitor the occupancy of a room
at the 6th floor of the building. She uses microphone sensors at-
tached to motes and looks for rooms where the average volume is
over a certain threshold. The corresponding query is the following:

SELECT AVG(volume), room
FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG(volume) > threshold
SAMPLE PERIOD 30 s

This query evaluates the values of all motes on the 6th floor,
room by room, and reports all rooms where the average volume
is over the specified threshold. Results are refreshed every 30 sec-
onds. Therefore, unlike traditional SQL queries, the result of sensor
queries of this type is a stream of sensor tuples.

Once a query is generated, it is optimized. Query optimization
means selecting the best execution plan for a certain query given the
network’s conditions. The cost of a plan is computed based on the
estimated costs of each operator, of sensors reading, etc. The query
plan might need to be modified at runtime. In addition, multi-query

36 2 Ubiquitous sensing in pervasive environments

optimization is employed to avoid to run multiple copies of the same
or similar queries.

Upon optimization, the system disseminates the query. The sys-
tem maintains a routing tree (spanning tree) rooted at the user end
point. Every node in the network has its own query processor that
processes sensor values and maintains routing information. Start-
ing from the root of the network, each node decides if the query
has to be executed locally or broadcasted to its children in the
rooting tree. In order to limit the scope of a certain query, a node
can maintain a record of attribute values characterizing its children
(e.g., node resources, location, etc.). For example, in TinyDB this
is called “semantic routing tree” [Madden et al., 2005]. If a node
does not offer adequate resources the parent node does not forward
the query to it. Otherwise, the parent node agrees with its children
on a time interval for listening for results from them. The process
repeats for every period and query.

Once the query is disseminated, the nodes process it. An ac-
quisition operator at each node periodically performs the sensor
measurement. Subsequently, it routes the sensed values, or tuple,
through the query plan. The plan consists of a number of operators
to be applied in a predefined order. If the tuple fails to pass a join
or selection operator, it is rejected and the query processor enters
a power-down phase. Otherwise, the tuple is passed to the next
operator or combined with other tuples. Tuples are passed in the
routing tree up to the root node which can further combine them
with other data collected from other children.

Data aggregation is a powerful mechanism to save resources
in the network. In the above query example, the system aggre-
gates microphone readings over time and reports periodically to
the user the average value. Besides traditional aggregates such as
MAX, MIN, COUNT, SUM, AVERAGE, MEDIAN, etc., TinyDB also al-
lows users to define aggregates and Cougar supports advanced ag-
gregates such as the object tracking operator [Gehrke and Madden,
2004]. Broadly speaking, we can say that the most efficient mecha-
nisms to save network resources are those that push computing into
the network, towards the origin of the data to be processed.

2.2 Ubiquitous sensing 37

Mobile sensor networks

Traditional sensor networks usually consist of static nodes. How-
ever, static sensor networks are not feasible in every type of envi-
ronment due to deployment costs over large areas. Several projects
have focused on mobile sensor networks. Instead of treating mo-
bility as a hostile factor, it is exploited to improve network per-
formance [Kansal et al., 2004]. Examples include Networked Info-
mechanical Systems (NIMS) [Pon et al., 2005] for characterization
of environmental phenomena, underwater sensing [Vasilescu et al.,
2005] for monitoring coral reefs and fisheries, ZebraNet [Liu et al.,
2004] with sensors positioned on animals to observe animals’ move-
ment and habits, and Cartel [Hull et al., 2006] where cars are used
as data mules to collect information about road conditions.

2.2.3 Mobile ad hoc networks

Mobile ad hoc networks (MANETs) originated from the Defence
Advanced Reserach Project Agency (DARPA) Packet Radio Net-
work (PRNet) in the early 1970s. A MANET consists of a collection
of mobile nodes connected by wireless links that can autonomously
form network topologies without relying on any centralized access
point or infrastructure. MANETs are self-creating, self-organizing,
and self-administering networks. In the following, we will present
some typical MANET applications and illustrate core characteris-
tics and challenges of these networks, with a special focus on their
routing protocols.

MANET applications

In situations in which there is no existing infrastructure or the ex-
isting infrastructure is too expensive or inconvenient, ad hoc net-
working technology can be employed. With the proliferation of
mobile devices such as smart phones and advances in wireless com-
munication, ad hoc networking has become an accessible technology
in everyday life. Typical envisioned scenarios for ad hoc networks
include:

• Military battlefield : this was the very first domain where ad
hoc networking was considered in 1970s. Soldiers, military

38 2 Ubiquitous sensing in pervasive environments

bases, and vehicles can set up private ad hoc networks to
exchange information.

• Emergency services: MANET technology can provide a flexi-
ble method to establish communications for fire/safety/rescue
operations or in other situations requiring rapidly-deployable
communications with survivable, efficient dynamic network-
ing [Corson and Macker, 1999]. Ad hoc networking can be
essential because the preexisting infrastructure might be dam-
aged or destroyed.

• Vehicular networks: there is an emerging interest in equip-
ping vehicles with portable computers to provide services such
as dynamic route planning, route recommendations, traffic
jam detection, collision avoidance, road diagnostics, or con-
tent sharing.

• Social networking : people are interested in sharing informa-
tion such as news, restaurant recommendations, driving di-
rections, experiences or simply in getting to know each other.
Ad hoc networks can be used to exchange information in con-
vention centers, conference venues, smart classrooms, offices,
shopping malls, and many other civilian forums.

• Personal Area Network (PAN): ad hoc networks can facilitate
the exchange of data among personal devices, such as PDAs,
laptops, smart phones. In particular, ad hoc networks can
serve to extend the access to the Internet or other networks.

MANET characteristics and challenges

MANETs present unique characteristics and challenges [Chlamtac
et al., 2003; Corson and Macker, 1999; Sun, 2001]. Core character-
istics of MANETs are the following:

• Autonomous and resource-constrained terminals: in MANETs,
each mobile terminal is an autonomous node that can act as
both a host and a router. These nodes are generally mobile,
battery-powered and offer limited computational capabilities
and small storage space.

2.2 Ubiquitous sensing 39

• Distributed network management : there is no central author-
ity, hence the control and management of the network, such
as routing and security, rely on the cooperation of all nodes.

• Bandwidth-constrained, variable-capacity links: wireless links
have significantly lower bandwidth than wired links and their
capacity constantly varies due to noise, fading, and interfer-
ence. In addition, nodes in MANETs are mobile and con-
stantly change their position within the network, thus ren-
dering symmetric links hard to maintain. As links come and
go depending on the transmission characteristics, one trans-
mission can interfere with another one and nodes can overhear
transmissions of other nodes and corrupt the entire transmis-
sion. As such, a MANET presents low bandwidth links, high
bit error rates, and unstable and asymmetric links. This is in
contrast to wired networks characterized by high bandwidth
links, low bit error rates and stable and symmetric links.

• Multi-hop communication: as nodes have limited transmission
ranges, some nodes cannot communicate directly with each
other, but need intermediate nodes that can forward packets
on their behalf.

• Dynamic network topology : as nodes are mobile and links are
prone to failures, the network topology can change quickly
and in an unpredictable manner, thus varying the connectivity
among the terminals and causing network partitions.

Core challenges for MANETs are the following:

• Routing : since the network is dynamic, it is hard to main-
tain stable connectivity between pairs of nodes, especially if
these are multi-hop away. Multicast routing is also challeng-
ing because the multicast tree is no longer static and hard to
maintain.

• Energy-aware operation: as most devices in ad hoc networks
are battery-operated, conservation of energy and energy-aware
routing mechanisms are important design challenges in order
to extend battery lifetime.

40 2 Ubiquitous sensing in pervasive environments

• Quality of service: supporting quality of service in such dy-
namic conditions is hard and needs to constantly adapt to the
network dynamics.

• Security, reliability, and availability: mobile wireless networks
are more prone to physical security threats of eavesdropping,
interception, denial-of-service, and routing attacks compared
to fixed wired networks [Corson and Macker, 1999]. Reli-
ability is affected by the limited transmission range, mobil-
ity, node failures, and data transmission errors. Security and
fault-tolerance mechanisms need to be applied to handle these
problems. Key management, authentication, and authoriza-
tion mechanisms need to be implemented in a distributed
manner, without relying on any trusted third-party author-
ity. On the other hand, the decentralized nature of MANETs
adds robustness against single points of failures of centralized
networks.

• Location-awareness: the node’s location is an essential infor-
mation in MANETs. In general, a node is interesting for a
certain task depending on the resources that it can offer at
certain time and location. Location represents the physical
structure of the network and it is required not only by the
application for expressiveness purposes (e.g., location-based
queries), but also by the lower system layers to route data
and distribute computation in the network [Ni, 2006].

• Scalability : in some scenarios (e.g, large battlefield deploy-
ments, urban vehicular systems), MANETs can grow to in-
corporate several thousands of nodes. Hierarchical structures
are usually employed to handle scalability, but due to mobil-
ity and lack of fixed references, pure ad hoc networks do not
easily tolerate hierarchical structures [Gerla, 2005].

Routing protocols

Due to the central role played by routing protocols for MANETs’
operation, in the last decade, numerous routing protocols have been
investigated. Moreover, a working group for MANETs [manet IETF
WG, 2007] within the Internet Engineering Task Force (IETF) has

2.2 Ubiquitous sensing 41

been formed with the goal to standardize IP routing protocol func-
tionality suitable for MANETs.

Routing protocols traditionally used in wired networks, such as
Distance Vector routing [Hedrick, 1988] and Link State routing [Mc-
Quillan et al., 1978], cannot be used in mobile ad hoc networks due
to the high control overhead they would require to work. In wired
networks, these algorithms perform well because of the predictable
network properties, such as static link quality and network topol-
ogy. In dynamic networks, these assumptions are not valid, and
these algorithms would also cause route loops and routing inconsis-
tency [Liu and Kaiser, 2005].

Routing protocols in MANETs are usually classified based on
the network structure and on the routing strategy (i.e., how routing
information is acquired and maintained by mobile nodes). Based
on the network structure, they are classified as uniform and non-
uniform routing protocols. Uniform routing protocols adopt a flat
addressing scheme. Each node participating in routing plays an
equal role. Flat routing protocols can be further classified based
on their routing strategy in proactive (or table-driven) and reactive
(or source-initiated) routing protocols [Hong et al., 2002; Liu and
Kaiser, 2005; Royer and Toh, 1999]. In non-uniform routing pro-
tocols, each node participating in the routing plays distinct man-
agement and/or routing functions. Two additional categories of
routing protocols that we consider are geographical location as-
sisted routing and energy-efficient routing protocols. These two
categories partially overlap with the previous ones, but present a
clear focus respectively on the use of location information and on
energy-saving strategies. In the following, we review some examples
of routing protocols for each category.

Proactive routing protocols
They attempt to maintain a consistent, up-to-date view of the

network topology. Each node in the network needs to maintain a
routing table where storing the routing information. Every time a
change in the network topology occurs, a corresponding update is
propagated throughout the network. Regardless of whether there
is a data traffic in the network, the network state is proactively
updated, thus possibly generating high overhead.

A well-known example of proactive routing protocol is the Desti-

42 2 Ubiquitous sensing in pervasive environments

nation Distance Vector (DSDV) [Perkins and Bhagwat, 1994]. This
is based on the classical Bellman-Ford routing algorithm [Ford and
Fulkerson, 1962]. Each mobile node maintains a routing table list-
ing all available destinations within the network and the number
of hops to reach each destination. Each route table entry is identi-
fied with a sequence number assigned by the destination. The se-
quence number permits distinguishing state routes from new ones
thus avoiding routing loops. To maintain consistency of the rout-
ing tables, each node periodically transmits updates to its neighbors
and transmits updates every time significant new routing informa-
tion becomes available. Therefore, the update is both time-driven
and event-driven. To limit the potentially large traffic of updates,
routing updates can be sent as “full dump” or incremental update.
The former carries all the available routing information, whereas
the latter carries only information about those routing entries that
have changed since the last full dump. When nodes do not move,
incremental updates are transmitted to reduce the network traffic.
When nodes’ movements increase, full dumps are more frequent.
Every routing packet contains the unique sequence number assigned
by the transmitter. Any route with a more recent sequence num-
ber is used. Routes with older sequence numbers are discarded. A
route with a sequence number equal to an existing route is selected
if it can provide better performance (i.e., shorter route).

Other examples of proactive routing protocols include the Wire-
less Routing Protocol (WRP) [Murthy and Garcia-Luna-Aceves,
1996] and the Fisheye State Routing (FSR) [Iwata et al., 1999].

Reactive routing protocols
They create routes only when requested by the source node.

When a node requires a route to a destination, it initiates a route
discovery process across the network. This process terminates once
a route is found or no route is available. Upon a route has been
established, this needs to be maintained by a route maintenance
mechanism until either the destination becomes unreachable or the
route is no longer needed by the source. Compared to proactive
protocols, reactive protocols require less control overhead, thus en-
suring better scalability. On the other hand, reactive protocols
might induce long delays for route discovery before packets can
be forwarded. The Ad hoc On-demand Distance Vector Routing

2.2 Ubiquitous sensing 43

(AODV) [Perkins and Royer, 1999] and the Dynamic Source Rout-
ing Protocol (DSR) [Johnson and Maltz, 1996] are two of the most
famous reactive protocols for MANETs.

AODV builds on the DSDV protocol previously described, but
unlike DSDV, it minimizes the amount of broadcasts by discovering
routes on-demand, instead of maintaining the list of all available
routes. To find a path to a certain destination, the source initiates
a route discovery process. It broadcasts route request (RREQ)
packets to its neighbors, which in turn forward the request to their
neighbors, and so forth, until the destination, or an intermediate
node with recent routing information to the destination, is found.
Neighbor nodes receiving the RREQ either send back to the source
a route reply (RREP) or re-broadcast the RREQ with an increased
hop count (stored in the RREQ). Each node maintains a cache
to keep track of the received RREQs, and when it forwards an
RREQ to its neighbors, it also stores in its tables the node from
which the first copy of the RREQ came. This information is used
to build the reverse path to route back the reply. As the RREP
is routed back, nodes along the reverse path set up forward route
entries in their routing tables which point to the node from which
the RREP came. AODV uses only symmetric links, meaning that
reply packet follows the reverse path of the RREQ packet. Route
maintenance in AODV is such that if the source moves then it
can re-initiate route discovery to the destination. If a node along
the route moves then its upstream neighbor detects the move and
propagates a link failure notification to all upstream neighbors and
so forth till it reaches the source. Finally, to maintain information
about the local connectivity of a node, AODV uses “hello” messages
that are periodically broadcasted by a node to its neighborhood.

DSR is a source-routed routing protocol. Each mobile node
maintains route caches containing the source routes of which it is
aware. The node updates entries in the route cache as new routes
are learned. If the source wants to send a packet to a certain desti-
nation, it first consults its route cache to determine if a valid route
is present. If no unexpired route is found, it initiates the route
discovery process by broadcasting a route request packet. Upon re-
ceiving a route request packet, a node checks its route cache. If the
node does not have the required routing information, it appends its
own address to the route record field of the route request packet

44 2 Ubiquitous sensing in pervasive environments

and forwards the request packet to its neighbors. If the route re-
quest packet reaches the destination or an intermediate node that
has routing information to the destination, a route reply packet
is generated. To route back the reply back there are three possi-
bilities to get a backward route: (i) the node already has a route
to the source, (ii) the network has symmetric links such that the
reply packet can be routed back using the information stored in
the route record of the request, or (iii) the node initiates a route
discovery process. Route maintenance is accomplished through the
use of route error packets and acknowledgements. When the data
link layer detects a link disconnection, a route error packet is sent
backward to the source so that the source initiates a new route dis-
covery and all routes containing the broken link are removed from
the cache.

Although similar, AODV and DSR present some important dif-
ferences [Liu and Kaiser, 2005; Royer and Toh, 1999]. The over-
head of DSR is potentially larger than that of AODV since each
DSR packet carries the routing information, whereas AODV stores
the next hop routing information in the routing tables at nodes.
Likewise, the route replies in DSR are larger because they contain
the address of every node along the route, whereas in AODV route
replies only carry the destination addresses and the sequence num-
ber. DSR assumes small diameter networks, whereas AODV can
scale much better. On the other hand, AODV requires symmetric
links, while DSR can also utilize asymmetric links if symmetric ones
are not available. DSR suits better networks in which nodes move
at moderate speed with respect to the packet transmission latency.
DSR does not make use of periodic routing advertisements and can
thus save bandwidth and reduce power consumption. In particular,
when there are no changes in the network topology, DSR does not
consume any resource. Moreover, by caching multiple routes to a
destination, when a link breaks, the source can check for another
valid route in its cache and route recovery is very fast. Performance
of DSR and AODV are compared through simulations in [Broch
et al., 1998; Das et al., 2000].

Other examples of reactive protocols include Temporally Or-
dered Routing Algorithm (TORA) [Park and Corson, 1997], As-
sociativity Based Routing (ABR) [Toh, 1996], and Signal Stability
Routing (SSR) [Dube et al., 1997].

2.2 Ubiquitous sensing 45

Non-uniform routing protocols
They seek to overcome the limitations of uniform routing pro-

tocols. The problem with flat approaches is that they do not scale
well and they do not allow for route aggregation of updates. With
a non-uniform approach better scalability can be guaranteed. Non-
uniform routing protocols can perform zone based hierarchical rout-
ing, cluster based hierarchical routing, and core-node based rout-
ing [Liu and Kaiser, 2005].

In zone based hierarchical routing, different zones are created
and each one employs different algorithms to accomplish routing
in the network. Nodes in one zone know how to reach each other
with a smaller cost compared to that of maintaining routing infor-
mation for the whole network. For example, in the Zone Routing
Protocol (ZRP) [Haas and Pearlman, 2001], the network is divided
into routing zones based on the distances between mobile nodes.
For nodes within the same zone a proactive mechanism is used to
maintain routing information because it is more efficient in small-
scale networks. For inter-zone communication a reactive mechanism
is employed, thus ensuring better scalability.

Cluster based hierarchical routing is based on the same prin-
ciple. Nodes geographically close to each other are grouped into
clusters. Each cluster has a cluster head that acts as a gateway
to other clusters. Within the cluster, a proactive routing protocol
is used and for inter-cluster communication a reactive approach is
used. The organization into clusters can be multi-level meaning
that clusterheads of low-level clusters organize themselves into up-
per level clusters and so forth. For example, in the Hierarchical
State Routing (HSR) [Iwata et al., 1999], a hierarchical address is
assigned to each node and this reflects the network topology as a
basis to route packets in the network.

In core-node based routing, some nodes in the network are se-
lected to carry our special functions and compose a sort of backbone
for the entire network.

Geographical location assisted routing protocols
These protocols employ location information to improve routing

performance. They assume that nodes can determine their position
using GPS or other positioning techniques [Hightower and Borriello,
2001] and can learn the position of their direct neighbors through

46 2 Ubiquitous sensing in pervasive environments

one-hop broadcasts (i.e., all nodes periodically send beacons con-
taining the position of the sending node). The source specifies the
location of the destination in the packet and the packet is forwarded
hop by hop based on the location information of its neighbors and
of the destination. Compared to topology-based routing, geograph-
ical routing mechanisms do not require the establishment or main-
tenance of routes. Moreover, location-based routing provides the
delivery of packets to all nodes in a certain geographical region in
a natural way. This is usually referred as geocasting [Navas and
Imielinski, 1997].

M. Mauve et al. distinguish three main packet-forwarding strate-
gies for geographical routing [Mauve et al., 2001]: greedy-forwarding,
restricted directional flooding, and hierarchical approaches.

In greedy-forwarding, when an intermediate node receives a packet,
it forwards it to a neighbor lying in the direction of the destination
specified in the packet itself. The process is repeated until the
destination is reached. To select to which neighbor a given packet
should be forwarded, a natural approach is to forward the packet to
the node that makes the most progress towards the destination in
order to minimize the number of hops to traverse. This strategy is
called the “most forward within r” (MFR) [Takagi and Kleinrock,
1984]. Other possible approaches are the “nearest with forward
progress” (NFP) [Hou and Li, 1986], where the packet is forwarded
to the nearest neighbor of the sender which is closer to the des-
tination, compass routing [Kranakis et al., 1999], which attempts
to minimize the spatial distance to the destination by selecting the
neighbor closest to the straight line between sender and destina-
tion, or random selection of a node closer to the destination than
the forwarding node [Nelson and Kleinrock, 1984]. In some cases,
greedy routing can fail to find a path to the destination and reach a
dead end (i.e., a node whose neighbors are all farther away from the
destination than itself). Recovery strategies can then be employed
such as in the Greedy Perimeter Stateless Routing (GPSR) [Karp
and Kung, 2000]. Its recovery strategy is based on planar-graph
traversal. A planar sub-graph (i.e., a sub-graph with no intersect-
ing edges) is built and based on this a planar-graph traversal is used
to find a path towards the destination.

In restricted directional flooding, a node forwards the packet not
only to one (as in greedy forwarding) but to multiple direct neigh-

2.2 Ubiquitous sensing 47

bors. For example, in the Distance Routing Effect Algorithm for
Mobility (DREAM) [Basagni et al., 1998], the source of a packet
forwards the packet to all one-hop neighbors that lie in the direction
of the destination. The expected region containing the destination
is computed as a circle around the position of the destination. To
limit the flooding of data packets to a small region in the network,
DREAM requires that each node regularly floods packets to update
the location information maintained by the other nodes. Another
protocol that belongs to this category is the Location-Aided Rout-
ing (LAR) [Ko and Vaidya, 1998] protocol. LAR is a reactive uni-
cast routing mechanism that uses the location information to limit
the scope of the route request flooding when performing route dis-
covery. During route discovery, the route request is flooded across
a request zone that contains the zone where the destination is ex-
pected to be located and the location of the source node.

Position-based, hierarchical strategies attempt to establish some
form of hierarchy to scale to a large number of nodes while still ex-
ploiting the location information. In Terminodes routing [Blazevic
et al., 2005], packets are routed according to a proactive distance
vector algorithm if the destination is close to the source node. Oth-
erwise, for long-distance routing, a greedy position-based approach
is used and once the packet has reached the area close to the desti-
nation, it continues to be forwarded using a local routing protocols.
Grid routing [De Couto and Morris, 2001] is very similar to Ter-
minodes routing, with the addition that the hierarchy scheme is
exploited not only to improve scalability, but also to enable nodes
that are not aware of their location to participate in the routing
process. Basically, in each area it is necessary to have at least
one location-aware node that can be used as proxy for location-
unaware nodes (i.e., the location-unaware node uses the location of
the location-aware node as its own location). Packets directed to
a location-unaware node arrive at a location-aware proxy and are
then forwarded to the other interested nodes.

Energy-efficient routing protocols
They seek to extend the network lifetime by minimizing the en-

ergy consumed by the nodes to support routing [Yu et al., 2003].
Transmission power control and load distribution are two strategies
aimed to minimize the communication energy during active periods,

48 2 Ubiquitous sensing in pervasive environments

while sleep/power-down mode can be used to minimize energy con-
sumption during idle periods.

In transmission power control protocols [Chang and Tassiulas,
2000; Stojmenovic and Lin, 2001], the transmission power is ad-
justed in such a way to maintain a connected topology while con-
suming the minimal power. These protocols need to know the trans-
mission energy over the wireless link and the remaining battery
lifetime of the node.

In load distribution approaches, the goal is to balance the en-
ergy consumption among all mobile nodes by selecting routes with
under-utilized or powerful nodes rather than shortest and over-
loaded routes. In this way, the protocol can guarantee longer net-
work lifetime and a more uniform utilization of the nodes in the
network. An example of this type is the Localized Energy-Aware
Routing (LEAR) [Woo et al., 2001] protocol. This is DSR-like pro-
tocol that performs route discovery in an energy-aware manner.
Any intermediate node decides to forward the route request packet
depending on its residual battery power. This ensures that the des-
tination node receives a route request packet only when all inter-
mediate nodes in the route own sufficient battery power to perform
the routing.

Finally, the sleep/power-down mode approach focuses on turning
the radio subsystems at nodes into sleep mode or off during a period
of inactivity. In most of the existing proposals [Chen et al., 2001; Xu
et al., 2001], a master node is elected in the network to coordinate
the communication while all its neighboring slaves sleep. Each slave
node periodically wakes up and communicates with the master node
to find out whether it has data to receive. A core challenge of this
kind of architecture is how to select and maintain the master-slave
architecture in dynamic operating conditions.

To conclude this overview on routing protocols for MANETs,
we observe that a serious problem in ongoing ad hoc networking
research is that, in many cases, only network simulations are used
to prove the feasibility of a certain solution. Unfortunately, simula-
tions can only be a first step in evaluating protocols and algorithms
for MANETs [Kiess and Mauve, 2007]. This is because simulations
require assumptions about the real world that might not be true. In
addition, characteristics of MANETs such as energy consumption,

2.2 Ubiquitous sensing 49

mobility, and transmission range are hard to model in a realistic
enough manner in simulators.

2.2.4 Differences between wireless sensor networks and
mobile ad hoc networks

MANETs and WSNs present many similarities but also fundamen-
tal differences. Both are distributed, self-configuring, self-managing
wireless networks, involve multi-hop routing, and consist of battery-
powered mobile devices. These characteristics have a different im-
pact and different emphasis in each type of network.

Except for few cases, sensor devices in sensor networks do not
move after deployment, while phones or cars in ad hoc networks
constantly move. On the other hand, nodes of remote sensor net-
works, like those deployed on active volcanos, in the middle of the
ocean, or in a forest, can be damaged and fail, thus requiring a
change of the network topology. In addition, topology changes in
sensor networks can be often needed to accomplish energy savings.

Sensors of large and remote WSN deployments cannot be easily
recharged. Sensor nodes can be left unattended for long periods
of time (e.g., months or even years), their range of communication
is within few meters and at low rates, few kilobytes of memory
are available, and processor speeds can be very limited. On the
contrary, devices in ad hoc networks are generally more powerful in
terms of computation, communication, and storage resources [Ni,
2006].

In addition, MANETs are usually “close” to humans, in the
sense that nodes in the network are devices used by human beings,
while in sensor networks the focus is not on human interactions, but
on the physical environment [Macias and y, 2006]. Sensor networks
are usually application-specific, while MANETs are general-purpose
networks.

For these and other reasons, even though WSNs can be seen as
a special case of MANETs, the protocols, algorithms and design
choices of one type of network cannot be always directly applied to
the other type.

50 2 Ubiquitous sensing in pervasive environments

2.3 Programming ubiquitous sensing
applications

Middleware architecture are usually employed to bridge the gap
between applications and operating system and provide useful ab-
stractions to the application developer. Y. Ni discusses in his PhD
Thesis [Ni, 2006] fundamental reasons why traditional programming
models for distributed systems, such as the remote procedure call
(RPC) or the remote invocation method (RMI), cannot work effec-
tively in MANETs. Even though also MANETs consist of many
separate processing elements that need to communicate, they are
highly dynamic networks where nodes constantly join and leave the
network. There is no predefined topology. IP-addresses as well as
resources offered by the nodes are not known a priori and resources
in the network need to be classified also based on their location. In
addition, unlike reliable message passing systems, these networks
consist of lossy, unstable links. Therefore, if the server is not reach-
able and no reliability can be guaranteed traditional client-server
models cannot work. Finally, instead of powerful clusters of servers,
MANETs consist of battery-powered devices that need to optimize
the execution of their programs to save energy resources.

For similar reasons, middleware architectures designed for tra-
ditional distributed systems can hardly be applied also to sen-
sor networks mostly due to energy restrictions, network dynamics,
and data aggregation requirements of sensor networks [Heinzelman
et al., 2004].

Most programming platforms designed for pervasive computing
(such as those presented in Section 2.1.3) cannot be used directly
in MANETs and WSNs either, because they lack the flexibility to
work in highly volatile, data-centric environments without powerful
servers and Internet connectivity.

Therefore, to address the specific requirements of MANETs and
WSNs, new programming models and platforms have been devised.
In the following, we review existing programming support and pro-
gramming abstractions specifically designed to address the charac-
teristics of MANETs and WSNs. Programming support focuses on
providing systems, services, and runtime mechanisms. Program-
ming abstractions focus on providing useful concepts and abstrac-

2.3 Programming ubiquitous sensing applications 51

tions of network nodes and sensor data [Hadim and Mohamed,
2006].

2.3.1 Programming support

We distinguish approaches based on database abstraction, virtual
machines, modular programming, and event-based and message-
oriented middleware.

Database approaches have been largely applied to sensor net-
works. Their core idea is to abstract the network as a distributed
database where applications can issue SQL-like queries to have the
network perform a certain sensing task. TinyDB and Cougar, pre-
viously described, are two main representatives of this class. Other
approaches of this type are SINA (System Information Networking
Architecture) [Shen et al., 2001] and DsWare (Data Service Mid-
dleware) [Li et al., 2004].

Virtual machine (VM) approaches let application programmers
write their applications in single modules. The system distributes
the modules through the network and these modules are then inter-
preted and scheduled for execution by the VM at the nodes. The
advantage of this method is that modules can be distributed across
the network using different strategies, such as reduction of energy
consumption or load balancing.

An example of virtual machine approach is Maté [Levis and
Culler, 2002]. Maté is a bytecode interpreter running over TinyOS
[Levis et al., 2004], an operating system specifically designed to run
on highly resource-constrained motes. It consists of a single TinyOS
component running on top of several system components, including
sensors, network stack, and nonvolatile storage. Maté’s programs
are broken into capsules up to 24 instructions, which is the limit to
fit into a single TinyOS packet. Each code capsule includes the type
and version information to disambiguate between different network
updates. Maté’s core components are the VM, the network, the log-
ger, the hardware, and the scheduler. It uses a synchronous model
in which execution begins in response to an event (a timeout, a
packet being received or being sent) and avoids message buffering.
Maté particularly suits applications requiring frequent reprogram-
ming in large-scale networks. On-line software upgrading is enabled
by capsules that can forward themselves through the network.

52 2 Ubiquitous sensing in pervasive environments

MagnetOS [Barr et al., 2002] also belongs to this category. Mag-
netOS is a distributed, adaptive, power-aware operating system for
ad hoc and sensor networks. MagnetOS provides a single system
image of a unified Java virtual machine across nodes in the network.
Applications are partitioned into components that are dynamically
placed on nodes in the network. MagnetOS employs two online
power-aware algorithms, called NetPull and NetCenter, to reduce
application energy consumption and maximize system longevity.
These algorithms can automatically move communicating objects
onto nodes that are topologically closer in order to shorten the
mean path length of data packets (e.g., by moving objects closer to
data sources). NetPull operates at the physical link level, whereas
NetCenter operates at the network level.

Other virtual machine approaches are SensorWare [Boulis et al.,
2003], Smart Messages [Kang et al., 2004], and Agilla [Fok et al.,
2005] (based on Maté). We used the Smart Messages computing
platform for our system development. This platform will be de-
scribed in detail in the next section.

Modular approaches seek to develop applications modular enough
to be easily distributed through the network using mobile code and
mobile agents. Transferring small modules is more efficient than
transmitting the entire application. For instance, Impala [Liu and
Martonosi, 2003], implemented on ZebraNet [Juang et al., 2002]
hardware nodes, is an asynchronous, event-based middleware ar-
chitecture capable of supporting multiple applications in WSNs.
Impala performs dynamic application adaptation based on device
failures to improve fault-tolerance, energy consumption, and perfor-
mance. In addition, it allows software updates to be received and
applied to the running system on-the-fly. Mobile Gaia [Shankar
et al., 2005] adopts a component-based approach to program ad
hoc environments. It views a MANET as a collection of clusters
(or active spaces) where each cluster has a cluster head and several
client devices. Available services are classified in coordinator ser-
vices, when they are provided by the cluster coordinator, and client
services, when they are provided by the client device. The middle-
ware supports formation of device clusters, resource sharing among
devices, and service interactions. Applications can be decomposed
into smaller components that can run on different devices inside the
cluster. The communication model is event-based.

2.3 Programming ubiquitous sensing applications 53

The last category that we consider is that of event-based and
message-oriented middleware. A publish-subscribe paradigm can
facilitate message exchange between nodes and sink nodes and par-
ticularly fits MANET’s monitoring applications. STEAM [Meier
and Cahill, 2002] exploits a proximity-based group communica-
tion service to enable interaction among entities. Event filers are
used to control the propagation of events. STEAM supports three
types of filters, which are subject, proximity, and content filters.
Mires [Souto et al., 2005] aims to adapt traditional message-oriented
middleware for fixed distributed systems to WSNs. It is built on
TinyOS using NesC. EMMA [Musolesi et al., 2005] seeks to adapt
the Java Message Service (JMS) to MANETs by modifying the mes-
sage passing used in JMS and adding an epidemic routing mecha-
nism.

Other types of programming support include tuple space based
middleware such as LIME [Murphy et al., 2001], peer-to-peer based
middleware such as Expeerience [Bisignano et al., 2003], and data
sharing based middleware such as XMIDDLE [Mascolo et al., 2002].
More references on this subject can be found in [Hadim and Mo-
hamed, 2006; Salem Hadim and Jameela Al-Jaroodi and Nader Mo-
hamed, 2006].

2.3.2 Programming abstractions

In their survey on middleware for WSNs [Hadim and Mohamed,
2006], S. Hadim and N. Mohamed distinguish between those pro-
gramming abstractions that focus on the global behavior and hide
the network details from programmers, and those that focus on lo-
calized behaviour and expose some network details to programmers.

The first category, also called macroprogramming, proposes to
program the network as a whole, at high-level so that the pro-
grammer can focus on the higher-level algorithms of an application.
Then the compiler automatically generates the node-level programs
that implement the application logic on the network. An example
of macroprogramming is Kairos [Gummadi et al., 2005]. This views
the sensor network as a group of nodes that can be instructed to-
gether in a single program. Kairos extends C with functions to
manipulate named nodes and lists of nodes in the network and to
provide remote data access. Low-level behaviours such ad inter-

54 2 Ubiquitous sensing in pervasive environments

node communication and node-level resource management remain
transparent to the programmer. The Kairos compiler translates
Kairos programs into node-level nesC programs that can be directly
linked with standard TinyOS components and the Kairos runtime
system, and then run over a sensor network. Other examples of
macroprogramming are declarative approaches [Gehrke and Mad-
den, 2004] such as TinyDB [Madden et al., 2005] and Cougar [Yao
and Gehrke, 2003].

The second category of programming abstractions allows pro-
grammers to focus on single nodes in the network. Moreover, the
interest is often on a specific location rather than an individual
sensor measurement. For example, Hood [Whitehouse et al., 2004]
allows a node to identify a set of nodes around itself (i.e., neigh-
borhood) based on a certain membership criteria and then decide
which attributes are to be shared among the identified neighbors.
Similar to Hood, Abstract Regions [Welsh and Mainland, 2004] is
motivated by the need for “spatial processing” in several types of
sensor network applications. Spatial operations are performed by
sharing data and coordinating tasks among nodes in a certain neigh-
borhood. An abstract region specifies a neighborhood relationship
between a certain node and other nodes in the network. For exam-
ple, the set of nodes positioned within a certain distance, or the set
of nodes offering certain properties. Each node can define several
abstract regions. EnviroTrack [Abdelzaher et al., 2004] proposes a
new address space for sensor networks that is particularly useful for
applications that need to monitor environmental events. Events in
the environments become addressable entities and their state can
be accessed as local variables. In addition, computation and actu-
ation can be attached at these logical network addresses as in any
IP-based network. For example, a camera could be turned on to
track a certain event inside the network and instructed to deliver
images to the user; when the event moves away from the camera’s
range, the middleware will turn on an appropriate nearby camera
so that a continuous stream of images is provided. State-centric
programming [Liu et al., 2003], TinyGALS [Cheong et al., 2003],
and Semantic Streams [Whitehouse et al., 2006] also belong to this
category.

A last proposal that we discuss is Spatial Programming [Borcea
et al., 2004]. Spatial Programming is an imperative programming

2.4 Smart Messages platform 55

model that views an ad hoc network as a single virtual name space,
used by applications to access individual resources at nodes. Com-
pared to declarative programming, imperative programming can
be more appropriate for complex tasks that go beyond data col-
lection, especially tasks whereby algorithmic details cannot be left
to a common middleware. An application written under the Spa-
tial Programming model is a sequential program that transparently
reads and writes virtual names mapped to network resources as if
they were local variables. In this way, Spatial Programming shields
the distributed and volatile nature of mobile ad hoc networks from
application programmers. Although Spatial Programming can be
classified among the macroprogramming models, Spatial Program-
ming applications can often exhibit localized behavior. Spatial Pro-
gramming was implemented on top of the Smart Messages [Kang
et al., 2004] platform (see next section).

2.4 Smart Messages platform

Our middleware architectures have been implemented using the
Smart Messages (SM) computing platform [Borcea et al., 2002;
Kang et al., 2004]. Smart Messages is a distributed computing
platform for cooperative computing in highly volatile mobile ad hoc
networks. In the following, we briefly describe the Smart Messages
platform and an example of operation.

An SM is an application whose execution is sequentially distri-
buted over a series of nodes using execution migration. The nodes
on which SMs execute are named by properties and discovered dy-
namically using application-controlled routing. To move between
two nodes of interest, an SM calls explicitly for execution migra-
tion. Each node participating to the SM execution provides:

• a virtual machine (VM) for execution over heterogeneous plat-
forms;

• a shared memory addressable by names, namely the tag space,
for inter-SM communication, synchronization, and interaction
with the host;

• an admission manager that prevents excessive use of resources
by incoming SMs; and

56 2 Ubiquitous sensing in pervasive environments

Network Network
SM

SM

Platform

Admission

Manager

Code

Cache

SM Ready

Queue

Virtual

Machine

Authorization

Tag

Space

Operating System & I/O

SM

Figure 2.4: The Smart Messages architecture.

• a code cache for storing frequently executed code.

The SM architecture is depicted in Figure 2.4. An admitted
SM at a node generates a task which is scheduled for execution.
During execution, an SM can interact with the host or other SMs
through the tag space, which is local to each node. Essentially,
the tag space consists of (name, data) pairs, called tags, which are
created by SMs and used for data exchange and synchronization
among SMs. Special I/O tags are predefined at nodes and used
as an interface to the OS and I/O system (e.g., battery lifetime,
available memory, location sensors). Tags serve also to name the
destination of the SM migrations. Migration is the key operation
in the SM programming model as it routes SMs, across multiple
hops, to the nodes of interest. This high-level primitive for multi-
hop migration is implemented using a low-level primitive for one-
hop migration, namely sys migrate, and routing tables built in the
tag space [Borcea et al., 2003]. The sys migrate primitive captures
the execution context of the SM (data explicitly identified by the
programmers and control state), packs it together with the SM
code, transfers the SM to the next hop, and resumes the execution
with the following instruction in the code.

To illustrate the SM distributed computing model, we consider
the example depicted in Figure 2.5. This example assumes an ad
hoc network of intelligent cameras that can be programmed to per-

2.4 Smart Messages platform 57

potential_threat

threat not recognized

potential_threat

threat recognized

sys_migrate

sys_m
igrate

sys_migrate
sys_migrate

no_threat

SM

SM

SM

migrate(”potential_threat”)

SM

user

IntruderTrackingSM{

IntruderFeatures iFeatures;

IntruderPath path;

createTag("threat_path", null);

while (true){

if (migrate("potential_threat") == TIMEOUT)

break;

Image img = readTag("image");

if (threat_recognition(img, iFeatures)

path += readTag("location");

}

migrate("threat_path");

writeTag("threat_path", path);

}

migrate(”potential_threat”)

migrate(”potential_threat”)

migrate(”threat_path”)

SM

Figure 2.5: Smart Messages example: the IntruderTrackingSM
provides the motion path of a user-specified threat.

form intruder tracking across the region of deployment. Each cam-
era runs a pre-installed SM that periodically acquires images and
performs simple image analysis. Each time this SM detects a poten-
tial threat, it creates a “potential threat” tag. A mobile user can
track potential threats by injecting an IntruderTrackingSM in the
network. This SM takes as parameter a set of features that define
the object of interest and returns the motion path of the threat as
a list of camera locations (i.e., those cameras where this threat was
recognized). At the user node, the IntruderTrackingSM creates a
tag, “threat path”, that is used to identify this node when the SM
migrates back with the result. Then, it migrates to nodes named by
“potential threat” tags (in the figure, this corresponds to the ac-
tion migrate(“potential threat”)) and performs threat recognition
on each of them. If the threat is recognized on a certain node, the
location of such a node is added to the threat motion path. This
process continues recursively until no new nodes identified by a
“potential threat” tag can be found (i.e., the migration times out).
The IntruderTrackingSM completes by migrating back to its user

58 2 Ubiquitous sensing in pervasive environments

node and writing the threat path list to its corresponding tag. In
this example, the set of features and the motion path list represent
the SM data carried from node to node across migrations.

The SM architecture was implemented in the Java programming
environment over Linux by modifying the Sun Microsystem’s KVM
(Kilobyte Virtual Machine) [KVM, 2007] because its source code is
available and has a small memory footprint suitable for resource-
constrained devices. The entire software architecture needed for
SM execution was implemented inside the VM due to the need for
VM support to efficiently capture and restore the execution state
upon migration to a new node.

SMs are essentially Java programs that invoke an API encapsu-
lated in two Java classes: (i) SmartMessage which includes prim-
itives for migration, new SM creation, and synchronization; and
(ii) TagSpace which includes primitives to create, delete, read, and
write tags. SMs can incorporate multiple Java classes, namely code
bricks, and multiple Java objects, namely data bricks, which are
explicitly specified by the programmer when an SM is instantiated.
The data bricks contain the data that must be transferred during
migrations. At runtime, SMs can create “child” SMs carrying a
subset of their code bricks and data bricks.

When an SM calls explicitly for migration, its state needs to
be captured and converted into a machine-independent representa-
tion that will be used to resume the SM execution at destination.
Since the code bricks are already in the machine-independent Java
class format, only the data bricks and execution control state are
converted. Data bricks are converted using the SM-specific seriali-
zation format. The execution control state of an SM is represented
by the execution stack frames of its associated VM-level thread.
Each stack frame is serialized into a tuple of six values: current off-
set of instruction and operand stack pointers, method name, signa-
ture name, class name, and a flag indicating whether the method is
non-static. For non-static methods, also the machine-independent
identifier for the this self-reference is encoded. After the admission
manager successfully receives the code bricks, the data bricks, and
the execution control information from a source node, then a new
VM-level thread and its associated SM structure are constructed.
Additionally, the admission manager de-serializes the data bricks
and reconstructs the stack frames using the tuples sent from the

2.4 Smart Messages platform 59

source.
An SM is admitted at a node if enough resources can be provided

to support its execution or migration (i.e., the SM specifies the
minimum amount of resources required). Based on the specified
admission policy, the node may grant more resources to SMs that
exceed the specified amount of resources during execution. If no
more resources can be granted, the SM is requested to migrate to
another node. To ensure that SMs do not interfere maliciously with
each other, five protection domains for controlling the access to tags
are defined. These domains (owner, SM with a common ancestor,
SM with a common node of origin, SM with common code bricks,
or unknown SM) define various relations between the creator of a
tag (i.e., the owner) and other SMs that attempt to access this
tag. The owner of each tag specifies read and write permissions for
each of the five protection domains. For each attempted tag space
operation, the VM verifies the SM credentials and authorizes the
access according to these credentials.

Because of the limited portability of this implementation and
the impossibility (or unwillingness) for users to modify the system
software on their mobile devices, the original SM architecture was
re-implemented in such a way that it can run on top of unmod-
ified Java virtual machines. This second version of SM is called
Portable Smart Messages (Portable SM) [Ravi et al., 2004]. One
main issue that needed to be addressed in this implementation was
how to accomplish migration without having access to the VM and,
in particular, to the execution state. The solution was to design
a lightweight migration based on Java bytecode instrumentation.
The bytecode is instrumented in such a way that Portable SM can
save its state before migrating and restoring it upon migration. The
state is encoded in the data bricks and no explicit state information
is shipped. Soot 1.2.5 [Soot, 2007] was used to do the off-line byte-
code instrumentation. The performance evaluation demonstrated
that the overhead generated by the increase in Java bytecode size
due to the bytecode instrumentation is only 3%. More details on
the instrumentation mechanism are provided in [Ravi et al., 2004].
Portable SM was tested on J2ME CDC platforms.

In implementing our middleware architectures, we used both SM
versions. Contory was implemented using Portable SM running on
J2ME CDC platform and it was tested on Nokia Series 80 phones.

60 2 Ubiquitous sensing in pervasive environments

The Migratory Services framework was first implemented on top of
the original SM version and tested on HP iPAQs, and then extended
using Portable SM and tested on Nokia Series 80 phones.

2.5 Concluding remarks

Ubiquitous sensing is an essential requirement for the deployment
of pervasive applications. Ubiquitous sensing defines the ability of
applications to seamlessly access anytime, anywhere data produced
by sensors embedded in the surroundings. This capability enables
a wide variety of “sensing applications” ranging from traditional
context-aware applications to vehicular information system, to so-
cial networking.

This chapter presented research work that has been done so far to
support ubiquitous sensing, and, in particular, sensor networks and
mobile ad hoc networks. Algorithms, protocols, and architectures
that have been proposed in these domains build the background
knowledge to understand the middleware solutions we will present
in this dissertation. In particular, the Smart Messages platform,
which was specifically designed to cope with highly volatile ad hoc
environments, has been used as system platform for implementing
our middleware services.

Before we present the design, implementation, and evaluation of
our middleware architectures, in the next chapter, we define our
problem space, called Urbanet. In Urbanets, sensor networks and
mobile ad hoc networks meet and generate open sensing environ-
ments potentially capable of supporting a large variety of mobile
sensing applications.

CHAPTER 3

Programming challenges in
Urbanets

This chapter discusses core challenges to be addressed to success-
fully program people-centric mobile sensing applications in Urba-
nets, spontaneously created networks in urban environments. We
first describe Urbanets and their characteristics, then illustrate sev-
eral examples of mobile sensing applications, and finally discuss the
challenges that middleware architectures have to address to support
the envisioned applications. The last part of the chapter discusses
related work in this field.

3.1 Urbanets

Sensor data of different types and from different sources will be
more and more available in the urban landscape. Installations of
sensor networks as well as single sensors embedded in buildings,
roads, or fields will become more and more common in city envi-
ronments. Vehicles will come more and more often equipped with
sensor technology to monitor the road conditions or exchange infor-
mation about the traffic situation. Smart phones carried by people
already offer several sensing possibilities (i.e., capability of acquir-
ing sensor data) and in the future they will be capable of support-
ing sensors of various types. In addition, the ubiquity of wireless
connectivity in urban settings allows private inhabitants as well as
public municipalities to publish and share their sensors data. This,

61

62 3 Programming challenges in Urbanets

in turn, will allow people to access a wide variety of sensor data,
and spatially and temporally query them to support their personal
tasks.

We use the term Urbanets to define spontaneous urban networks
composed of heterogeneous and mobile multi-sensor platforms, such
as smart phones and embedded vehicular systems, public sensor
networks deployed by municipalities, and individual sensors incor-
porated in buildings, roads, or daily artifacts. Sensor networks and
mobile ad hoc networks meet in Urbanets to create rich and open
sensing environments, where people, municipalities, and community
organizations share their resources to allow mobile users real-time
access to sensor data. Much of these data will be incorporated in
novel “sensing” applications running on our personal mobile de-
vices. Sensing applications are therefore defined as applications
capable of accessing data produced by sensors integrated in the
device, provided by external devices, or embedded in the physical
environment anytime, anywhere.

Urbanets present distinguishing characteristics compared to sen-
sor networks and mobile ad hoc networks. Urbanets differ from the
first-generation sensor networks in their goal to support concurrent
people-centric sensing applications as well as in their hardware and
software heterogeneity, high volatility, and very large scale. More
specifically, in Urbanet applications, the focus is on the user, on
her requirements, and on her resource capabilities. Urbanet users
are not only static consumers of information, but also active pro-
ducers of information from which other users may benefit. Users
are mobile and their requirements and resources varying over time
and location need to be constantly evaluated. In addition, users
can be many and different, thus leading to software and hardware
heterogeneity, scalability, and load-balancing issues. Finally, unlike
sensor networks, in Urbanets, networks of sensing devices are not
anymore fully dedicated to support one single task; more likely,
they will need to satisfy different concurrent requests. This also
means that while Urbanets greatly enhance our ability to extend
the sensing coverage and incorporate sensed data in a large spec-
trum of mobile applications, they are not expected to achieve the
same level of sensing fidelity as in static sensor networks composed
of nodes primarily dedicated to sensing.

Urbanet applications are also different from traditional MANET

3.1 Urbanets 63

applications such as file transfers. Urbanets aim to provide sup-
port for applications that acquire, process, and distribute real-time
sensing information from devices located in the proximity of geo-
graphical regions, entities, or activities of interest.

In Urbanet environments, with mobile sensor platforms of var-
ious types and with different service infrastructures available at
location, different interactions can be established among sensors,
sensors’ owners, physical surroundings, sensor network gateways,
service infrastructures, and Internet services. In the following, we
classify the main types of sensor devices that can be encountered
in Urbanets:

• Static sensors: sensor devices can be placed almost every-
where: in buildings, streets, bridges, offices, homes, train sta-
tions, etc. Static deployments of sensors are likely to be long-
term. There are already many sensors deployed in cities, such
as CCTV cameras, parking meters, traffic signals, air-sniffing
sensors, and pedestrian crossing [Yoneki, 2005].

• Mobile sensors: sensors can be carried by people or be in-
tegrated in moving objects such as phones, cars, buses, or
bikes. They can serve numerous purposes such as blindspot
obstacle detection, rain detection for automatic windscreen
wipers, or surround imaging for parking finding. In particu-
lar, a lot of research has focused on sensing systems for cars
such as accelerometers for airbag control and emergency door
unlocking, GPS for route navigation, and on-board sensors for
speed, steering wheel angle, yaw rate, gear position, throttle
position, acceleration, and brake pressure [Cheng and Trivedi,
2006; Waldo, 2005].

• Static sensor collection points: these are usually sensor net-
works’ root notes (or sinks), which are responsible for ag-
gregating sensor data provided by multiple homogenous, tiny
sensor devices. For example, they can be data loggers and
processing units for structural monitoring of highway over-
passes, roads, retaining walls, bridges, buildings, amusement
park rides, etc. In addition, static sensor collection points can
also be devices capable of aggregating sensor data provided
by heterogenous mobile (or static) sensors. For example, in

64 3 Programming challenges in Urbanets

the Cartel [Cartel, 2007] project, cars (the mobile sensors)
moving on the highway are used to collect various types of
highway information and opportunistically transfer them to
fixed base stations (the static sensor collection points) de-
ployed along the road [Hull et al., 2006]. Interactions with
static sensor collection points are usually based on physical
proximity or through Internet connectivity [Campbell et al.,
2006]. For example, core aggregation points in sensors net-
works have usually Internet connectivity to store the sensed
data remotely and make them accessible to the end user.

• Mobile sensor collection points: in mobile sensor networks, a
set of mobile nodes are used as data mules [Hull et al., 2006]
to collect data provided by sensors encountered while moving.
Ultimately, this permits achieving high-density data sampling
over wide areas. Mobile sensor collection points, also called
Mobiscopes [Abdelzaher et al., 2007], can be particularly ben-
eficial to allow isolated sensor networks to occasionally con-
nect to the Internet and store their sensed data remotely. For
example, cars can act as collection points of data provided
by sensors embedded along the road, in buildings, or in other
cars that are occasionally encountered while moving across
the city. Cars can then opportunistically transfer the gath-
ered data to (more powerful) static collection points present
in the city infrastructure. Likewise, human interactions also
enable sensor sharing among carried devices [Fall, 2003].

Once deployed, these kinds of Urbanet sensor platforms may be
private, publicly available, or belong to different administrative do-
mains, they may require a priori registration and authentication,
and they may be or not be cost-free. Therefore, interactions in
Urbanets might be affected by constraints beyond those imposed
by physical proximity, resource availability, and network connectiv-
ity [Campbell et al., 2006].

3.2 Mobile sensing applications in Urbanets

The capability to acquire sensor information characterizing local
and remote urban environments enables a variety of novel sensing

3.2 Mobile sensing applications in Urbanets 65

Figure 3.1: Example Urbanet scenarios in a city.

applications. Figure 3.1 depicts various sites of daily life in which
we envision mobile sensing applications.

A driver assistant application informs drivers about traffic and
road conditions further ahead. Drivers are promptly warned about
unexpected traffic jams and can receive real-time route recommen-
dations customized to their progress on the road. To collect the
necessary sensor information, the application uses a network of cars
and available sensors. For example, to detect and predict traffic
jams, the application needs information such as density and speed
of vehicles moving in the local proximity or in the proximity of a
destination of interest (e.g., next exit on the highway). To detect
hazards such as fog patches or icy roads and quickly propagate
alerts to upcoming drivers, the application uses environmental sen-
sors embedded in other cars as well as in the physical surroundings
(e.g., a weather network of humidity and temperature sensors along
the road).

When driving downtown, the driver uses a parking finder appli-

66 3 Programming challenges in Urbanets

cation to receive driving directions to free parking spots close to the
destination of interest (e.g., a shopping mall). This application uses
a network of smart phones and vehicular systems to query wireless-
enabled parking meters placed on the adjacent streets or parking
areas.

Smart phones are protagonists in numerous Urbanet spots such
as shopping malls, offices, conference centers, and highways. In
the shopping mall, a recommender system running on the phone
reads product RFIDs and exchanges product information with other
phones in order to provide users with personalized recommenda-
tions and notify them about special offers.

Farther away, a municipal sensor network for weather monitor-
ing measures twister’s wind speed, temperature, and atmospheric
pressure to detect a tornado quickly approaching from north-west
and alert cars passing by. The real potential in this example is
that cars moving across the city can act as carriers to deliver and
propagate information collected by (isolated) sensors met on the
way.

3.3 Middleware challenges

As previously discussed in Section 2.3, research on MANETs and
WSNs has been quite successful in designing device platforms, pro-
tocols, and network architectures that can be applied to Urbanets.
However, programming people-centric, mobile sensing applications,
such as those envisioned in Urbanets, has received only marginal
attention so far. As the domain of possible Urbanet applications
diversifies, it will be almost impossible to program each application
from scratch. Therefore, we expect an increasing demand for a com-
mon distributed middleware platform to support the development
and execution of such applications.

This middleware platform should present application develop-
ers with programmable environments by offering a set of services
that allow multiple software modules to interact across the net-
work. These services should provide a more functional set of appli-
cation programming interfaces than those that operating systems
and network services provide. The characteristics of Urbanets and
the specific requirements of people-centric, mobile sensing applica-

3.3 Middleware challenges 67

tions place new challenges on middleware developers. Among the
several challenges, in the following we discuss some crucial ones.

3.3.1 Network volatility

Urbanets consist of functionally heterogeneous nodes, have volatile
configurations, and present unknown delays. Therefore, traditional
distributed computing models that assume underlying networks
composed of functionally homogeneous nodes, with stable config-
urations, and known delays, cannot be used directly in Urbanets.
In addition, Urbanets evolve unpredictably over time and space,
and it is impossible to know the exact number or location of their
resources. For example, many traditional client-server interaction
models are connection-oriented. Clients select servers, bind to their
interfaces, and then invoke operations on these interfaces. When
these approaches are applied to Urbanets, as the environment and
network connectivity change, the connection can drop and force the
client to discover a new server. The client may then discover an-
other server that offers a similar service, but that uses a different,
unknown data format, thus making the interaction impossible.

Urbanet applications should not fail each time something goes
wrong in the network. Applications should be tolerant to node fail-
ures and network partitions. Compared to traditional distributed
computing systems where servers work correctly for long periods of
time, Urbanets are more challenging in terms of reliability because
communication, software, and hardware faults occur frequently and
can thus render long-term, stateful interactions unfeasible.

Therefore, to cope with the volatility and unreliability of Ur-
banets, more flexible and adaptive middleware approaches are re-
quired.

3.3.2 Sensor variability and fidelity

Urbanet applications should work even when confronted with highly
variable sensor data fidelity. For example, uncoordinated mobile
sensors such as cars may sense certain parts of the city several
times (busy city streets) and rarely visit other parts (garden sub-
urbs). Or also the sensing quality may be accurate in rush hours,
but not during the night. This means that the sensing coverage

68 3 Programming challenges in Urbanets

is highly heterogenous in space and time [Abdelzaher et al., 2007].
“Best effort” semantics that tolerates the network and sensor dy-
namics while providing a certain quality of result to applications is
desirable [Ni et al., 2005]. An Urbanet middleware platform should
allow the application to specify the desired quality of result and
trade-off quality of the produced results for network resources.

Moreover, applications should be able to verify sensor data’s cor-
rectness. An Urbanet service may return a set of “correct” results
with qualifying properties. Applications can then order these re-
sults by using different criteria. Qualifying properties describe the
physical context in which the measurement was carried out. Loca-
tion and time may be easily available. Other parameters might be
application-specific. Ideally, applications should be able to validate
the received data without violating the source’s privacy.

3.3.3 Naming

Traditional distributed computing models assume fixed bindings
between names and node addresses. This naming is too rigid for
Urbanets, where nodes of interest are determined based on their
contextual properties, such as available sensors, location, compu-
tational resources, or energy. From an application’s point of view,
nodes with the same properties located in the same region may
be interchangeable. For example, an application for detecting traf-
fic jams in a certain region of the city needs to interact with cars
that are constantly located in such a region and are equipped with
speed sensors. Rather than binding to physical nodes (identified
by static IP addresses), the application interacts with virtual nodes
presenting the required properties. Fixed naming schemes are not
appropriate for these environments; more likely, naming schemes
will be based both on space and content. Therefore, data-centric
or property-based naming, like in sensor networks, are necessary.

3.3.4 Limited resources

In Urbanets, nodes are not fully dedicated to support sensing ap-
plications such as in sensor networks. These nodes are primarily
involved in other tasks and only secondarily in supporting Urbanet
applications. Hence, resources on hosting devices must be used

3.3 Middleware challenges 69

without compromising other primary processes running on the de-
vice. For example, phones are in the first place used for making and
receiving phone calls. During a phone conversation, sensing tasks
should be suspended. When the battery level is low, the sensing
activity should be decreased, for example, by reducing the sampling
frequency of the connected sensors. Therefore, it is important to
dynamically optimize resource utilization given the sensing activity
(e.g., physical measurements), the network conditions (e.g., neigh-
borhood connectivity, link states, or available bandwidth), the local
resources (e.g., remaining battery power), and other active tasks
running on the device (e.g., e-mail synchronization).

On the other hand, it is also important to make an opportunistic
utilization of available communication, computation, and sensing
resources. The ultimate goal is to optimize the global network re-
source utilization. Mobile collection points should transfer the col-
lected data to storage points as soon as they are available. When
numerous mobile nodes are positioned in the same region (e.g.,
morning rush hours), depending on the application’s requirements,
only selected subsets of the available nodes should sense and trans-
fer data. Moreover, delegation of sensing tasks among nodes can
help carry out the assigned sensing tasks more efficiently. For exam-
ple, static collection points can delegate mobile sensors to execute
the sensing and report back the results. This could be the case of
city buses that collect data on their regular routes and report data
to processing units at the central bus station.

3.3.5 Large data traffic

Finally, another distinguishing feature of Urbanets compared to
regular sensor networks is that they must support concurrent user
applications. Managing simultaneous user applications can gener-
ate large data traffic in often resource-impoverished environments.
For example, applications may generate several queries, each for
different sensor types, with different frequencies, and in different
locations. An Urbanet middleware should balance resource utiliza-
tion across multiple applications and limit the geographical scope of
the control updates. Task coordination can help avoid redundancy.
Data aggregation can largely reduce the traffic load. Task prioriti-
zation is necessary to support emergency and critical applications.

70 3 Programming challenges in Urbanets

3.4 Related research on people-centric urban
networks

Urbanets share the goal of building large-scale, people-centric, mo-
bile, urban sensor networks with several recently-initiated projects.

The SenseWeb [SenseWeb, 2007] project at Microsoft Research
aims at providing a web-based platform and tools that allow people
to easily publish and query sensor data. The SenseWeb architecture
includes four main components: (i) GeoDB which is a geo-indexed
database storing descriptions of (non real-time) sensor data; (ii)
DataHub which is a web service that allows data publishers to reg-
ister sensor descriptions and also offers real-time data storage; (iii)
IconD which queries GeoDB or DataHub, depending on the sub-
mitted user’s query and generates icons to be displayed at the client
interface; and (iv) SenseWeb Client which allows users to specify
their queries in terms of locations of interest, sensor types, and
filtering and aggregation operators. The SenseWeb portal, called
SensorMap, has been made available worldwide to allow publishers
to publish their sensor data.

The CarTel [Cartel, 2007] project at MIT focuses on building
a delay-tolerant mobile sensing architecture based on opportunis-
tic communication to collect, process, deliver, and visualize data
from mobile sensor nodes, such as cars [Hull et al., 2006]. The
system includes three core components: (i) a central portal which
hosts CarTel applications, hosts a continuous query processor, and
acts as sink for all data sent by mobile sensor nodes, (ii) ICEDB
(intermittently connected database) which supports user queries
specification, and (iii) CafNet (carry-and-forward network) which
delivers data in intermittently connected networks. Applications
issue SQL queries using the ICEDB interface. Mobile nodes collect
data, store them in their local ICEDB databases and when con-
nectivity is available, they send data to the portal using CafNet’s
data delivery mechanisms. Users can then browse the results using
web-based applications running on the portal. Query processing is
distributed across the mobile units, but collection of sensor data
and access to the results are centralized in the portal.

The MetroSense [MetroSense, 2007] project at Dartmouth Uni-
versity proposes a new paradigm of people-centric sensing at scale

3.4 Related research on people-centric urban networks 71

to support the execution of multiple sensing applications in parallel.
This project proposes a three-tier architecture consisting of sensors
at the first tier, sensor access points that collect and aggregate data
at the second tier, and servers at the third tier. Sensors can be both
static and mobile. Sensor access points provide secure and trusted
collection of sensor data by tasking available sensors for a given
application. Given the uncontrolled mobility of the sensor nodes,
sensor tasking, data sensing, and data collection occur in an oppor-
tunistic manner. Servers are responsible for providing support to
the collection of sensor data, for storing data, and for running ap-
plications related to a certain MetroSense administrative domain.
Sample applications under study are BikeNet, which allows cyclists
to share information such as bike paths with other cyclists, and
SkiScape, which provides skiers with real-time information such as
trail conditions or safety/emergency alerts.

The Urban Sensing [UrbanSensing, 2007] project at UCLA seeks
to build short-term, community-oriented urban sensor networks.
Its network architecture provides features such as resource discov-
ery and application-level support for data gathering campaigns and
context attestation. In particular, the technical design aims to ad-
dress three issues of urban applications: verification and authenti-
cation of context data provided by the network or the application,
privacy protection, and dissemination rules. The architecture con-
sists of four types of entities: (i) sensors which provide sensor data;
(ii) subscribers which receive, store, and process sensor data; (iii)
registries which help subscribers discover and connect to sensor data
streams based on query attributes such as location and type of sen-
sor data; (iv) mediators which perform specific in-network services
such as verifications, data anonymization, and fault-tolerance.

A common feature of all these projects is that they assume cen-
tral collection points across the Internet that perform data and task
management and act as mediators between users and the network.
Since there can be a large number of active users querying the net-
work, each with unique requirements in terms of frequency, accu-
racy, and location of the sensor measurements, the challenge is how
to accommodate an increasing number of diversified queries while
providing accurate and real-time data. In addition, given that a
large part of users will be interested in acquiring information about
their local surroundings, it is important to optimize this system to

72 3 Programming challenges in Urbanets

reduce network bandwidth utilization. Finally, many mobile users
might not have continuous Internet connectivity or this might be
expensive.

With our middleware architectures for Urbanet environments
we propose a complementary, decentralized view for programming
distributed sensing applications. Distribution allows us to address
the above challenges and, in particular, our solutions do not require
servers or Internet connectivity.

Finally, it is worth to mention another initiative relevant to ur-
ban sensing projects like ours that is the Nokia’s SensorPlanet [Sen-
sorPlanet, 2007] project. This is a Nokia-initiated cooperation on
large-scale sensor networks. The objective of SensorPlanet is to
build a test platform for researchers on mobile-centric wireless sen-
sor networks.

3.5 Concluding remarks

This chapter presented Urbanets and the challenges that middle-
ware platforms for the support of mobile sensing applications need
to address. We gave examples of potential mobile sensing applica-
tions and we surveyed ongoing research projects on people-centric
urban networks with a focus on their architectural approaches.
Generally, current work on mobile sensing applications has taken
centralized and infrastructure-based approaches. Centralized ap-
proaches can limit the scalability, flexibility, and guarantees of real-
time data delivery that are essential requirements of future mobile
sensing applications. Moreover, mobile users might not always have
available Internet connectivity or this might be expensive. These
observations lead us to develop distributed, infrastructure-less ar-
chitectures that will be presented in the next two chapters.

CHAPTER 4

Contory

This chapter presents Contory (Context factory). Contory is an
Urbanet middleware that provides a database abstraction of the
environment. Contory offers an SQL-like interface to issue con-
text queries, in which application developers can specify the type
and quality of the desired context items, sensor data sources, push
or pull mode of interaction, and other qualifying properties. The
key feature of Contory is that it executes context queries and col-
lects sensor data by employing multiple strategies for sensor data
collection: (i) internal sensor-based, (ii) external infrastructure-
based, and (iii) distributed provisioning in ad hoc networks. The
advantages of this approach are twofold. First, arranging different
strategies for sensor data collection permits compensating for the
temporary unavailability of one mechanism and coping with the
dynamic resource availability. Second, combining results collected
using different mechanisms allows applications to partly relieve the
uncertainty of a single sensor source and to more accurately infer
higher-level context information.

This chapter describes requirements study, design principles,
query model, software architecture, and programming interface of
Contory. We give insights into its implementation on smart phones,
present experimental results in WiFi networks of smart phones, and
describe prototype applications using it.

73

74 4 Contory

4.1 Motivating scenarios

Contory aims to support mobile applications that need to be aware
of both “local” and “remote” context. Specifically, we deal with
situations in which context consists of low-level sensor data charac-
terizing entities, resources, and physical environments that can be
local or remote with respect to the user location. Furthermore, as
our focus is on low-level context information, we will use the terms
“context data” and “sensor data” interchangeably, unless specified
otherwise.

To understand how Contory can be useful, let us consider the
Urbanet scenarios depicted in Figure 3.1 of the previous chapter.
Contory can be used, for example, to support detection of local
fog patches or icy roads along the highway. Contory interacts with
environmental sensors located in the region of interest, in this case
a portion of the highway, and periodically acquires sensor measure-
ments such as temperature, humidity, and pressure. The collected
sensor data are transferred to the user node using a network of
collaborating nodes such as cars. The user node can be a car’s em-
bedded computer or a smart phone that can process the raw data
and return results to the application. This is an example of local
context. Then, computed results can also be broadcasted to neigh-
boring devices or stored in remote repositories so that remote users
can access such data using, for example, Internet connectivity. This
is an example of remote context.

The possibility of gathering different types of information from
a network of mobile devices in the same proximity offers a way to
characterize the status of several types of services such as restau-
rants, shopping malls, or guest harbors, in real-time and in an ac-
curate manner. For example, Contory can be used to find out the
number of free tables and estimated waiting time in a restaurant.
An ad hoc network of mobile phones owned by people who are al-
ready in the restaurant can be used to infer how many empty places
are left and for how long the present people have already been in
the restaurant.

Although most of the implemented context-aware applications
have used mainly location information, there exist many other types
of context information that can be considered depending on whether
the sensor technology necessary for its support is already available.

4.2 Requirements study 75

4.2 Requirements study

Requirements for the development of Contory were gathered through
experiences with a context-based application developed in the con-
text of the DYNAMOS [DYNAMOS, 2007](Dynamic Composition
and Sharing of Context-Aware Mobile Services) project. This DY-
NAMOS application, described in [Riva and Toivonen, 2006, 2007],
aims to proactively provide mobile users with nearby services that
are of interest based on the user’s current context and needs. The
application prototype runs on smart phones and was specifically
designed to fulfill the expectations of a community of recreational
sailboaters. Figure 4.1 shows some examples of how the DYNAMOS
application can be used in a sailing scenario. First of all, the ap-
plication proactively provides mobile users with an updated list
of services of interest (i.e., “MatchedServices”) available in the sur-
rounding environment (see the top-left part of the figure). The user
can also annotate these service descriptions (i.e., generate “service
annotations”) and share them with other users that might be in-
terested in those services too (see the top-center part of the figure).
Finally, the user can generate “user notes” that can be routine mes-
sages, safety warnings, or emergency alarms (see the bottom-right
part of the figure).

In June and August 2005, we organized two field trials with
sailboats. The first trial was a short excursion by sailboat in which
the application was in use for 5 hours by 2 users. In the second
trial, 28 persons on 9 sailboats participated in a one-day regatta.
Each sailboat was equipped with a Nokia 6630 phone and a GPS
device with Bluetooth (BT) interface.

During the regatta, location-awareness was accomplished using
GPS devices connected through BT to the phone. Location up-
dates were encapsulated in events and constantly transmitted (us-
ing 2G/3G networks) to a remote repository. Collected location
traces were fairly discontinuous due to several disconnection prob-
lems. First, the BT connection to the GPS device went down several
times, typically once per hour. Second, whenever the 3G connec-
tion was active and the phone had to make a handover to 2G, it
switched itself off (this did not occur if the phone was set to oper-
ate only in 2G mode). Additionally, the traffic of events carrying
context updates and going from the phone to the remote repository

76 4 Contory

Figure 4.1: Examples of context-based services provided by the
DYNAMOS platform in a sailing scenario.

had to be optimized and largely reduced, in order to keep peak
power consumption below the limit over which the phone would
switch itself off.

These experiences in the real field of action helped discover tech-
nical problems regarding context sensing and context management.
We found that (i) context provisioning based exclusively on local
sensors is often not reliable enough; (ii) sharing of context infor-
mation owned by multiple users can provide useful services to the
end user, enlarge the spatial range of context monitoring, reduce
the global resource utilization, and permit coping with the sensors’
unreliability; (iii) external infrastructures should be ready to cope
with frequent users’ disconnections (e.g., by incorporating predic-
tion or learning algorithms); and (iv) the client application should
be ready to cope with frequent disconnections from remote reposi-
tories.

4.3 Design principles 77

4.3 Design principles

Both the practical experiences gained in the DYNAMOS project
and the analysis of existing context-aware systems permitted iden-
tifying core issues for the support of context provisioning. The
analysis of existing solutions also allowed to either reveal unsolved
problems or find out solutions to well-known problems. In some
cases, we also characterized recurrent design solutions through well-
known or novel design patterns [Riva and di Flora, 2006b]. Systems
to be analyzed were selected based on the extent of their complete-
ness and utilization in supporting various context-aware applica-
tions. A list of analyzed systems can be found in [Riva, 2007].

Based on existing solutions to well-known issues and with the
aim to address unsolved issues, we derived a list of principles for
the design of Contory:

• Flexible and reliable context provisioning: Ideally, context
provisioning should take place without any interruption, e.g.,
due to hardware faults or temporary disconnections from sen-
sor devices. In Contory, multiple context provisioning strate-
gies are made available and can be interchanged dynamically
and transparently based on sensor availability and resource
consumption.

• Common querying interface: To formulate requests of hetero-
geneous context items, Contory supports an SQL-like context
query language. This common interface allows applications
to specify the type and qualifying properties of the required
context data.

• On-demand, event-based, periodic queries: Applications can
interact with Contory by issuing on-demand queries or long-
running queries, in which results are received either periodi-
cally or when certain event conditions are verified.

• Modularity and extensibility : Contory glues together several
modular components for context provisioning thus enhancing
the ability of the middleware to assume variable configura-
tions. New sources of sensor data as well as sensor processing
algorithms, which will be developed in the forthcoming years,

78 4 Contory

Location Item

* = optional field

100000mslocation
latitude = 02425.6170

longitude = 6007.5084

Dynamic

Validity: A status

Precision: HDOP 24.4

092204.999
GPS

nokiaE234

Context Item

Type Value Options*Source*
Timestamp

hhmmss.sss
Lifetime

Figure 4.2: The context item format and an example of location
item.

will also need to be easily accommodated in the existing ar-
chitecture.

4.4 Middleware architecture

Contory seeks to provide specialized and transparent support for
retrieving context items of different types and quality. This sec-
tion describes core concepts for the design of Contory, its software
architecture, and programming interface.

4.4.1 Context items and context metadata

Generally, the context associated with a certain situation can be
expressed as a set of context items, each describing a specific ele-
ment of the situation. For instance, the situation walking outside
can be represented by the triplet of context items <noise=medium,
light=natural, activity=walking>. Context items can describe spa-
tial information (location, speed), temporal information (time, du-
ration), user status (activity, mood), environmental information
(temperature, light, noise), and resource availability (nearby de-
vices, device power). In Contory, context data are exchanged by
means of cxtItem objects (see Figure 4.2). Each cxtItem consists
of type (context category), value (current value(s) of the item),

4.4 Middleware architecture 79

timestamp (the time at which the context item had such a value),
and lifetime (validity duration). Optionally, the item can contain
a source identifier (e.g., sensor, infrastructure, or device addresses)
and other metadata information in the options field. Types of
metadata information include correctness (i.e, closeness to the true
state), precision, accuracy, completeness (if any or no part of the
described information remains unknown), and level of privacy and
trust.

4.4.2 Context query language

From an application’s point of view, Contory acts mainly as a data-
retrieval system to which applications submit context queries. Al-
though similar to a database system, the dynamism and fuzziness
of context data lead to distinguishing characteristics of the SQL-
like interface. For example, sources of sensor data can provide large
amounts of data, hence aggregation and filtering are required. Fur-
thermore, monitoring sensor data is a continuous process, hence
not only on-demand queries but also long-running queries have to
be supported. Although different applications usually pose different
requirements, rather than developing application-specific interfaces,
we abstracted the functionality of several applications into one com-
mon SQL-like context query language. Figure 4.3 shows the query
template.

SELECT <context name> [*]
FROM <source>
WHERE <predicate clause>
FRESHNESS <time>
DURATION <duration> [*]
EVERY <time> | EVENT <predicate clause>

Figure 4.3: The Contory’s context query template.

The SELECT and DURATION clauses (marked with [*]) are manda-
tory. SELECT specifies the type of the requested context item.
DURATION specifies the query lifetime as time (e.g, 1 hour) or as
the number of samples that must be collected in each round (e.g.,
50 samples).

80 4 Contory

In carrying out context provisioning, Contory aims to offer dif-
ferent levels of transparency to application developers. Essentially,
depending on the application semantics, application developers can
require to have low (maximum transparency) or high (minimum
transparency) control over the execution of the context provision-
ing task. The maximum transparency is achieved when the FROM
clause is unspecified and the middleware can dynamically and au-
tonomously select which mechanism to adopt for collecting sensor
data. Alternatively, the FROM clause permits specifying type and
characteristics of the sources of sensor data and of the mechanisms
to be employed for collecting the data.

As summarized in Table 4.1, three mechanisms for context provi-
sioning are currently supported: internal sensor-based (intSensor),
external infrastructure-based (extInfra), and distributed context
provisioning in ad hoc networks (adHocNetwork). In the case of
adHocNetwork provisioning, the FROM clause also tells the mul-
tiplicity of the sensor nodes to be utilized (numNodes) and their
distance from the source (numHops) or the geographical region in
which they should be located (region). For example, the search
of suitable context items can involve all nodes that can be discov-
ered (numNodes=all) in a certain region (region=(60.21,24.81)),
or the first k nodes found within a distance lower than j hops
(numNodes=k, numHops=j). Geographical regions are expressed us-
ing latitude and longitude coordinates, but, in principle, they could
also be landmarks created by the end user, such as the user’s home
or the next exit on the highway. Alternatively, the programmer can
also submit the specific destination (destinationID) to which the
query has to be sent, that is usually the identifier of an entity (e.g.,
to know when a friend is nearby).

Table 4.1: Example values for query clauses.

Clause type Values

SELECT location,light,noise,temperature,speed

FROM intSensor,extInfra,adHocNetwork(numNodes,numHops),

adHocNetwork(numNodes,region), {destinationID}
WHERE accuracy,precision,correctness,levelOfTrust

4.4 Middleware architecture 81

WHERE contains filtering predicates built using the context item’s
metadata. FRESHNESS specifies how recent the context data must
be. Finally, our query language provides support for long running
queries by means of EVERY and EVENT clauses. These clauses are
mutually exclusive. The EVERY clause allows the application de-
veloper to specify the rate at which context data must be collected
(periodic query). The EVENT clause determines the set of conditions
that must be met at the context provider’s node before a new result
is returned (event-based query).

If we consider the example of an application for traffic jam pre-
diction, the query presented in Figure 4.4 is sent to collect accurate
speed values of all nodes (e.g., cars) found in remote_region (e.g.,
the next exit on the highway):

SELECT speed
FROM adHocNetwork(all,remote_region)
WHERE accuracy = true
DURATION 1 hour
EVENT AVG(speed)<min_speed

Figure 4.4: Example of context query requesting speed measure-
ments from a remote region.

Speed measurements are returned when the average speed drops
below min_speed. To compute the probability of traffic jam, the
application can combine these data with the number of collected
samples (i.e., density of cars), past observations, and, possibly,
knowledge of the road topology.

4.4.3 Contory software architecture

Figure 4.5 depicts the conceptual architecture of Contory. Con-
textFactory is the core component of the overall architecture. One
ContextFactory runs on each device and is supposed to manage
multiple applications simultaneously. Based on the Factory Method
design pattern [Gamma et al., 1995], this design model aims to de-
fine an interface for creating objects, but let subclasses decide which
class to instantiate. In our case, the ContextFactory offers an inter-
face to submit context queries, but lets Facade components (sub-
classes) decide which CxtProvider components (classes) to instanti-

82 4 Contory

Cxt

Sources
Cxt

Sources

Context sensing

and communication

Cxt

Sources
Cxt

Sources

Context provisioning

and reasoning

Context storage

and sharing

Resources

Monitor

Cxt

Sources
Cxt

Sources

Cxt

Sources
Cxt

Sources

Internal

Reference
2G/3G

Reference

WiFi

Reference

Cxt

Aggregator
Cxt

Aggregator

Query and providers

management

BT

Reference

Cxt

Query

Cxt

Query

Cxt

Query

Application

Application

Application

Event-based

commun.

MANET

commun.

MANET

commun.

O

E

P

on-demand query

event-based query

periodic query

LocalCxt

Provder

O E P

LocalCxt

Provider

O E P
AdHocCxt

Provder

O E P

AdHocCxt

Provider

O E P
InfraCxt

Provder

O E P

InfraCxt

Provider

O E P

Infra

Facade

AdHoc

Facade

Local

Facade

Access

Controller

Query

Manager

Cxt RepositoryCxt Publisher

C
o

n
te

x
t

F
a

c
to

ry

Figure 4.5: The Contory middleware architecture.

ate. The alternatives are LocalCxtProvider, AdHocCxtProvider and
InfraCxtProvider.

The ContextFactory is responsible for:

• context sensing and communication,

• context provisioning and sharing, and

• queries and providers management.

In the following, we describe each functionality together with their
core architectural components.

Context sensing and communication

Context data can be sensed from a large variety of CxtSources such
as external sensors (e.g., a GPS device), integrated monitors (e.g., a
power management framework), or external servers (e.g., a weather
station). To provide discovery of CxtSources as well as to support
communication with them, different types of Reference modules are
provided. Typically, a Reference is responsible for mediating the
access to a certain communication module by offering useful pro-
gramming abstractions. As shown in Figure 4.5, Contory includes
four types of References. The InternalReference is specialized to

4.4 Middleware architecture 83

support communication with sensors integrated in the device. The
BTReference provides support to discover BT devices and services,
and to communicate with them. The WiFiReference manages com-
munication in WiFi networks and, for instance, provides abstrac-
tions for content-based routing and geographical routing in mobile
ad hoc networks. The 2G/3GReference manages interactions with
remote entities over the corresponding network standards and offers
an event-based interface to establish and control such interactions.

Mobile systems can undergo unexpected changes in the level of
available resources, for example, when a new application is started
on the device or when the host moves to a different network. Fur-
thermore, in wireless environments, disconnections and bandwidth
fluctuations are common. These issues make necessary the adoption
of dynamic resource allocation mechanisms. The ResourcesMoni-
tor component is in charge of maintaining an updated view on the
status of several hardware items (e.g., device drivers), on the de-
vice’s overall power state, and on the available memory space. Each
time, network, sensors, or device failures affect the functioning of
a communication module, the corresponding Reference notifies the
ResourcesMonitor module. This, in turn, informs the ContextFac-
tory which can then enforce a reconfiguration strategy to take over.
For example, if the BT connection to a GPS device suddenly goes
down, the task of location provisioning can be moved from a Lo-
calLocationProvider, which is currently using the BTReference to
connect to the GPS device, to an AdHocLocationProvider, which
can use the WiFiReference to discover an active location provider
in the nearby.

The AccessController module is responsible for controlling the
interaction with external sources and requesters of context items.
The AccessController keeps track of previously connected context
sources, such as simple sensors or other sensor-equipped devices,
and also of “blocked” context sources. Blocked context sources are
those that due to previous unsuccessful interactions or due to cur-
rent operating conditions should not be connected to the device.
This list of devices is refreshed continuously so that only the most
recent and the most often accessed sources are kept in memory. To
decide to which devices Contory should grant access, if the applica-
tion requires high-security operating mode, each time a new context
source is encountered, it is blocked or admitted based on explicit

84 4 Contory

validation from the application. In low-security mode, every new
encountered device is trusted.

Context provisioning and sharing

CxtProviders (i.e., context providers) are responsible for accom-
plishing context provisioning (or sensor data provisioning). Option-
ally, they can also incorporate reasoning mechanisms for inferring
higher-level context data. A CxtAggregator can be used to com-
bine context items collected from single or multiple CxtProviders.
Alternatively, advanced context processing mechanisms can be per-
formed by external context infrastructures or distributed across re-
mote components [Flinn et al., 2002] in order to save energy on
energy-constrained devices. Reasoning mechanisms strongly de-
pendent on the application’s semantics may be incorporated in the
application itself.

CxtProviders are of three types. LocalCxtProviders manage the
access to local sensors which can be embedded in the device or be
accessible via BT. These providers periodically pull sensor devices
and report values that match WHERE and FRESHNESS requirements.
InfraCxtProviders are responsible for retrieving context data from
remote context infrastructures. AdHocCxtProviders are responsible
for supporting distributed context provisioning in ad hoc networks;
to gather context data from nodes in a MANET, these providers
utilize the BTReference (only for one-hop communication) or the
WiFiReference (for multi-hop communication).

By supporting the specification of EVENT and EVERY clauses, con-
text providers offer three modes of interaction: on-demand query,
periodic query, and event-based query. An on-demand query re-
turns results once. The query is executed for the first time. If
results are available, these are returned and the query is removed
from the nodes’ cache. If results are not currently available, the
query is executed repeatedly until valid results are found or the
query’s DURATION expires. A periodic query is executed for the de-
sired DURATION and results are computed at the frequency specified
in the EVERY clause. Finally, with an event-based query, each node
in the network is instructed to return results each time the EVENT
condition is verified, for the entire duration of the query.

The CxtRepository module is responsible for storing gathered

4.4 Middleware architecture 85

context information, locally or remotely. Only a few recent context
data are stored locally, while complete logs can be stored in remote
repositories of external infrastructures.

The CxtPublisher permits publishing context information in ad
hoc networks by means of the BTReference or the WiFiReference.
Each time a context item has to be published, two access modalities
can be associated with it: “public access” allows any external entity
to access the item, and “authenticated access” locks the item with
a key that must be known by the requester.

Queries and providers management

The QueryManager is responsible for maintaining an updated list
of all active queries and for assigning queries to the appropriate
Facade components. For each of the three types of context pro-
visioning mechanisms supported, a corresponding Facade module
offers a unified interface for managing CxtProviders of that specific
type. The purpose of utilizing the Facade design pattern [Gamma
et al., 1995] is to abstract the subsystem of CxtProviders to offer
a more convenient (unidirectional) interface to the ContextFactory.
The Facade knows which subsystem classes (i.e., CxtProviders) are
responsible for a certain query and can direct actions or requests of
the ContextFactory to the suitable component.

The QueryManager invokes the processCxtQuery factory method
of the ContextFactory interface to assign the query to one or mul-
tiple Facade modules. The assignment is done based on the re-
quirements specified in the query’s FROM clause, based on the sen-
sor availability, and in the respect of the active control policies.
For instance, a control policy can specify the maximum amount of
memory and power consumption that can be allocated at runtime
to a certain application.

Control policies are formulated as contextRules. Each context-
Rule consists of a condition and an action statement. Conditions
are articulated as full binary trees of Boolean expressions. Each
node of the tree can be a comparisonNode or a combinationNode. A
comparisonNode is a triplet consisting of contextName, comparison-
Operator, and value. ComparisonOperators currently supported are
equal, not-equal, morethan, and lessthan. An example of com-

86 4 Contory

parisonNode is

<batteryLevel,equal,low>

A combinationNode combines two nodes by means of combination-
Operators such as and and or. An example of combinationNode
is

<or,<batteryLevel,equal,low>,<memoryFree,lessthan,K>>

Therefore, and and or operators permit flexibly combining elemen-
tary conditions to build more complex ones.

The entire condition clause of a certain contextRule is evaluated
by verifying all the contained boolean expressions based on the cur-
rent values of the device’s context parameters. Each rule is set as
optional or mandatory, as the context parameters required by the
rule may not be always available. Whenever a condition clause is
positively verified at runtime, the associated action becomes ac-
tive and it is enforced by the ContextFactory. Actions currently
supported are reducePower, reduceMemory, and reduceLoad.

The enforcement of these reconfiguration actions can have diffe-
rent effects such as the switch from a certain provisioning mecha-
nism to another one or the interruption of a query execution. For
example, the activation of the reducePower action can cause the
suspension or termination of high energy-consuming queries (e.g.,
those using the 2G/3GReference) or the replacement of WiFi-based
multi-hop provisioning with BT-based one-hop provisioning. In the
case of intSensor and extInfra provisioning, interrupting a query
execution simply requires a cancel message to be sent to the sen-
sor devices or to the external infrastructure respectively. In the
case of adHocNetwork provisioning, interrupting a query execution
might be an expensive (or almost impossible) process, especially in
a highly mobile ad hoc network. Therefore, the middleware can
locally interrupt the query execution and optionally disseminate
cancel messages into the network.

Once the query has been assigned to a Facade, in order to avoid
redundancy and keep the number of active queries minimal, the
Facade performs query aggregation. This process consists of two
sub-processes: query merging and post-extraction. The Facade first
verifies whether the new submitted query q1 can be merged with

4.4 Middleware architecture 87

any other active query q2. If q3 = merge(q1,q2) can be com-
puted, q3 is the new query to be processed. The post-extraction
sub-process is applied to the received results for q3 in order to ex-
tract the data matching the original queries q1 and q2.

The merge function implements a very simplified version of the
clustering algorithm defined in [Crespo et al., 2003]. This algorithm
builds on the definition of a “distance” metric between queries. The
algorithm computes the distance between each pair of queries and if
this distance is below a certain threshold, the two queries are put in
the same cluster. Our design is based on a similar principle. We first
group queries with the same SELECT clause and then perform the
merging by applying clause-specific merging rules, as exemplified in
Figure 4.6.

q1: SELECT temperature
FROM adHocNetwork(all, 3)
FRESHNESS 10 s
DURATION 1 hour
EVERY 15 s

q2: SELECT temperature
FROM adHocNetwork(all, 1)
FRESHNESS 20 s
DURATION 2 hour
EVERY 30 s

q3 = merge(q1, q2): SELECT temperature
FROM adHocNetwork(all, 3)
FRESHNESS 20 s
DURATION 2 hour
EVERY 15 s

Figure 4.6: Example of merging of two context queries.

Upon the aggregation process has completed and the merged
query is obtained, the Facade module either instantiates a new
CxtProvider or updates the query parameters of an existing Cxt-
Provider (e.g., in case the new query has been merged with an
already active query). CxtProviders of different Facades can be as-
signed to the same query, but a CxtProvider is assigned only to one
(single or merged) query at time.

88 4 Contory

4.4.4 Contory programming interface

The Contory API shields the programmer from the underlying com-
munication platforms and context provisioning aspects. To interact
with Contory, an application needs to implement a Client interface
and implements the following methods:

• receiveCxtItem(CxtItem cxtItem) in order to handle the
reception of the collected context items;

• informError(String msg) to be called by several Contory
modules in case of malfunctioning or failure;

• makeDecision(String msg) to be invoked by the AccessCon-
troller to grant or block the interaction with external entities.

Applications using Contory can invoke its services using the
ContextFactory interface, shown in Figure 4.7. First of all, the
interface offers methods for submitting and erasing context que-
ries (see line 2 and line 3). When the application invokes the
method processCxtQuery, the middleware decides to which con-
text provider assign the query. The application can later reference
a submitted context query by means of the queryID, which is auto-
matically generated by the system at the query’s instantiation time
(i.e., through the constructor createCxtQuery).

1 public interface ContextFactory{

2 boolean processCxtQuery(CxtQuery query);

3 void cancelCxtQuery(String queryID);

4 void registerCxtServer(CxtServer publisher);

5 void deregisterCxtServer(CxtServer publisher);

6 boolean publishCxtItem(String cxtItem, boolean pub);

7 void storeCxtItem(CxtItem cxtItem);

8 }

Figure 4.7: The ContextFactory interface.

In order to be eligible to publish context items and make them
accessible to other context requestors, the publishing application
must register with the middleware and be authenticated (line 4).
After registration, using the method publishCxtItem, the applica-
tion can publish (pub=true) or erase (pub=false) specific context

4.5 Implementation 89

items (see line 6). The publishing method invokes the CxtPublisher
that, in turn, contacts the CxtProvider in charge of providing con-
text items of that specific type (the type is stored in the cxtItem
object passed by the application). The CxtProvider stores the
CxtPublisher’s subscription and, each time the CxtSources make
a new context value available, it communicates the new cxtItem to
the CxtPublisher. The publishCxtItem function returns true if
the publishing action succeeded or false otherwise. For example,
the action does not succeed when the application tries to publish
an item for which no corresponding CxtProvider currently exists
or when it attempts to erase a non existing item. When the appli-
cation completes or the publishing task needs to be interrupted for
some reason, the application deregisters (line 5).

Finally, the interface permits storing context items on remote
repositories (see line 7) that have registered with the middleware.
The CxtRepository object is in charge of managing the interaction
with the repository.

To support the generation of context queries, the following vo-
cabularies are available to the application developer:

• the CxtVocabulary contains context types, context values,
and metadata types for specifying context items and device
resources;

• the QueryVocabulary contains parameters for specifying con-
text queries; and

• the CxtRulesVocabulary contains operators and actions for
specifying control policies.

4.5 Implementation

Contory has been implemented using Java 2 Platform Micro Edi-
tion (J2ME). Currently, two separate implementations exist: one
for Connected Limited Device Configuration (CLDC) 1.0 and Mo-
bile Information Device Profile (MIDP) 2.0 APIs, and one for Con-
nected Device Configuration (CDC) 1.0. Contory’s implementation
is available under an open source license [Contory, 2007].

90 4 Contory

The J2ME platform was selected because it currently represents
the most widespread and standard computing platform for personal
mobile devices. However, as we discuss in [Riva and Kangasharju,
2007], disadvantages of this platform are limited debugging support,
limited programming environment, slow storage access, and not yet
available sensor API to manage and control sensors connected to
the phone. For Java ME, the Mobile Sensor API [JSR 256, 2007],
is currently under development, but it will still take time for this
work to be completed and become available on actual devices.

It has proven very difficult experimenting with real-world sensors
that can be connected to the phone. Proper support for context-
aware applications requires sensor devices to be available to the
phone and also to be able to produce real-time measurements. Cur-
rently, there are very few phones that integrate sensors. The Nokia
N95, the first smart phone with GPS integrated, was announced
only in late 2006. The more common alternative are external sen-
sors, usually connected through BT with a BT-based programming
API. Yet, apart from BT-GPS devices, most BT-based sensors are
capable of providing only logs of sensor data, but not real-time
measurements.

All software development was done using Nokia Series 60 and
Nokia Series 80 phones running Symbian OS. We decided not to
implement our platforms in Symbian mainly because many of the
external software systems that we intended to integrate in our plat-
forms, such as the Fuego Core’s event system and the SM platform,
are implemented in Java. Moreover, available native Symbian im-
plementations often require different builds because different Sym-
bian OS versions do not always interoperate.

In the following, we provide specific insights into the implementa-
tion of the Reference modules and distributed context provisioning
in ad hoc networks. The InternalReference module has not been
implemented yet, because no sensors integrated in the phone plat-
form that we used for the development were available at deployment
time.

4.5.1 Network communication modules

The BTReference uses the Java Specification Request 82 (JSR 82)
[JSR 82, 2007] available for CLDC. This specification defines a

4.5 Implementation 91

standard set of APIs for BT wireless technology and in particu-
lar targets devices that suffer from constraints in processing power
and memory. The specification includes support for (i) device dis-
covery, service discovery, and service registration, (ii) establishing
connections between BT devices and using those connections for
BT communication, and (iii) managing and controlling active BT
connections.

The WiFiReference uses the Smart Messages (SM) [Borcea et al.,
2002] distributed computing platform, described in Section 2.4, to
provide device and service discovery, content-based routing, and
multi-hop communication in ad hoc networks. We utilized Portable
SM [Ravi et al., 2004] implemented for the J2ME CDC platform.

The 2G/3GReference offers support for event-based communi-
cation by using the Fuego Core middleware [Fuego Core, 2007;
Tarkoma et al., 2006]. This middleware is implemented in Java and
provides a scalable distributed event framework and XML-based
messaging service [Kangasharju et al., 2005]. This middleware also
runs on mobile phones supporting Java MIDP 1.0.

4.5.2 Distributed context provisioning

Distributed context provisioning is accomplished through the col-
laboration of Urbanet nodes willing to use their resources to support
the execution of Contory. A Contory mobile ad hoc network con-
sists of nodes running Contory and communicating using wireless
connectivity. In our implementation, the WiFiReference is used
for managing the communication in multi-hop networks and the
BTReference is used only in one-hop networks.

Distributed context provisioning is performed in three phases:

1. Initialization: nodes willing to cooperate initialize their Ref-
erence modules, especially to support routing of Contory mes-
sages.

2. Publishing : through the CxtPublisher module, Contory nodes
can publish their context information for public access; we will
call these nodes “publishers”.

3. Execution: AdHocCxtProviders running on Contory nodes
can issue context queries, the requested context items are

92 4 Contory

searched in the network of publishers, and the results are
returned to the requestor nodes, called “consumers”.

Figure 4.8 shows an example of Contory network where nodes
2,4,5,8,9 and 10 are publishers, node 1 is a consumer, and the re-
maining nodes simply support routing of Contory messages (i.e.,
they are initialized).

In the WiFi-based implementation, the Smart Messages comput-
ing platform was used. In the initialization phase, the WiFiRefer-
ence running on each node expresses its willingness to participate
in the Contory ad hoc network by exposing the SM tag “contory”.
Essentially, this means that to perform multi-hop routing, all nodes
exposing the tag “contory” can be used to route packets from one
source to the destination. In the network in the figure, we assume
that all nodes are exposing the tag “contory”.

To publish a context item in the network, the CxtPublisher mod-
ule of the publisher node creates and exposes an SM tag whose name
is the context type (cxtTagName) and whose value contains the
value (cxtTagValue) of the context item together with the meta-
data information qualifying the item. An example of tag is the
following:

tempTag =

{
cxtTagName = temperature

cxtTagV alue = 14oC, 1oC, trusted

To discover context items of interest, the context query is routed
towards publisher nodes exposing the desired cxtTagName (i.e., the
tag whose name matches the SELECT clause of the carried query).
This is accomplished by using the SM’s geographical routing and
content-based routing functions. To disambiguate between mul-
tiple messages, a unique identifier is associated with each query
(queryID) and with each result (resultID). If no valid result is
received within the specified duration, the query execution is ter-
minated. Otherwise, if nodes exposing context items of the type
of interest are discovered, WHERE, FRESHNESS and EVENT require-
ments specified in the query are evaluated. If positively verified,
the value of the context item along with additional metadata prop-
erties are returned to the consumer node that issued the query.
In the example in the figure, only node 8 and node 10 send back

4.5 Implementation 93

2
5

4

9

8

10

11

3
T

6

7

Q

Q

Q

Q

Q
Q

Q

Q

R

R

R

R

R

1
9

8

T

6

R

R

R

R 4

10
11

3

7

2

R
5

T

T id all 3 10 ... 10

cxtName queryID numNodes duration conditions every/event

1

hopCnt=3

hopCnt=2

cxtTagName resultID queryID cxtTagValue cxtItemMetadata

Query

Response

T id id 17 ...

hopCnt=3

hopCnt=2

hopCnt=1

hopCnt=2

hopCnt=3

hopCnt=1

hopCnt=2

hopCnt=1

hopCnt=1

hopCnt=2

hopCnt=3

hopCnt=4

hopCnt=1

hopCnt=2

R

hopCnt=1

WHERE

condition is

not satisfied

The response is

discarded because

hopCnt>numHops

Time t

Time t + dt

T

numHops

T

T

C cxtTag of name C

Figure 4.8: Example of distributed context provisioning in a Con-
tory mobile ad hoc network.

94 4 Contory

responses, whereas node 9, although located in the region of inter-
est (i.e., within a distance of 3 hops), does not satisfy all query’s
requirements.

At the SM level, queries and responses are encapsulated in SMs
called SM-FINDERs. Each SM-FINDER maintains a hopCnt to per-
form routing of both queries and responses. hopCnt indicates how
many hops the message has traversed until that moment. As shown
in the figure, in the query dissemination, hopCnt is used to control
the propagation of the query in the region of interest. In the query
execution, hopCnt is constantly compared with the numHops spec-
ified in the context query. When the response is delivered to the
consumer, if hopCnt>numHops, the consumer discards the result be-
cause the publisher that provided such a result is out of the range
of interest. In the figure in the bottom, after nodes have moved,
while node 10 is still located in the region of interest, node 8 has
moved out of the region of interest (i.e., it is now 4 hops away) and
its responses are therefore discarded.

In the BT-based implementation, the initialization phase places
the BT device into inquiry mode and specifies an event listener that
will respond to inquiry-related events. The CxtPublisher module
running on the publisher node can publish a context item by adver-
tising a context service on the BT server (service registration). The
server creates a service record describing the offered context service
and adds it to the server’s Service Discovery Database (SDDB).
This is visible and available to external BT entities. The AdHoc-
CxtProvider running on the consumer node first discovers accessible
BT devices (in some cases a list of pre-known devices can be used)
and then checks the services available on the discovered devices.

4.6 Experimental evaluation

To assess the performance of Contory, we built an experimental
testbed of smart phones and measured response times and energy
consumption for different context operations. The objective of this
experimental analysis was to demonstrate the practical feasibility
of the proposed approach, give an insight on the performance of our
prototype implementation, and quantify its cost mostly in terms of
energy consumption. Our experimental testbed consists of a Nokia

4.6 Experimental evaluation 95

6630 phone, a Nokia 7610 phone, 3 Nokia 9500 communicators (see
Table 4.2 for their core technical features), and a Bluetooth GPS
Receiver InsSirf III. This section presents the experimental results
obtained in such a network testbed.

Table 4.2: Technical specifications of the phones used in the exper-
iments.

Phone Symbian OS Processor RAM Connectivity

Nokia 7610 v7.0s 123 MHz 8 MB GPRS

Nokia 6630 v8.0s 220 MHz 10 MB GPRS/EDGE/WCDMA

Nokia 9500 v7.0s 150 MHz 76 MB GPRS/EDGE/WiFi

4.6.1 SM experiments

We first ran some preliminary tests to assess the performance of the
Portable SM platform [Ravi et al., 2004] on Nokia 9500 phones. We
first measured the cost of some basic TagSpace operations, reported
in Table 4.3. As explained in Section 2.4, the tag space consists of
(name, data) pairs, called tags, which are created by SMs and used
for inter-SM communication, synchronization, and interaction with
the host.

Then we measured the round-trip times obtained for different
data brick sizes in a one-hop communication network and with code
cache at nodes. Results are reported in Table 4.4. These results can
be directly compared with analogous experiments ran for Portable
SM and the original SM platform on HP iPAQs; these can be found
in [Ravi et al., 2004]. We observe that the overall performance
obtained on Nokia Series 80 phones is worse compared to HP iPAQs.
The additional overhead on Nokia Series 80 phones can be partially
explained by the higher computation power of iPAQs and by the
two different Java virtual machine implementations.

The break-up analysis for the RTT experiments shows that the
cost of connection establishment accounts for less than 20 ms and
the thread switching for less than 50 ms. The data transfer time
varies linearly from 187 ms (with 1044 bytes) up to 278 ms (with
16010 bytes). In particular, Java serialization, which is based on

96 4 Contory

Table 4.3: Portable SM on Nokia 9500 phones: average latency of
basic TagSpace operations.

TagSpace operation Avg latency (µs)

readTag 88.33

createTag 127.44

writeTag 145.33

deleteTag 215.37

Table 4.4: Portable SM on Nokia 9500 phones: average round-trip
time for different databrick sizes with cached code.

Databrick size (bytes) Avg round-trip time (ms)

1044 343.36

2088 371.84

4056 411.02

8010 509.85

16010 679.21

slow reflection, is very heavyweight. For example, it consumes over
a quarter of the total transfer time with 1044 bytes. Using XML
instead of Java serialization would have allowed a similar flexibility
without sacrificing efficiency [World Wide Web Consortium, 2007].

4.6.2 Latency experiments

Table 4.5 reports latency times for four main Contory operations,
namely createCxtItem, publishCxtItem, createCxtQuery, and
getCxtItem. The size of a context query object is 205 bytes, while
the size of a context item varies from 53 bytes (a wind item) to
136 bytes (a location item). For these experiments, we used a
lightItem whose size is 136 bytes. CxtItem and cxtQuery ob-
jects that are transmitted over UMTS network using the event-
based platform are encapsulated in event notifications whose size is
1696 bytes.

4.6 Experimental evaluation 97

Table 4.5: The average elapsed time of basic Contory operations of
both publisher and consumer nodes.

Entity Operation Elapsed time (ms)

acts as: Avg [90% Conf. Interval]

Context createCxtItem 0.078 [0.001]

Publisher adHocNetwork, BT-based 140.359 [0.337]

- publishCxtItem

adHocNetwork, WiFi-based 0.130 [0.006]

- publishCxtItem

extInfra, UMTS-based 772.728 [158.924]

- publishCxtItem

Context createCxtQuery 0.219 [0.001]

Consumer adHocNetwork, BT-based, one hop 31.830 [0.151]

- getCxtItem

adHocNetwork, WiFi-based, one hop 761.280 [28.940]

- getCxtItem

adHocNetwork, WiFi-based, two hops 1422.500 [60.001]

- getCxtItem

extInfra, UMTS-based 1473.000 [275.000]

- getCxtItem

On the context publisher side, publishing a context item us-
ing the BT-based implementation takes much longer than with the
WiFi-based implementation. The reason behind this stems from
the BT registering process. With BT, to make an item accessible,
this needs to be encapsulated in a DataElement and registered into
the BT ServiceRecord. With SM, this operation corresponds to
simply creating a new SM tag and storing its name and value in the
TagSpace hashtable. The variability of latency times for publishing
a context item in the remote infrastructure is high and mainly due
to the large delay variability in UMTS networks.

On the context consumer side, adHocNetwork provisioning can
be BT-based or WiFi-based. For the BT case, the latency time re-
ported in the table represents the time needed to receive a context
item, once device discovery and service discovery have occurred.

98 4 Contory

The BT device discovery takes approximately 13 seconds and BT
service discovery takes approximately 1.1 seconds. For the WiFi
case, we ran experiments using a 2-hop topology with three com-
municators arranged in a line. The two latency times reported in
the table represent the time needed to retrieve one context item
located at a distance of one or two hops, once the route has been
built. The additional time required to build the route is approx-
imately twice the corresponding latency value in the table. The
break-up analysis for SM experiments shows that connection estab-
lishment accounts for 4–5% of the total latency time, serialization
for 26–33%, thread switching for 12–14%, and transfer time for 51–
54%. Finally, measured latency times for extInfra vary quite a lot
by ranging from 703 ms up to 2766 ms.

4.6.3 Energy consumption experiments

Energy consumption remains one of the most critical issues that
needs to be addressed in application development on mobile phones.
While CPU speed and storage capacity have increased over the
last 10 years, battery energy shows the slowest trend in mobile
computing [Paradiso and Starner, 2005].

To measure energy consumption on phones, we inserted a mul-
timeter in series between the phone and its battery. Figure 4.9
shows the testbed setup. We used a Fluke 189 multimeter, which
was connected to a PC to record the readings. The meter read
current inputs approximately every 500 ms. The precision of our
measurements depends mostly on the precision of the multimeter
and the stability of the voltage on the phone battery (the resis-
tance of the wires was found to be negligible). The multimeter has
an accuracy of 0.75% and a precision of 0.15%.

The stability of the voltage is important since this is used to
compute the power consumption based on Ohm’s law. We did some
preliminary experiment to measure the voltage on the phone while
performing different operations. We found out that under high load
the battery deviated less than 2% from 4.0965 V for the first hour
at least. To minimize the impact of the voltage variance, we ran
short experiments and always with a full battery. Given that the
shunt voltage of the meter is 1.8 mV/mA, we calculated that the
maximum inaccuracy of our experiments was approximately 8%.

4.6 Experimental evaluation 99

Figure 4.9: The power measurements testbed.

We ran the experiments in an office environment with background
noise due to other mobile phones, wireless LANs, BT, etc. Even
though a noise-free environment would have been desirable, we ran
all experiments in the same spot, thus emulating a daily life scenario
with an almost constant level of background noise.

All experiments were performed from five to ten times. High
energy consuming experiments were set to last no longer than 10
minutes. All numbers hereafter reported were collected on a Nokia
6630 phone and a Nokia 9500 communicator (only when WiFi was
used).

Initially, we measured the cost of different operating modes when
the GSM radio was turned off. The relative average power con-
sumptions are reported in Table 4.6. Power consumption varies
from 5.75 mW, corresponding to the case in which BT is turned
off, back-light is switched off, the display is switched off, and Con-
tory is not running, up to 76.20 mW, corresponding to the case in
which back-light and display are turned on.

We ran all Contory experiments, except those in which the UMTS

100 4 Contory

Table 4.6: The average power consumption of five reference tests
on a Nokia 6630 phone.

Test Avg power consumption (mW)

BT off, back-light off, display off, Contory off 5.75

BT off, back-light off, display on, Contory off 14.35

BT off, back-light on, display on, Contory off 76.20

BT on, back-light off, display off, Contory off 8.47

BT on, back-light off, display off, Contory on 10.11

radio was used, with the GSM radio off, back-light off, display off,
and BT in page and inquiry scan state. This represents our “idle”
reference case in which the power consumption is approximately
8.47 mW.

Table 4.7 reports energy consumption results for all three con-
text provisioning mechanisms. On the publisher side, the energy
consumption for processing a request for a published context item
is relatively contained.

On the consumer side, we distinguish three cases. With BT-
based mechanisms, the cost of executing a context query is mainly
due to the device discovery phase which lasts approximately 13 sec-
onds. Once the BT device is discovered, being periodically notified
with context data is fast and the energy cost is definitely low. Re-
sults for intSensor were gathered by connecting the BT-GPS de-
vice to the phone. While the BT discovery cost is the same with
both intSensor and adHocNetwork mechanism, the cost of main-
taining a periodic exchange of data is higher with intSensor. This
is due to the larger size of the exchanged data (GPS-NMEA data
are 340 bytes big) and to BT’s packet segmentation.

With WiFi-based provisioning, energy costs are much higher
than in the BT cases. We encountered several problems in run-
ning these experiments. Each time a WiFi connection was estab-
lished on the communicator inserted in the circuit, the commu-
nicator switched itself off after less than 30 seconds. New smart
phones are low-voltage devices operating from a single Lithium-Ion
cell. During the startup phase, the high in-rush current causes the
phone’s voltage supply to drop due to the multimeter’s internal re-

4.6 Experimental evaluation 101

Table 4.7: The average energy consumption of the three context
provisioning mechanisms supported by Contory.

Energy consumption

Context provisioning method: operation per cxtItem (J)

Avg [90% Conf Interval]

adHocNetwork, BT-based: provideCxtItem 0.133 [0.002]

adHocNetwork, BT-based: getCxtItem 5.270 [0.010]

(one-hop and on-demand query, including discovery)

adHocNetwork, BT-based: getCxtItem 0.099 [0.007]

(one hop and periodic query, without discovery)

intSensor, BT-based: getCxtItem 0.422 [0.084]

(periodic query, without discovery)

adHocNetwork, WiFi-based: getCxtItem > 0.906 a

(one hop and periodic query)

adHocNetwork, WiFi-based: getCxtItem > 1.693 a

(two hops and periodic query)

extInfra, UMTS-based: getCxtItem 14.076 [0.496]

(on-demand query)

aincludes the cost of having back-light switched on

sistance; hence, this drop triggers the internal power management
protection circuit to turn off the phone. However, based on the
logs we gathered, having WiFi connected at full signal (with back
light on) drains a constant current of 300 mA, which leads to an
average power consumption of 1190 mW. This also means that hav-
ing WiFi connected is more than 100 times more energy-consuming
than having BT in inquiry mode.

In the tests using extInfra provisioning, turning on the GSM
radio produces an additional power consumption, which comes in
peaks of 450–481 mW and every 50–60 seconds. Figure 4.10 shows
the power consumption measured in a test in which 5 queries were
sent to the infrastructure over UMTS network, every 60 seconds.
The high energy consumption is due especially to the cost for ini-
tializing the radio channel which causes 1 W peaks of consumption
for several seconds.

102 4 Contory

Figure 4.10: The power consumption of the extInfra provisioning
strategy in a test with 5 queries.

Figure 4.11: The power consumption of the BT-based intSensor
and adHocNetwork strategies in the presence of a GPS failure.

4.6 Experimental evaluation 103

Finally, we ran a test aimed to investigate how Contory is able
to recover from sensor failures by dynamically switching from one
context provisioning mechanism to another. In the test, the phone
is initially connected to a GPS device via BT and receives location
items every 10 seconds. After 155 seconds, we cause a GPS failure
by manually switching off the GPS device. As a reaction, Contory
switches from sensor-based provisioning to ad hoc provisioning and
starts collecting location data from a neighboring phone, which is
discovered and connected via BT. As Figure 4.11 shows, the switch
occurs in correspondence of the first pair of power peaks due to the
BT discovery of the nearby phone. Later on, we switch on the GPS
device. Once Contory has realized that the GPS device is again
available, it switches back to sensor-based provisioning. This occurs
in correspondence of the second pair of power peaks. The power
cost of the BT’s device and service discovery varies approximately
from 163 mW up to 292 mW.

4.6.4 Experiments summary

These experimental results confirmed the practical feasibility of
our approach. The combined use of different context provisioning
strategies can bring several benefits. First, it allows to cope with
failures of sensing devices by dynamically replacing one context
strategy with another. Second, as each context provisioning strat-
egy guarantees different performance at different costs, the possibil-
ity of flexibly switching from one mechanism to another permits op-
timizing the utilization of computing and communication resources
at run time.

The power experiments demonstrated how wireless communica-
tion can be very demanding in terms of power consumption. This
leads to two important observations. First, communication con-
nections should be kept open to the extent feasible and reused for
further communication. For example, in the tests using UMTS net-
works, the power cost due to the radio channel initialization is very
high. Second, the middleware should aggregate application mes-
sages to be sent simultaneously thus largely reducing the energy
consumed per message.

104 4 Contory

Figure 4.12: Two screenshots of the WeatherWatcher application.

4.7 Application prototypes

Using Contory, we implemented several context-based applications.
The use of Contory permitted decoupling the application implemen-
tation from the underlying communication modules (e.g., the BT
JSR 82, the Fuego Core event-based framework, the SM platform),
from the repository system, and from specific sensor interfaces. The
implementation of common services such as connecting BT sensors
or communicating with the remote repository was accomplished by
simply instantiating context query objects in a few lines of code.

Moreover, Contory allowed to: (i) extend the application’s con-
text monitoring range by collecting region-specific observations us-
ing ad hoc networks and by making the sensor data available to re-
mote clients through the infrastructure support; (ii) share context
information about multiple entities and across multiple devices; and
(iii) combine information from multiple context sources to enhance
context estimation.

Using Contory, we re-implemented the DYNAMOS sailing ap-
plication [Riva and Toivonen, 2007] described in Section 4.2. In
addition, in the following, we present two other DYNAMOS-related
services that we implemented and we give insights into their imple-
mentation.

The WeatherWatcher allows users to retrieve weather informa-
tion relative to a certain geographical region of interest (e.g., the
user wants to know the weather in the proximity of a guest harbor
to visit). Figure 4.12 shows the screen interface for this applica-

4.7 Application prototypes 105

1 public void createWeatherQuery(Location location){

2 FromCondition from = new FromCondition();
3 from.setRangeKm(100);
4 from.setLocationDestination(location);
5 WhereCondition where = new WhereCondition();
6 where.setAccuracy(false);
7 where.setPrecision(false);

8 CxtQuery q1 = new CxtQuery(CxtNames.HUMIDITY);
9 q1.setSource(this);

10 q1.setFROM(from);
11 q1.setWHERE(where);
12 q1.setDURATION(10);
13 q1.setFRESHNESS(240);
14 q1.setEVERY(15);
15 Contory.getProviderFactory().processCxtQuery(q1);
16 issuedQueries.put(q1.getQueryID(),q1);

17 CxtQuery q2 = new CxtQuery(CxtNames.TEMPERATURE);
18 q2.setSource(this);
19 q2.setFROM(from);
20 q2.setWHERE(where);
21 q2.setDURATION(10);
22 q2.setFRESHNESS(240);
23 q2.setEVERY(15);
24 Contory.getProviderFactory().processCxtQuery(q2);
25 issuedQueries.put(q2.getQueryID(),q2);

26 CxtQuery q3 = new CxtQuery(CxtNames.LIGHT);
27 q3.setSource(this);
28 q3.setFROM(from);
29 q3.setWHERE(where);
30 q3.setDURATION(10);
31 q3.setFRESHNESS(240);
32 q3.setEVERY(15);
33 Contory.getProviderFactory().processCxtQuery(q3);
34 issuedQueries.put(q3.getQueryID(),q3);

35 CxtQuery q4 = new CxtQuery(CxtNames.WIND);
36 q4.setSource(this);
37 q4.setFROM(from);
38 q4.setWHERE(where);
39 q4.setDURATION(10);
40 q4.setFRESHNESS(240);
41 q4.setEVERY(15);
42 Contory.getProviderFactory().processCxtQuery(q4);
43 issuedQueries.put(q4.getQueryID(),q4);
44 }

Figure 4.13: Pseudo-code of the WeatherWatcher application.

106 4 Contory

Figure 4.14: Two screenshots of the RegattaClassifier application.

tion. Weather information consists of temperature, wind, speed,
humidity, atmospheric pressure, etc. In a sailing scenario, weather
conditions represent an important element for selecting the sailing
route, but as this type of information can change very quickly, the
information owned by boats currently sailing in such a region is
often more reliable than the one provided by official weather sta-
tions. Once the user has issued a weather request, if the target
region is not dense enough or too far away to support multi-hop
ad hoc network communication, the query is sent to the remote
infrastructure. The infrastructure checks if any WeatherWatcher of
users currently sailing in that region has recently provided weather
information and returns this information to the requester.

To illustrate how Contory can be used to program sensing ap-
plications, Figure 4.13 shows code excerpts of the implementation
of the createWeatherQuery method of the WeatherWatcher appli-
cation. This method takes in input the location where the weather
conditions must be monitored. Four queries are specified using the
Contory API and submitted to the ContextFactory (e.g., see line
15).

To execute these queries, Contory first compares the location
specified in the query (location) and the current location of the
user. If weather conditions must be monitored in the proximity of
the user, the adHocNetwork mechanism is preferred. If the query
must be executed in regions at a great distance, extInfra is the
preferred method. Once the query results are collected by the ap-
plication they are combined to estimate the weather conditions.

4.8 Concluding remarks 107

The other service that we implemented using Contory is the
RegattaClassifier. During a regatta competition, this service con-
stantly provides an updated classification of the current winner of
the regatta. Virtual checkpoints can be arranged along the route
that the boats will take during the competition. Each time a boat
reaches a checkpoint, the RegattaClassifier running on the phone’s
participant (see Figure 4.14) communicates location and speed of
the boat (collected using GPS sensors) to the infrastructure. The
infrastructure processes this information and provides each partici-
pant with an updated classification and additional statistics about
the competition.

4.8 Concluding remarks

This chapter described Contory, a middleware specifically designed
to enable simple and quick development of sensing applications on
smart phones. Contory provides flexibility in supporting context
provisioning by integrating several context strategies, namely inter-
nal sensor-based, infrastructure-based, and distributed provisioning
in ad hoc networks. Additionally, Contory offers a unified SQL-
like interface for specifying context queries. Contory allows sensing
applications to collect context information from different sources
without the need to uniquely and continuously rely on their own
sensors or on the presence of external infrastructures. We imple-
mented Contory on smart phone platforms. To assess system per-
formance and quantify the energy consumption on smart phones,
we ran experiments in a testbed of Nokia Series 60 and Nokia Series
80 phones. Furthermore, to evaluate the practical feasibility of the
proposed approach, we built prototype applications using Contory.

108 4 Contory

CHAPTER 5

Context-aware Migratory
Services

A well-understood and simple programming model is the client-
service model. Having a model like this available to program Ur-
banet environments could definitely facilitate the application devel-
opment process. Services running in Urbanets can exploit the tem-
porary and unstable network support to acquire real-time informa-
tion from nodes located in the immediate proximity of geographical
regions, entities, or activities of interest. A client interested in such
a type of information could, for example, issue a request to the ad-
equate service and receive period observations over a certain period
of time. Building services in highly volatile environments like Ur-
banets and maintaining long-running client-service interactions is,
however, challenging especially due to the rapidly changing operat-
ing contexts, which often lead to situations where a node hosting a
certain service becomes unsuitable for hosting any longer the service
execution.

This chapter presents a novel model of client-service interaction
based on the concept of context-aware migratory service. Unlike a
regular service that executes always on the same node, a context-
aware migratory service can migrate to different nodes in the net-
work in order to accomplish its task. We describe requirements, de-
sign, and implementation of the Context-aware Migratory Services
framework together with its performance evaluation and prototype
application.

109

110 5 Context-aware Migratory Services

Figure 5.1: Examples of client-service interactions in Urbanets.

5.1 Motivating scenarios

We assume that nodes in Urbanets are willing to collaborate. Some
nodes offer services, others host client applications, and the rest
cooperate to provide service discovery and routing of messages.
Deploying services in Urbanets proves challenging due to the dy-
namism, in particular mobility, of the interacting entities. Highly
dynamic operating contexts affect the client that generates the re-
quest, the service that processes the request, and occasionally the
target of the service (e.g., a moving object being tracked).

Partly based on the examples of Urbanet applications presented
in Chapter 3, Figure 5.1 proposes three scenarios illustrating how
nodes hosting a service answering a specific client request can over
time stop satisfying the client request due to certain context changes.
In these situations, under typical service models, the interaction be-
tween the client and the service ends. Hence, the client may attempt
to discover new nodes hosting the same type of service and restart

5.1 Motivating scenarios 111

the interaction. It is possible, however, that no service satisfying
the requirements of the client exists. But even if it does, these
interruptions in the service interaction could lead to inefficient per-
formance due to the cost of the discovery process and to the cost
associated with the loss of the interaction state.

An entity-tracking client application can provide policemen with
real-time images of certain suspicious entities (e.g., people, cars) as
they move across a given region, as well as with alerts every time a
potential threat is recognized. This type of application particularly
suits crowded events such as political conventions, conferences, and
manifestations, in which it is hard to quickly deploy wired networks
of video cameras. A more feasible and cost-effective solution is to
exploit a mobile ad hoc network of wireless video cameras that,
for instance, can be installed on police patrols and policemen’s hel-
mets (both mechanisms have already been tested in real-life events).
Tracking services execute on each video camera; they are capable
of performing image recognition of entities specified by policemen
and sending back images of those entities. There are two factors,
however, that can force the client to interrupt its current inter-
action with a certain tracking service and start a new interaction
with a different service: (i) the node where the service executes is
mobile and might move away from the tracked entity, (ii) likewise,
the tracked entity is mobile and might move away from the sensing
range of the service node. For example, Figure 5.1a shows how the
client needs to interact with three different tracking services over a
short period of time. Besides the time spent on carrying out service
discovery several times, the lack of service continuity precludes the
service process from using advanced image recognition algorithms
based on long-term learning, correlation, and history.

A parking spot finder client application can inform drivers about
parking spot availability in the proximity of a specified destination.
We assume that parking spots availability can be determined by
services running on cars or smart phones that interact with wireless-
enabled parking meters located in their transmission range. In her
request, the user can specify the destination of interest and her
current location, along with other preferences like cost and security
of parking spots. The request is forwarded to a service located in
the proximity of the destination using a spontaneously created net-
work of wireless-equipped smart phones and cars. Upon receiving

112 5 Context-aware Migratory Services

a request, a service checks if any parking spot is available. If so, it
informs the client about the location of the most suitable parking
spot (based on the request parameters), and keeps monitoring the
parking meter associated with the free spot. If another driver takes
this spot, the service replies to the client either with a new parking
spot or with an “unavailable spot” response. Upon receiving an
“unavailable spot” response, a user will need to discover another
service in the destination area, as Figure 5.1b shows. Furthermore,
a user might be forced to contact a new service when the current
service, executing on a mobile node, moves away from the moni-
tored parking spot. Conversely, the user would like to submit her
request only once, and be informed about parking spot availability
until the destination is reached.

A driver-assistant client application can inform drivers on high-
ways about traffic conditions of the road ahead of them. For in-
stance, if a traffic jam is predicted at the next segment of the high-
way, the driver can decide to take an earlier exit. We assume that
the driver requires to be continuously notified about traffic condi-
tions at a constant distance ahead of her position (e.g., 10 miles
ahead). The client application communicates with services execut-
ing on some of the vehicles forming the mobile ad hoc network.
Each service estimates the status of the road traffic by using locally
available information such as the density of one-hop neighboring
vehicles and their speeds. In such a scenario, we observe that (i)
the service needs to constantly execute in the region of interest to
the user; (ii) such a user-defined region changes over time accord-
ing to the user’s movement and speed on the road; (iii) the cars
located in the region of interest change over time due to their mo-
bility (e.g., cars can leave the highway, stop, slow down). As shown
in Figure 5.1c, due to these reasons, the client occasionally needs
to re-establish the interaction with a new service that can meet the
user’s requirements.

5.2 Requirements for services in ad hoc
networks

By analyzing these scenarios, we identified four requirements that
services running in Urbanet environments need to address:

5.2 Requirements for services in ad hoc networks 113

1. Context-awareness: to be semantically correct and efficient,
these services need to take into account their current operat-
ing context such as location, resources available on the node,
and network connectivity. For example, in all described sce-
narios, the service must be location aware. Additionally, the
service must occasionally monitor entities in its proximity
(suspicious presences in the first scenarios and parking me-
ters in the second scenario).

2. User-driven adaptability : to provide useful results, these ser-
vices need to constantly adapt their execution according to
current needs and operating context of the user (e.g, loca-
tion, activity, terminal equipment). As the user operates in a
highly dynamic environment, her request parameters are sub-
ject to frequent context-induced changes. For instance, the
driver assistant client must constantly communicate its loca-
tion to the service, thus ensuring that results are computed
in the region of interest.

3. Service continuity : client applications can largely benefit from
continuous service provisioning in many situations. Our sce-
narios show how, after a while, a node running a certain ser-
vice can become inappropriate to host that service any longer.
This can be due to mobility, limited resource availability, or
network partitioning. In these cases, the client has to dis-
cover and re-start its interaction with a new service, but the
entire state of the old interaction is lost. While this approach
is acceptable for a stateless interaction, it can lead to signif-
icant performance degradation for a stateful interaction. For
instance, in the above scenarios, the entity-tracking and the
traffic jam algorithms require history and learning support
to provide accurate results; the parking spot finder needs to
know preferences and destination of the user. Therefore, a
mechanism for capturing and transferring the state of a ser-
vice to a new node, and resuming its execution using this state
is necessary.

4. On-demand code distribution: it is unrealistic to assume that
every Urbanet node will possess the code for every type of ser-
vice. For example, the code for the parking spot finder might

114 5 Context-aware Migratory Services

not be available on cars or smart phones in the proximity
of the destination of interest. Therefore, a mechanism capa-
ble of dynamically transferring the code to certain nodes that
are semantically and computationally suitable for running the
service is necessary (i.e., the code could be transferred from
other nodes in the ad hoc network or even from the Internet
if possible).

Even though all these requirements may not be necessary for every
single Urbanet application, since we want to develop a framework
that can support a large variety of applications, we need to address
all of them.

5.3 Migratory Services model

To address the above requirements, we propose a novel service
model based on the concept of context-aware migratory service,
hereafter referred to as migratory service. Intuitively, migratory
services are capable of migrating to different nodes in the network
in order to effectively accomplish their function. They execute on a
certain node as long as they are able to provide semantically accept-
able results using the available resources; when this is not possible
anymore, they migrate through the network until they find a new
node where they can continue to satisfy the client request. The ser-
vice migration occurs transparently to the client and, except for a
certain delay, no service interruption is perceived by the client. Al-
though a migratory service is physically located on different nodes
over time, it constantly presents a single virtual end point to the
client. Hence, a continuous client-service interaction can be main-
tained.

The Migratory Services model involves three main mechanisms.
The first monitors the dynamism of interacting entities (client or
service) by assessing context parameters characterizing their state
of execution and available resource capabilities. The entire set of
context parameters constitute the context of a certain entity. The
second specifies, through context rules, how the service execution is
influenced and should be modified based on variations of those con-
text parameters. The third makes the service capable of migrating

5.3 Migratory Services model 115

Figure 5.2: Example of Migratory Services execution: a metaservice
instantiates a migratory service that migrates in the network to
satisfy the client request.

from node to node and of resuming its execution once migrated.
We call this context-aware service migration since it is triggered by
changes of the operating context, which occur on the service as well
as on the user side.

Figure 5.2 depicts a typical interaction in the Migratory Services
model. As mentioned before, every node in the network is expected
to possess the code for a limited number of services. To facili-
tate service code distribution in the network, every node provides
a metaservice for each individual service code it owns. The role
of a metaservice is to instantiate migratory services. Initially, the
client discovers and contacts a metaservice that is capable of serving
its request. The metaservice processes the request by instantiating
a new migratory service that will take over the interaction with
the client; the metaservice only spawns migratable instances of it-
self, but it does not migrate or send responses to clients. There
is a one-to-one mapping between a migratory service and a client

116 5 Context-aware Migratory Services

Request
Migratory service

instantiation

Context

change
Update

Context

change

Response

Response

Response

Migration

Migration

Migration

computation

computation

computation

computation

computation

Client end point Metaservice Migratory service end point

Time

Node1 Node2 Node3 Node4 Node5

Figure 5.3: Sequence diagram of Migratory Services illustrating
three context-aware service migrations.

application. Upon the creation of a migratory service, the client ap-
plication ceases communication with the metaservice and continues
to interact solely with its associated migratory service.

In the extreme case, client and meta service can also run on
the same node. This corresponds to the case in which the client
holds the service specification and can autonomously generate the
migratory service that will flood the network.

Our client-service model aims to support long-running queries
and can be characterized as “one request, multiple responses”. This
is an appropriate model especially for services that need to moni-
tor entities or activities in real-time and report their observations
periodically. Therefore, the service interaction consists of two main
operations: (i) the migratory service sends responses to the client
application, and (ii) the client application sends “request updates”
each time the user’s context changes beyond relevant thresholds
(i.e., in fact, these updates are sent by the runtime system at the
client node).

These concepts are exemplified in Figure 5.3. Upon being instan-
tiated on Node2, a driver-assistant migratory service changes node

5.4 Migratory Services framework 117

Context

Manager
Validator

Communication

Manager

Smart Messages Platform

Operating System/ Wireless Communication / Sensors

MonitoredCxt

Client Application/Service

Reliability

Manager

InCxtRules

OutCxtRules

Figure 5.4: The Migratory Services framework.

of execution by migrating from Node2 to Node3, which is located
in the region to be monitored. Subsequently, the service migrates
from Node3 to Node4, and from Node4 to Node5. These two mi-
grations are triggered by changes of the user’s and service’s context
respectively. For example, the first migration could be due to the
fact that the user requests more accurate observations as she gets
closer to the region of interest, while the second one could be due
to the fact that Node4 has left the region of interest.

5.4 Migratory Services framework

To support the Migratory Services model, we designed a common
framework which runs on all Urbanet nodes willing to cooperate.
A main challenge that hinders the practical development of ap-
plications and services in Urbanet environments is the difficulty of
writing software for distributed systems with such complex require-
ments. Although building applications and services from scratch
could lead to better performance for individual situations, we be-
lieve that a common software platform can provide a more func-
tional set of primitives above the potentially heterogeneous oper-
ating systems. Thereby, application developers can program new
applications and services more quickly.

Figure 5.4 illustrates the system architecture for the Migratory
Services framework. At the lower layer, the Smart Messages (SM)
computing platform provides support for execution migration, nam-

118 5 Context-aware Migratory Services

ing, routing, and security. On top of the SM layer, we built a higher
layer providing support for

• context provisioning and monitoring,

• context rules creation and validation,

• client-service communication, and

• service reliability.

The Migratory Services framework can be logically divided into
two functional planes: data plane and control plane. Data traffic,
routing, and migration form the data plane and build mainly on
basic functions offered by SM. The Communication Manager is the
corresponding module for data plane. The control plane specifi-
cally targets issues related to unreliability and dynamism of ad hoc
networks. The control plane is organized in a logical flow of three
modules: the Context Manager monitors and stores the variability
of the environment; the Validator evaluates the observed variability
based on the requirements of the application and the service and
decides how to act upon those changes through the Communica-
tion Manager. The Reliability Manager allows migratory services
to recover from node failures.

Practically, the framework consists of a set of Java classes that
can be added to any SM platform. As it will be described in Sec-
tion 5.4.5, clients, migratory services, and metaservices are Java
programs that register with the framework and invoke simple mes-
sage passing primitives provided by our API. The control plane
execution is transparent to the application and the service layer.
Ultimately, the framework maps these programs onto lower-level
SMs.

5.4.1 Context provisioning and monitoring

The SM platform provides several types of context data accessi-
ble through specific I/O tags (see Section 2.4 for the definition of
I/O tags). Commonly, the SM platform provides context informa-
tion such as location, speed, and time by means of GPS devices,
and various system status information such as amount of available

5.4 Migratory Services framework 119

memory or remaining battery power. It also maintains and peri-
odically updates a list of one-hop neighboring nodes. Additionally,
the SM platform can perform reasoning of raw context data to infer
higher-level context information and offer access to those through
specific application tags.

The Context Manager supports storage and access to context
data provided by the SM platform. Clients or services can specify
through the Migratory Services interface, which context parame-
ters the Context Manager must monitor; these parameters consti-
tute the MonitoredCxt. The Context Manager translates a cer-
tain MonitoredCxt identifier into an SM tag name according to the
application-specific semantics. As the Context Manager can inte-
grate different translators for different context ontologies, the ap-
plication developer can ideally utilize any context ontology to build
the application logic. Upon the translation, the Context Manager
provides access to the values for those context parameters by polling
or blocking on the corresponding SM tags.

5.4.2 Context rules creation and validation

The main task of the Validator module is to evaluate if a service
computation can be correctly carried out on the current hosting
node. The correctness of the execution is evaluated both in terms
of the resources necessary to compute a result and in terms of the
quality of the produced result. If the computation can no longer be
correctly carried out, the Validator triggers a service migration.

The Validator validates incoming and outgoing data based on
service-specific (or client-specific) context rules, referred as Cxt-
Rules. These rules specify policies, filters, and preferences ruling
the system’s behaviour. For instance, they can define how the node
resources should be utilized, which type of incoming results should
be accepted, or which level of security should be applied. CxtRules
are of two types and are applied in different phases of the client-
service interaction:

• InCxtRules are used to validate the correctness of incoming
data. (i) A metaservice utilizes InCxtRules to decide whether
to accept or refuse an incoming client request. This is done in
collaboration with the Admission Manager at the SM level,

120 5 Context-aware Migratory Services

which performs authentication and admission based on local
security policies. (ii) A client application utilizes InCxtRules
to decide whether to accept or refuse a received service re-
sponse. Based on the current user context, a response can be
deemed irrelevant or even wrong. In such a case, the Valida-
tor instructs the Communication Manager to send a request
update to the migratory service.

• OutCxtRules are used to validate the correctness of outgo-
ing data at the service side, and implicitly to trigger service
migrations if necessary. Before computing a new response,
the Communication Manager invokes the Validator to verify
these context rules. For example, the Validator of a driver-
assistant service verifies that the given node is still located in
the region to be monitored; if the node has left this region, a
service migration is triggered.

Similarly to the context rules defined for the Contory middle-
ware (see Section 4.4.3 for more details), context rules are ex-
pressed in the form of condition and action statements. Conditions
are articulated as full binary trees of Boolean expressions. Each
node of the tree can be a comparisonNode or a combinationN-
ode. A comparisonNode is a triplet consisting of contextName,
comparisonOperator, and value. ComparisonOperators currently
supported are: equal, not-equal, morethan, lessthan, inRegion,
and outRegion. A combinationNode combines two nodes by means
of combinationOperators such as and and or. Actions currently
supported are: migrate, send update, accept response, refuse
response, accept request, and refuse request.

The entire condition clause of a certain certain context rule is
evaluated by verifying all the contained boolean expressions based
on the current values of user’s and service’s context parameters.
Each rule is set as optional or mandatory, as the context parameters
required by the rule may not be always available (e.g., a node may
not provide location information).

When defining context rules, applications or services may in-
troduce ambiguities, contradictions, or logical inconsistencies. For
instance, an application might have specified contradictory actions
in response to similar context changes. Following the definitions
presented in [Capra et al., 2003], our scenarios could involve both

5.4 Migratory Services framework 121

intraprofile and interprofile conflicts. Specifically, intraprofile con-
flicts emerge inside the specification of policies for applications or
services, and they are local to a node. Interprofile conflicts involve
only two entities on different nodes (i.e., client and service). Con-
flict resolution can be performed partly statically and partly dy-
namically. The dynamic resolution selects the action that satisfies
the largest number of conditions.

5.4.3 Client-service communication

We assume ad hoc networks without Internet connectivity, and con-
sequently, without access to DNS or Internet-based service discov-
ery mechanisms. Furthermore, we do not assume global addresses
for the nodes in the network. Since migratory services can run
on different nodes over time, we prefer to name directly the com-
municating programs. Due to the fact that these programs are
ultimately converted into SMs, we enforce the naming conventions
defined by the SM platform [Kang et al., 2004]. More exactly, tag
names are used to uniquely identify the communication end points
in the Migratory Services model. Each time a migratory service
moves between two nodes, its name is removed from the old node
and re-created on the new node.

In the SM platform, service discovery and routing are integrated
in a single module that performs content-based routing [Borcea
et al., 2003]. To locate communication end points, our current
implementation provides two basic SM routing algorithms: geo-
graphical routing and region-bound content-based routing. The
geographical routing is similar to GPSR [Karp and Kung, 2000]. At
each node, the algorithm migrates the SM to the closest neighbor
to the location of interest. The content-based on-demand routing
(similar to AODV [Perkins and Royer, 1999]) is used to discover a
node identified by a tag name within a given geographical region
(reached using the geographical routing).

The Communication Manager is responsible for interacting with
the SM layer to discover metaservices, route messages between com-
municating end points, and carry out service migration when nec-
essary. Metaservices are identified through SM tags (learned by
clients offline), and they are discovered by exploiting the two SM
routing algorithms mentioned above. Identical identifiers for migra-

122 5 Context-aware Migratory Services

tory services are generated independently on the framework at the
client and metaservice nodes; each identifier is directly derived from
a combination of the client name and the metaservice name. The
metaservice also passes the client request to the migratory service.
After these operations, the same two routing algorithms are used
to enable the communication between the client and the migratory
service. The Communication Manager does not guarantee reorder-
ing of out of order messages or recovery of lost messages. But each
exchanged message is identified by a sequence number which is ac-
cessible to the client (or service); hence, it is up to the client (or
service) to deal with losses or out of order messages.

If at any time the Validator deems the current service node un-
suitable for hosting the service, the Communication Manager is
invoked to perform service migration. The Communication Man-
ager removes the SM tag identifying the service end point from the
old node, uses the SM content-based migration to find a new node
of execution, re-binds the service to this node (i.e., creates its tag
name on the node), and resumes the service execution. Although a
client update could be lost during this process, the entire migration
is transparent to the client that sees the same virtual end point.
The loss of a client update can lead just to a slight decrease in per-
formance, as the client will send a new one if an irrelevant or wrong
response is received.

5.4.4 Service reliability

We believe that service reliability represents an essential factor in
turning Urbanets into distributed service providers. Compared to
traditional distributed computing systems where servers work cor-
rectly for long periods of time, Urbanets are more challenging in
terms of reliability because communication, software, and hard-
ware faults occur frequently and can thus render service provision-
ing unfeasible. Despite node mobility and limited resources, client
applications demand stable interactions with services. In particu-
lar, the lack of reliability can seriously affect long-running stateful
operations such as those targeted by Migratory Services. While nu-
merous approaches [Cristian, 1991] have been proposed to provide
reliability in distributed systems, similar mechanisms have not yet
appeared in ad hoc networks. The only fault-tolerance issues stud-

5.4 Migratory Services framework 123

ied so far in such networks are at the network layer [Chandra et al.,
2001; Luo et al., 2004].

In the basic implementation of the Migratory Services frame-
work, a migratory service provides implicit fault-tolerance to mo-
bility and “predictable failures” of nodes. Each time a node be-
comes unsuitable for hosting a service (e.g., the node has moved
away from a region of interest or it is running out of battery), the
service can autonomously migrate to another node where it can
compute semantically correct results. However, to provide reliable
migratory services, in the presence of unpredictable service failures
occurring when the hosting node crashes, is abruptly turned off, or
loses connectivity with the network we have developed specialized
reliability support. Our reliability model is based on the classical
primary-backup approach [Budhiraja et al., 1993], in which one pri-
mary service interacts with the clients and one replica is stored on
a secondary node. This technique is applied in a unique way to
Migratory Services through two modifications: (i) the secondary
node is dynamically selected at runtime, in a context-aware man-
ner, and (ii) the backup frequency is constantly adapted according
to the operating network conditions. This context-aware, adaptive
solution allows the system to make dynamic decisions to constantly
trade off reliability performance and induced overhead.

This reliability extension to the basic framework is optional due
to the extra-load it induces in the network. The Reliability Man-
agers at the nodes where the migratory service executes are the
modules in charge of accomplishing reliability. The design and im-
plementation of our service reliability support will be described in
more detail in Section 5.5.

5.4.5 Programming Migratory Services

With the perspective of a migratory service’s designer in mind, we
provide a Java API that offers all the functions that are common
across different migratory services, thus requiring the designer to
only provide support for the service-specific functions. The API
must also support the specification of client applications interacting
with migratory services. This API shields the programmer from the
underlying SM platform and the networking aspects.

Figure 5.5 shows code excerpts of a typical client application,

124 5 Context-aware Migratory Services

class Client{

...

void execute(){

MigratoryServiceFramework MSF = System.getMigratoryServiceFramework();

MSF.registerClient(”Client”, clientCxt, inCxtRules);

Request req = new Request(reqParameters, clientCxt, inCxtRules);

String migratoryService = MSF.sendRequest(metaServiceName, req);

while (NOT_DONE){

Response res = MSF.receiveResponse(migratoryService);

// response processing

}

}

}

A)1

2

3

4

5

6

7

8

9

10

11

12

13

class MetaService{

...

void execute(){

MigratoryServiceFramework MSF = System.getMigratoryServiceFramework();

MSF.registerMetaService(”MetaService”, metaServiceCxt, inCxtRules);

while(true){

Request req = MSF.receiveRequest(metaServiceName);

MigratoryService ms = new MigratoryService(req);

ms.execute();

}

}

}

B)1

2

3

4

5

6

7

8

9

10

11

12

class MigratoryService{

...

void execute(){

MigratoryServiceFramework MSF = System.getMigratoryServiceFramework();

MSF.registerMigratoryService(”MigratoryService”, migratoryServiceCxt, outCxtRules);

Response res;

while(NOT_DONE){

// response computation

MSF.sendResponse(req.getClientName(), res);

}

}

}

1

2

3

4

5

6

7

8

9

10

11

12

C)

Figure 5.5: Pseudo-code of a typical client application (A), metaser-
vice (B), and migratory service (C).

metaservice, and migratory service together with their interactions.
To make the entire process of service migration transparent, each
of these three entities has to register with the Migratory Services
framework. At the registration invocation, the entities pass their
class name, self-reference, name of context parameters to be mon-
itored, and context rules to be evaluated at runtime. Class name
and self-reference are needed by the framework to create underlying
SMs associated with each entity. The class code will be the first
code brick of the SM, while the self-reference (i.e., this) will be the
first data brick. Besides these code and data bricks, the associated
SM includes all the necessary framework-level code bricks and data
bricks (e.g., multi-hop service migration and data delivery). More-
over, at the first registration of a migratory service with a hosting
node, the Reliability Manager is invoked to create the inactive copy
of the service, which will take over if a failure occurs.

Since programmers are well versed with the message passing pro-

5.5 Fault-tolerance support 125

gramming model, the framework provides a similar API. All com-
munication primitives are synchronous. Metaservices run in a loop
and block waiting for client requests (Figure 5.5B, line 6 and 7). At
the SM layer, this corresponds to an SM blocking on a tag. When
a client application sends a request to a metaservice (Figure 5.5A,
line 7), the SM tag is appended with the request parameters, and
the metaservice is unblocked to receive the request. If the request
is accepted, the metaservice instantiates a new migratory service
that will be in charge of processing the client request (Figure 5.5B,
line 8 and 9).

Before sending any response to the client, the Communication
Manager at the migratory service side invokes the Validator. The
Validator, at its turn, invokes the Context Manager to get fresh
context information and evaluates the OutCxtRules. If these are
positively verified, the response is delivered (Figure 5.5C, line 9)
and the Communication Manager invokes the Reliability Manager
to update the state on the secondary node. If the validation fails,
the Communication Manager de-registers the service (removes its
unique SM tag) and invokes an SM migration to transfer the service
to a suitable node. Once arrived at the new node, the Communica-
tion Manager registers the service with the framework and returns
the control to the service code.

At the client side, the Communication Manager invokes the Val-
idator for each newly received response (Figure 5.5A, line 9); only
responses that are positively validated by the InCxtRules are re-
turned to the application.

5.5 Fault-tolerance support

This section presents the failure model, the backup process, and the
service recovery protocols. We do not assume supervising entities in
Urbanets, therefore node failures are detected by mutual monitoring
of the nodes, and recovery is achieved collaboratively.

5.5.1 Failure model

In general, a service is correct if, in response to a request, it be-
haves in a manner consistent to its specification. We assume that

126 5 Context-aware Migratory Services

this specification prescribes that the service has to deliver responses
that are semantically correct and produced within certain time in-
tervals. A service failure occurs when the service does not behave
according to its specification. Essentially, a service failure can oc-
cur due to transient or permanent failures of its components and
communication links. Nodes in Urbanets can crash due to malfunc-
tioning, resource exhaustion, and hardware errors or be deliberately
switched off (e.g., to save battery or to reboot). Additionally, com-
munication failures can occur due to mobility.

From a client’s perspective, several types of service failures can
occur [Cristian, 1991]. An omission failure occurs when the service
omits to respond to a request. A timing or performance failure oc-
curs when the service responds outside the time interval specified.
A response failure occurs when the service response is semantically
incorrect. In reaction to omission and timing failures, the client
application re-sends its request. If after a certain number of at-
tempts, the service omits to produce responses, the service is said
to suffer a crash failure. As for response failures, the Migratory
Services framework handles them in a transparent way to the client
application. A migratory service constantly verifies the correctness
of the produced result before sending it to the client. In the case the
framework at the client node receives a wrong result, this is deleted
and a message is automatically sent to the migratory service to
update the request parameters.

In our work, we have focused on permanent crash failures. How-
ever, crash failures that are due to errors or packet losses typical of
wireless communication channels are out of scope of our work. We
assume that such failures are handled at the network layer.

5.5.2 Service backup

To attain protection against the failures mentioned above, and thus
allow a client to receive an uninterrupted service, the Migratory
Services framework adopts a primary-backup approach [Budhiraja
et al., 1993]. The running migratory service, called primary ser-
vice, relies on the existence of one backup service, called secondary
service. The framework at the primary node creates such a backup
service, moves it to a secondary node, and periodically checkpoints
the state of the primary service on such a node. The secondary

5.5 Fault-tolerance support 127

service is inactive as long as the interaction between the primary
service and the client functions correctly. If the primary service
fails, a failover process occurs, and the secondary service takes over
the service execution. This fault-tolerant extension of the service
is completely transparent to the client application, which is still
provided with the illusion of a single service node.

The classical primary-backup approach is applied to Migratory
Services through two modifications:

1. context-aware selection of the secondary node and

2. adaptive checkpointing frequency.

In the rest of this section, we describe these techniques.

Context-aware selection of the secondary node

Fault-tolerance comes with the cost of the periodic state check-
pointing process. This cost is mostly a communication cost and is
proportional to (i) the physical distance between the primary and
secondary node (i.e., the communication latency is implicitly pro-
portional to this distance), (ii) the size of the service state, and (iii)
the frequency of the state checkpointing process. As it is difficult
to modify the size of the service state, the checkpointing overhead
can be reduced by selecting a secondary node close to the primary
node and by decreasing the checkpointing frequency. However, se-
lecting a secondary node close to the primary node is not always
beneficial in terms of the reliability that can be achieved, especially
if the client node is far from primary and secondary.

We need to consider a trade-off between the desire to minimize
the cost of the checkpointing process by selecting a close secondary
and the reliability level that can be guaranteed. On the one hand,
the secondary node should be close to the primary node in order
to minimize the communication overhead in checkpointing. On the
other hand, it should be close to the client node in order to improve
the chances of a failover and to minimize the failover latency. In the
extreme case, the secondary service can reside on the client node.

In general, a secondary node close to the client is preferred for
highly critical applications that demand high reliability and fast
recovery. However, when the service state is relatively large or

128 5 Context-aware Migratory Services

the checkpointing frequency is high, a secondary node close to the
primary is preferred (e.g., in a tracking application, a service state
consisting of large image files should be saved on the closest nodes).

Based on these considerations, the ideal distance d between the
primary and the secondary is computed as follows:

df =





dPC if f ≤ fmin

0 if f ≥ fmax

dPC · f−fmax

fmin−fmax
otherwise

ds =





dPC if s ≤ smin

0 if s ≥ smax

dPC · s−smax

smin−smax
otherwise

d = α · df + (1− α) · ds α = 1/2

The distance d is computed by a weighted combination of df and
ds. df is the ideal distance between the primary and the secondary
based on the checkpointing frequency f . As f varies from fmin to
fmax, df varies linearly from dPC to 0, where dPC is the distance
between the primary and the client. Below the lower threshold
fmin, df is equal to dPC , meaning that the checkpointing frequency
is so low that the client can act as secondary. Above the upper
threshold fmax, dPC is 0, meaning that the checkpointing frequency
is so high that the secondary should be located on the primary
node. Likewise, ds is the ideal distance between the primary and
the secondary based on the service state size s. It is computed in a
similar way to df with smin being the minimum threshold and smax

being the maximum threshold. Minimum and maximum thresholds
of the checkpointing frequency and service state size are fixed by
the framework.

However, selecting a secondary at the ideal distance from the
primary does not necessarily mean to have found the best possible
secondary node. Other context parameters have to be considered
in making this decision.

The Migratory Services framework takes into account other con-
text information such as available resources and mobility traces of
the candidate secondary nodes. To accomplish this goal, the pri-
mary node could monitor the context of all nodes located in the

5.5 Fault-tolerance support 129

routing path to the client within the ideal distance d and thereby
select the most appropriate secondary node among them. However,
this monitoring process would turn out to be too expensive and not
scalable. Instead, we adopt an on-demand solution in which the
evaluation is distributed over the network.

First, the primary node computes the ideal position of the sec-
ondary node on the routing path between itself and the client using
the previous formulas. Then, it broadcasts a SEC_DISCOVERY mes-
sage in the network. This message contains current location and
mobility traces of the primary, location of the client, and a list of N

requirements that the secondary node should satisfy. These require-
ments are specified in a vector of conditions < c1, ..., cN >, where
each condition expresses lower bounds on needed resources, such as
minimum CPU, memory required, and communication capabilities.
The SEC_DISCOVERY message is broadcasted in a geographical re-
gion of range r centered on the ideal position of the secondary. r

cannot be lower than rmin and is computed in the following way:

r = max{rmin,min{2d, 2(dPC − d)}} rmin = 500 m

Upon receiving a SEC_DISCOVERY, each node i locally evaluates if
its characteristics match the requirements specified in the message
and computes the following matching score:

scorei = Match(mobi,mobP) +
1
N
·

N∑

j=1

cj(pi,j)

This filtering aims to select the best secondary node among the
available nodes. Since we consider mobile nodes, reliability and
quality of the communication can highly improve if the primary
and secondary nodes constantly move in the same direction and at
similar speeds. The Match function matches the mobility traces of
the candidate node i (mobi) and of the primary (mobP) and returns
highest scores for similar mobility profiles. Each trace contains the
location coordinates (as < latitude, longitude >) of the node over
the last N minutes, at every m seconds. For example, this kind of
traces can be easily provided by GPS receivers. Match computes
the average distance between the positions of the two nodes over

130 5 Context-aware Migratory Services

the last N minutes; if the result is below a certain threshold, it
returns 1, otherwise it returns 0.

The second part of the score computation considers the device
profile (e.g., CPU, memory, and communication protocols). Reli-
able secondary nodes with higher capabilities are desirable because
they are likely to be available for longer periods of time and be
effective in promptly resuming the service execution when a fault
occurs. Each condition cj is evaluated against the corresponding
profile parameter pi,j of the node i; if positively verified, 1 is re-
turned, otherwise 0. Nodes that reach a score that is above a
certain fixed threshold reply to the primary with their score value
and profile information. The primary can then elect its secondary
node.

Adaptive checkpointing frequency

Once a secondary node is selected, STATE_UPDATE messages between
primary and secondary node are coordinated so that if the primary
service fails the service state is available on the secondary node. The
service state consists of service data and execution control state.

Instead of a fixed checkpointing frequency, the Migratory Ser-
vices framework dynamically updates it. In the current design,
the framework triggers a checkpoint of the service state every R

responses sent to the client. This choice ensures that every check-
pointed state contains information “relevant enough” to be saved.
If R is high, the checkpointing overhead is reduced, but with the
risk of having an inconsistent state on the secondary. If R is low
the overhead increases, but the reliability improves.

Every STATE_UPDATE message must be acknowledged by the sec-
ondary node. Acknowledgments serve two purposes. First, they
confirm the reception of the update message. Second, they carry
control information such as distance in number of hops between
primary and secondary and other status information of the sec-
ondary (e.g., remaining battery power, free memory, and status of
network connectivity). Using this control information, the primary
can decide to undertake a new secondary selection process. For ex-
ample, if the secondary node has moved too far away or it does not
have many resources left to act as reliable backup, a more suitable
secondary node should be contacted.

5.5 Fault-tolerance support 131

5.5.3 Service recovery

Failures of the primary service are detected by using timeout mech-
anisms. In addition, timeouts are used also to detect disconnections
between the primary and the secondary. To adapt to the changing
network conditions, timeouts are constantly updated, but always in
a range between a minimum and maximum value set by the frame-
work at the beginning of the interaction. Ideally, only persistent
disconnections or node crashes should trigger the replacement of
the primary service with the backup service. Therefore, timeouts
should be set in such a way to quickly detect permanent failures
and tolerate transient failures.

When a failure of the primary service is detected, the backup ser-
vice must take over the interaction. The recovery process involves
activating the backup service, which should resume the interaction
with the client in a short time. The recovery can be a push or pull
process. In pull recovery, the client assumes that the primary has
crashed when it stops receiving answers from it. After K failed
attempts to reconnect to the primary, the client contacts the sec-
ondary. The client can retrieve the secondary identifier through
the Migratory Services framework and use SM routing functions to
communicate with it. The parameter K is application-specific and
reflects the capacity of the application to tolerate long periods of
disconnection from the service. In general, pull recovery particu-
larly suits monitoring services that periodically compute and send
results.

Push recovery is specific to situations where the client cannot
tell if a fault has happened or not. For instance, this is the case
of services that send responses only when certain events occur. In
this case, the backup service needs to detect the failure, activate the
recovery, and resume the interaction with the client. The backup
service assumes a primary fault when it stops receiving its update
messages.

Pull recovery

The first three examples in Figure 5.6 show three pull recovery
scenarios. These examples model a typical “one request, multiple
responses” interaction, in which responses are periodically sent to

132 5 Context-aware Migratory Services

Request

Client end point Primary service Secondary service

Response

Response

Response

Update

Update

Request

Response

Secondary service’

Update

Response

Tc

Response

Response

Response

Update

Response

Cancel

Update

Ack

Ack

Ack

a) Disconnection between primary service and client (Pull model)

Ack
Response

Ack

Request

Client end point Primary service Secondary service

Response

Response

Update

Secondary service’

Update

Update

Response

Response

Response

Response

Ack

Tp

Ack

Ack

Update

Ts
Response

Response

Response

Response

Update

Update

b) Disconnection between primary and secondary (Pull model)

Request

Client end point Primary service Secondary service

Response

Response

Response

Update

Update

Tc

Request

Response

Secondary service’

Update

Response

Ack

Ack

Ack

c) Disconnection of the primary from both client and secondary (Pull model)

Request

Client end point Primary service Secondary service

Response
Update

Update

Response

Secondary service’

Update
Response

Response

Ack

Ack

d) Disconnection of the primary from both secondary and client (Push model)

Ack

Tsp

Ack

Figure 5.6: Sequence diagrams illustrating four Migratory Services
failure scenarios.

5.5 Fault-tolerance support 133

the client.
In the first scenario, a disconnection between the client and the

primary occurs, but the primary and the secondary continue com-
municating. For example, this could happen due to a network par-
titioning that isolates the primary node from the client node. The
client does not receive responses and will then timeout. The time-
out Tc is set to be N times the estimated RTT (round trip time)
between client and primary. The RTT is constantly updated based
on the jitter of the observed interresponse time. Since the timeout
has expired, the framework at the client believes that the primary
has crashed and thus re-sends the service request to the secondary
node. The framework knows the identifier of the secondary node
because this can always be uniquely determined by knowing the
identifiers of the primary service and the client. The backup ser-
vice resumes the computation and starts sending responses to the
client. Furthermore, it sends a CANCEL message to the primary and
selects a new secondary node for backup.

The second scenario shows the case in which a disconnection be-
tween the primary and the secondary occurs. At some point, the
primary stops receiving update acknowledgments from the second-
ary. This could happen because the secondary node has crashed
or has moved away. The primary times out and re-selects a new
secondary node. Similarly to the previous case, the timeout Tp is
computed and updated based on the observed primary-secondary
RTT . The secondary will timeout as well and erase the stored
data. In the case of a temporary disconnection of the secondary, it
could happen that the second lost update that is shown in the figure
manages to reach the secondary node and therefore triggers an ac-
knowledgment. If this acknowledgment arrives after Tp has expired
and a new secondary has already been selected, the primary will
ignore it; the old secondary will not receive new update messages
and therefore will timeout. However, the primary will increase its
Tp of 1 RTT since it is likely that other transient failures will occur
again. Tp will then be decreased again if no other transient failures
occur in the next M periods.

In the third scenario, the primary service crashes and discon-
nects from both the client and secondary. The client times out
and contacts the secondary. Consequently, the secondary assumes
the role of the primary, resumes the interaction, and selects a new

134 5 Context-aware Migratory Services

secondary node. In this case, we need to guarantee that the client
times out before the secondary, otherwise, the service state might
get lost. Therefore, it is recommendable to always choose a Tc

larger than Ts and set the minimum Tc larger than the minimum
Ts. Another possibility, not shown in the figure, is that the primary
service will reappear after some time by sending a new response to
the client and a new update to the secondary. In this case, both the
client and the secondary will reply to the primary with a CANCEL
message. Additionally, the client increases its Tc of 1 RTT .

Push recovery

Push recovery is utilized in those cases where the client has no sim-
ple means of detecting a disconnection of the primary service. An
example is that of an event-based interaction. The service is sup-
posed to send answers only when a certain event occurs. Hence,
after a disconnection of the primary, no timeout will expire at the
client side. In this case, as shown in the last example of Figure 5.6,
the disconnection must be detected by the secondary, after Tsp has
expired. The primary periodically checkpoints its state on the sec-
ondary and therefore the secondary can realize when the primary
has disconnected and subsequently contact the client. If the client
believes that the primary is still active (i.e., the primary has prob-
ably disconnected only from the secondary), no reply is sent to the
secondary that will timeout and remove the service state. Other-
wise, the client will reply by asking the secondary to take over the
execution. If the primary appears again after some time, both the
client and secondary will reply with a CANCEL message and increase
their timeouts by 1 RTT .

5.5.4 Reliability Manager implementation

Figure 5.7 shows the core software modules of the Reliability Man-
ager and the interactions that take place between them during the
backup and recovery process. The primary service generates an
SM called SecondaryDiscoverySM to discover a qualified second-
ary node. This SM is broadcasted to all candidate secondary nodes
located in the geographical region of interest, which was generated
by the primary’s framework as previously explained. Instances of

5.5 Fault-tolerance support 135

Primary Service Secondary Service

BackupSM

Secondary

DiscoverySM

Backup

UpdateSM

Migratory

Service

send

send

send

return

ACK

ACK

execute

BackupSM

instantiate

client request client request

Migratory

Service

instantiate

Client

service state

Figure 5.7: Software modules and interactions of the Migratory
Services frameworks at the primary and secondary node.

this SM verify whether any node in the region meets the specified
requirements, and migrate back to the primary when an appropriate
secondary is found.

Based on the SecondaryDiscoverySM’s outcome, a secondary
node is elected. Then, the primary service generates a BackupSM
that migrates to the discovered secondary. The BackupSM carries
the code bricks and data bricks necessary to instantiate and execute
the migratory service on such a node. The code of the migratory
service is cached at the secondary node. Similarly, the routing code
is cached at intermediate nodes to improve the performance.

The BackupSM constantly blocks on update and request tags.
The update tags are used to receive state updates from the primary.
These updates are encapsulated in BackupUpdateSMs. These SMs
migrate to the secondary node and unblock the BackupSM by writ-
ing an update tag containing the new service state. The BackupSM
reads the tag, updates its state data, and acknowledges the recep-
tion of the message.

136 5 Context-aware Migratory Services

Figure 5.8: The Migratory Services experimental testbed.

The request tags are used by the client framework to trigger
recovery upon failure of the primary. A BackupRequestSM (not
shown in the figure) migrates to the secondary and writes a request
tag containing the request parameters and the sequence number of
the last response received by the primary. The BackupSM unblocks
and instantiates a new MigratoryService that will take over the
execution.

5.6 Experimental evaluation

Two versions of the Migratory Services framework exist. The first
one used the original SM architecture implemented by modifying
Sun Microsystem’s KVM (See Section 2.4 for more details) and it
was tested on HP iPAQs. In a second phase, the framework was
extended to run on J2ME CDC devices by using Portable SM [Ravi
et al., 2004] and it was tested on Nokia Series 80 phones. The
Migratory Services’s implementation on J2ME CDC is available
under an open source license [Migratory Services, 2007].

To evaluate the Migratory Services framework, we ran experi-
ments in a testbed consisting of three Nokia 9500 phones arranged
in a line and communicating using IEEE 802.11b in ad hoc mode.
Nokia 9500 phones run Symbian OS 7.0s, have an ARM processor
at 150 MHz, and offer 76 MB of RAM. The experimental testbed
is shown in Figure 5.8.

The experimental analysis is organized in three parts. First, we
measured the latency of the context rules validation process, then,
the cost of reliability, and, finally, the memory consumption of core

5.6 Experimental evaluation 137

components of the framework. The cost of migrating services of dif-
ferent data sizes has been described in Section 4.6.1 and additional
measurements assessing the cost of service migration and service
resumption will be presented in the following, when evaluating the
performance of the reliability support. To complete our analysis, in
the next section, we will also present the experimental evaluation of
a proof-of concept migratory service that we built using Migratory
Services.

5.6.1 Context rules validation experiments

The latency cost of the entire context-aware migration process at
the basis of Migratory Services includes the cost of validating the
service’s context rules, migrating and registering the service with
the framework at the new node, and finally resuming its execution.

Table 5.1 presents the average latency for validating different sets
of context rules. Context rules used in the experiments are compar-
ison rules (see Section 4.4.3 for the definition of context rule) that
verify, for example, if the level of memory and power consumption
is acceptable or if the node is still located in the region of interest.
Results show that the validation latency increases linearly with the
number of rules. Based on the results, the cost of validating one
context rule is approximately 530 µs.

Table 5.1: The average latency for validating an increasing number
of context rules.

Number of rules Avg rule validation latency (µs) [90% Conf. Interval]

10 5281.84 [1.75]

20 10642.01 [2.23]

30 15850.36 [2.99]

40 21573.43 [3.59]

50 26156.45 [3.56]

138 5 Context-aware Migratory Services

5.6.2 Reliability experiments

To understand the feasibility of the reliability support in Migratory
Services, we assessed overhead and recovery latency of our proto-
type implementation.

We first measured the latency of the checkpointing process on
the secondary node. This latency includes the time necessary for
extracting the service state, saving it in the BackupUpdateSM, mi-
grating the BackupUpdateSM to the secondary node, storing the
new service state in the BackupSM running on the framework at
the secondary node, and finally sending an acknowledgment carry-
ing control information to the primary service. We measured the
elapsed time from the beginning of the checkpointing process until
the reception of the secondary’s acknowledgment. We considered
both the case in which the secondary is at a distance of one hop from
the primary and the case in which it is at a distance of two hops
from the primary. Given our testbed, the second case corresponds
to having a secondary running on the client node.

Figure 5.9: The latency of the checkpointing process at a distance
of one and two hops.

5.6 Experimental evaluation 139

Figure 5.9 summarizes the results of these experiments for dif-
ferent sizes of the service state and for distances of one hop and
two hops. The x-axis is in logarithmic scale (base 10). We con-
sidered service states ranging from 2.7 kB, which is the service
state size in our TJam prototype migratory service, up to 216 kB,
which could be the service state size in a tracking system perform-
ing image processing. Notice that the databricks carried by the
BackupUpdateSM actually contain the service state together with
other control information, such as routing, that totally accounts
for 691 bytes.

The backup latency time increases linearly with the size of the
service state. The measured latencies present high variance due to
the wireless communication media. Compared to case of backup
at a distance of one hop, the latency of the backup process at a
distance of two hops shows a faster raise as the service state size
increases. These results confirm the assumption at the basis of our
backup strategy that checkpointing large service states over multi-
hop communication can largely compromise the effectiveness of the
backup process and highly increase its overhead.

The break up analysis of the backup latencies shows that ex-
tracting the service state and generating the BackupUpdateSM ac-
counts for approximately 280 ms, while storing the received service
state and generating the acknowledgment message carrying con-
trol information accounts for approximately 415 ms. The rest is
SM communication overhead, which includes connection establish-
ment, transfer of data and code, and serialization. Notice that these
experiments were executed without cached code, thereby also the
codebricks of the BackupUpdateSM amounting to 7018 bytes needed
to be transferred.

We then experimented with the four failure scenarios previously
described and measured the recovery time. Phone failures were
generated by turning off WiFi for a period long enough to trigger
the timeout on the client node (pull case) or on the secondary node
(push case). Table 5.2 presents test results for different sizes of the
migratory service’s state, called MS state in the table. The same
state sizes of the previous experiments were used. The table also
indicates the total size of the BackupSM that actually contains the
MS state and other control information used by the routing, dis-
covery, and migration functions. This additional overhead accounts

140 5 Context-aware Migratory Services

for 2364 bytes.

Table 5.2: The average latency of the entire recovery process con-
sisting of failover, secondary discovery at a distance of one hop,
BackupSM migration, BackupSM execution at the new secondary
node, and reception of the BackupSM’s acknowledgement. Tests
for 5 different state sizes of the migratory service.

MS state/BackupSM Failover 1-hop sec disc BackupSM migr-ex-ack

(bytes) (ms) (ms) (ms)

2669/ 5033 256 1850 7187

8002/ 10366 256 1850 7234

23922/ 26286 256 1850 7468

71998/ 74362 256 1850 8296

216000/218364 256 1850 10704

The latency of the recovery process consists of (i) resuming the
service execution (failover); (ii) discovering a new, suitable second-
ary node based on the requirements of the primary service (1-hop
sec disc); and (iii) creating and migrating the BackupSM that will
start executing on the new node by first sending an acknowledgment
back to the primary (BackupSM migr-ex-ack). In all experiments,
the total size of the BackupSM’s codebricks amounts to 28757 bytes.
This is because the BackupSM contains the migratory service’s code-
bricks that must be transferred and stored at the secondary node.
Notice that in the previous experiments, we measured the latency
of UpdateBackupSMs that carry only the service state and do not
contain the migratory service’s codebricks because these are trans-
ferred only during the first update.

The cost of the recovery process is due mainly to the time nec-
essary to migrate data and code of the backup service to the new
secondary node. Even though this latency can be very high for
services consisting of large databricks and codebricks, this does not
directly impact on the performance observed by the end user. The
delay of service responses sent to the client depends on the failover
latency, which we found to be small, and on the timeouts detecting
the primary failure.

5.6 Experimental evaluation 141

5.6.3 Memory consumption experiments

These experiments have focused on quantifying the cost of Migra-
tory Services in terms of memory consumption. These results may
be useful in conjunction with the measurements of Section 4.6.3 to
get an understanding of the amount of resources an Urbanet node
needs to allocate to support mobile sensing applications.

Our memory measurements might not be highly accurate due to
the difficulty of precisely measuring memory consumption in Java,
but they definitely represent a lower bound. To run memory ex-
periments we measure the heap size differences before and after our
objects have been allocated. However, we need to consider that the
JVM can decide to increase its current heap size at any time and
in particular when running garbage collection. Therefore, we force
garbage collection to happen before our measurements start and
ensure that it does not interfere with our measurements1.

Table 5.3 shows the memory that was allocated to support the
execution of clients, metaservices, and migratory services. Primary
and secondary services present the same cost. These numbers do
not include the memory allocated to run the Java virtual machine
and the Migratory Services framework itself; the corresponding
heap memory size is about 172 kB.

Table 5.3: The average memory consumption of the Client,
MetaService, and MigratoryService components for 5 different
state sizes of the migratory service.

Avg memory consumption (bytes)

MS state/MS (bytes) Client MetaService MigratoryService

2669/ 5253 68827 86689 111703

8002/ 10586 68827 92848 117852

23922/ 26506 68827 109127 134146

71998/ 74582 68827 157491 182580

216000/218584 68827 301825 326940

1We used a slightly modified version of the Sizeof class available at this URL:

http://www.javaworld.com/javaworld/javatips/jw-javatip130.html

142 5 Context-aware Migratory Services

As done in the previous tests, we considered five cases for dif-
ferent sizes of the service state. All values are average values and
we do not report the variances as the memory consumption devia-
tions were of few bytes. Migratory services are the most expensive
in terms of memory. Nokia 9500 phones have 76 MB of built-in
memory. Technical specifications say that the device offers approx-
imately 20 MB of RAM free to run programs. However, bench-
mark tests2 show that the size of heap (RAM) is approximately
12.739 MB [9.094 ...16.384]. Based on these benchmarks, an upper
bound for our experiments is that a migratory service consumes
about 0.89% of the available RAM, which is more than acceptable
for our use cases.

5.6.4 Experiments summary

These results demonstrated the feasibility of Migratory Services on
modern smart phone platforms. The high latencies we measured
are due mainly to the slow data transfer times and partly to the
inefficient Java serialization. Furthermore, the final validation of
our approach will come only upon extensive testing in large-scale
Urbanets.

5.7 Application prototype

We have built TJam, a proof-of-concept migratory service, which
dynamically predicts if traffic jams are likely to occur in a given
region of a highway by using only car-to-car short-range wireless
communication. For instance, a driver can use this system to decide
which exit to take from a highway: if a traffic jam is likely to occur
at the next exit, the driver can instead opt for the current exit.
Figure 5.10 shows the TJam’s user interface on a Nokia 9500 phone.

To evaluate the feasibility and effectiveness of TJam, and ulti-
mately of the Migratory Services model, we ran experiments in a
mobile ad hoc network testbed. Given the rapid changes of the
nodes’ configuration and location, it is crucial to evaluate how the

2http://www.club-java.com/TastePhone/J2ME/MIDP_Benchmark.jsp

5.7 Application prototype 143

Figure 5.10: Screeshots of the TJam application.

service interaction can adapt to such changes and recover from dis-
connections. In the following, we first present the TJam application
and then its experimental evaluation.

5.7.1 TJam application

We assume that cars on highways communicate using short-range
wireless networking (e.g., IEEE 802.11), and they have GPS re-
ceivers for reporting location and speed. We also assume that all
cars travel in the same direction. Typically, the driver instructs the
service on which region to monitor by specifying the distance from
her current position and the length of the region.

Although other solutions can be envisioned to support the exe-
cution and development of such a service, in this case, a Migratory
Services implementation is especially beneficial due to (i) the highly
dynamic operating contexts of ad hoc networks of vehicles, (ii) the
need to constantly update the coordinates of the monitored region
according to the user’s location and speed, and (iii) the need to
transfer the execution state and maintain service history for esti-
mating the traffic jam probability accurately.

In a typical example of interaction, the client first discovers the
TJam metaservice and submits its request. A TJam service request
includes name of the client, context parameters, and coordinates of
the region to be monitored. If the metaservice accepts the request,
it instantiates a TJam migratory service that will start running on
the metaservice node itself. If the metaservice node is not located in
the region of interest, the first action of the TJam migratory service

144 5 Context-aware Migratory Services

is to migrate to a node in the correct region. Then, it will continu-
ously compute the traffic jam probability in such a region and send
back results to the client. The framework at the migratory service
node periodically re-calculates the coordinates of the region based
on the latest available location and speed of the client’s car. Addi-
tionally, the framework at the client node, at any time, can decide
to re-calibrate this estimation by updating the request parameters.

Traffic jams are locally congested phases, in which cars travel at
slow or zero velocity. Based on this observation, the computation of
the probability of traffic jam takes inspiration from the well-known
algorithm Random Early Detection (RED) [Floyd and Jacobson,
1993] for congestion avoidance in packet-switched networks. In the
same way RED predicts packet congestion by monitoring the av-
erage queue size at the gateway, we predict traffic jams along the
road by monitoring two types of information that every car in the
network has locally available:

1. the number of neighboring cars at a distance of one hop, and

2. the speed of neighboring cars at a distance of one hop.

Stated simply, the idea is that if the number of cars increases and
their speed decreases it is likely that a traffic jam is forming.

The intermediate probability of traffic jam, called P ′
tjam, is com-

puted by a weighted combination of Pnumber and Pspeed, where
Pnumber is the probability of traffic jam given the average number
of neighboring cars, called avgnum, and Pspeed is the probability
of traffic jam given the average speed of neighboring cars, called
avgspeed.

Pnumber =





1 if avgnum ≥ maxnum

0 if avgnum ≤ minnum

maxPnumber · avgnum−minnum

maxnum−minnum
otherwise

Pspeed =





0 if avgspeed ≥ maxspeed

1 if avgspeed ≤ minspeed

maxPspeed · avgspeed−maxspeed

minspeed−maxspeed
otherwise

P ′tjam = α · Pnumber + (1− α) · Pspeed α = 1/2

5.7 Application prototype 145

where avgnum and avgspeed are computed by a low-pass filter with
an exponential moving average with weight w = 0.7.

avgXn+1 = (1− w)avgXn
+ w ·Xn

As avgnum varies from minnum to maxnum, Pnumber varies line-
arly from 0 up to maxPnumber, which is an upper bound of Pnumber.
Below the lower boundary minnum, Pnumber is 0, meaning that the
road is empty and therefore there is no traffic jam. Above the upper
boundary maxnum, Pnumber is 1, meaning that the road is crowded
and therefore there is a traffic jam.

Conversely, as avgspeed varies from minspeed to maxspeed, Pspeed

varies linearly from maxPspeed, which is the upper bound of Pspeed,
down to 0. Below the lower boundary minspeed, Pspeed is 1, meaning
that cars almost do not move or do not move at all and therefore
there is a traffic jam. Above the upper boundary maxspeed, Pspeed

is 0, meaning that cars travel faster than the road speed limit and
therefore there is no traffic jam.

Finally, the probability of traffic jam Ptjam is the P ′
tjam corrected

by the ratio between the number of observations in which Ptjam was
less than 0.5 (called Ntjam) and the total number of observations
(called Ntotal).

Ptjam = P ′tjam · Ntjam

Ntotal

To provide a more accurate computation of the traffic jam prob-
ability, it is necessary to tune the employed parameters according
to traffic variations and history. For the sake of brevity, we simply
say that minimum and maximum boundaries of number and speed
of neighboring vehicles are adjusted based on the corresponding
minimum and maximum values measured during the period of ob-
servation.

The probabilities maxPnumber and maxPspeed are updated such
that if it happens that avgnum is below the lower threshold, then
maxPnumber is decreased, and if avgnum is greater than the upper

146 5 Context-aware Migratory Services

n1 n2

n1 n2

n3 n3n4

n4 n5

n5

n13

n6

n6

n8
n8

n10

n10

n11

n12

n7

n7

n9

Time t Time t’=t+dt

Migratory service node

Available node

Client application node

Migratory service migration

Nodes cooperation

Neighboring node

Client application on n1

Migratory service on n6

CP

inCR

batteryLevel=medium
location =(50,46), speed=5.1

if((location outRegion userRegion) or
(batteryLevel equal low)) migrate

Client application on n1

Migratory service on n4

batteryLevel=full
location =(55,63), speed=10.6

if((location outRegion userRegion)
or (batteryLevel equal low)) migrate

batteryLevel=full
location =(50,22), speed=11.8
userRegion = newRegion(12,16)

if(responseError morethan 0.1)
refuse response
send update

CP

outCR

CP

inCR

batteryLevel=full
location =(50,45), speed=12.5
userRegion = newRegion(12,16)
if(responseError morethan 0.1)
refuse response
send update

CP

outCR

CP = context parameter

iCR = context rule of type i

Figure 5.11: Example of execution of the TJam migratory service
prototype.

threshold, then maxPnumber is increased. The opposite applies to
maxPspeed.

maxPnew
number =





maxP old
number × β if (avgnum < minnum)

maxP old
number + γ if (avgnum > maxnum)

maxP old
number otherwise

β = 0.8 , γ =
maxP old

number

10

In order to illustrate an example of TJam migration along with
some context parameters (CPs) and context rules (CRs), we refer

5.7 Application prototype 147

to Figure 5.11. The client application executes on node n1. At
time t, the client interacts with the TJam migratory service which
is located on node n6. TJam constantly computes the traffic jam
probability and verifies the OutCxtRules (outCR). After dt, the po-
sition and the speed of nodes have changed. Therefore, the space
of interaction is subject to a new computing environment. The new
region of interest is either predicted by TJam based on the request
parameters and the user’s context history or computed based on an
update sent by the client node’s framework. At this time, the Mi-
gratory Services framework at node6 evaluates outCR and realizes
that n6 is out of the user-specified region. Therefore, TJam mi-
grates to n4 which is located in the region of interest and resumes
the service computation.

While migrating, TJam carries its computation state consist-
ing of all parameters necessary for predicting traffic jams (i.e.,
minnum, maxnum, minspeed, maxspeed, maxPnumber, maxPspeed,
Ntjam, Ntotal) and history of user’s locations and speeds for up-
dating the user-defined region. In this way, the service can provide
a continuous and more efficient interaction with the client.

5.7.2 TJam implementation

To exemplify the primitives offered by the Migratory Services frame-
work, in the following, we illustrate some pseudo code of the TJam
application.

In Figure 5.12, the client uses the Migratory Services frame-
work (MSF) to issue a request for a Tjam service in a remote re-
gion remoteR. The request also contains information about client’s
current context and context rules. A context rule consists of con-
dition and action pairs. In the proposed example (see lines 3-6),
the rule states that when the error of the received response exceeds
MIN_ERROR, the result is discarded.

A TJam metaservice available in the network receives the request
and instantiates a migratory service TJam-migra to perform the
computation. In order to execute on a certain node, the TJam-migra
service registers with the hosting node and specifies its context
rules. In the example of Figure 5.13, the context rule states that
when the node moves out of the region specified by the client, a
service migration must be triggered to resume the execution on a

148 5 Context-aware Migratory Services

1. clientCxt.addElement(CXT_LOCATION);

2. clientCxt.addElement(CXT_SPEED);

3. ContextRule rule = new ContextRule();

4. rule.setSourceID("c1");

5. rule.setCondition(resError,morethan,MIN_ERROR);

6. rule.setAction(ACTION_REFUSE);

7. inCxtRules.addElement(rule);

8. Region remoteR = new Region(distance,range);

9. Request req = new Request("c1",remoteR,clientCxt,inCxtRules);

10. MSF.sendRequest("TJam",req);

Figure 5.12: Pseudo-code of the TJam client sending to the TJam
migratory service a service request containing its context informa-
tion and context rules.

node inside that region.

1. CtxRule rule = new CxtRule();

2. rule.setSourceID("TJam-migra-c1");

3. Region remoteR = new Region(distance,range);

4. rule.setCondition(OutOfRegion,remoteR);

5. rule.setAction(ACTION_MIGRATE);

6. MSF.registerCtxRule(rule);

Figure 5.13: Pseudo-code of the TJam migratory service registering
a context rule with the Migratory Services framework (MSF).

During service execution, MSF constantly evaluates the registered
context rules and acts upon them. In Figure 5.14, the service com-
putes the probability of traffic jam and when the probability reaches
the upper threshold, an alert is sent to the client. Note that mi-
gration is not part of the service code, as the framework triggers it
when necessary and in a transparent way.

5.7.3 TJam evaluation

We first assessed the performance of TJam on Nokia Series 80
phones. We used an ad hoc network of 3 phones arranged on a
line. The average interresponse time when the migratory service
executes at a distance of two hops from the client is approximately
5.23 seconds. Note that the measured latencies include the sleep

5.7 Application prototype 149

1. int speed=0;

2. tjam_p=0;

3. Neighbors []n;

4. for(j=0;j<n.length;j++)

5. speed + = n[j].getSpeed();

6. speed = speed/n.length;

7. tjam_p= computeTJamProbability(speed,n.length);

8. if(tjam_p>MAX_PROB)

9. MSF.sendAlert("cl1",tjam_p);

Figure 5.14: Pseudo-code of the TJam migratory service computing
the traffic jam probability.

time of 5 seconds between consecutive response computations. Sim-
ilar latencies were observed both when reliability was enabled and
disabled.

However, to investigate the performance of TJam in a slightly
larger-scale mobile network, we used the network topology shown
in Figure 5.15. This consists of 11 HP iPAQs running Linux and
using Orinoco’s 802.11b PC cards. Since it proved very difficult to
run the experiments with the iPAQs moving at an adequate speed,
we emulated the mobility by instructing each node to periodically
read from a file its position and speed on a two-lane highway. Each
file contains the location coordinates (i.e., latitude and longitude)
and the speed of the node at time intervals of 5 seconds. The speed
is a uniform variable between 5–10 m/s. In almost all experimen-
tal results, the service executes on a node that is 2-hop away from
the client node and has an average of 2–3 neighbors. The testbed
configuration contains only one metaservice. We ran the same ex-
periment 20 times and each replication included 100 responses (i.e.,
correct, wrong, or missing response).

In order to reduce the overhead due to the exchange of notifica-
tions carrying context changes, TJam predicts the new coordinates
of the user’s region of interest based on the past speeds and loca-
tions. Additionally, it includes this information in the response to
the client. At the reception of such a response on the client side,
the response is validated. If the predicted region coordinates are
incorrect compared to the current context, the answer is discarded,
and an update is sent to the service. Otherwise, the answer is deliv-

150 5 Context-aware Migratory Services

S

C Client node

Metaservice node

Available node

Region of interest

Direction of movement

C

S

Figure 5.15: The initial network topology used in the TJam exper-
iments.

ered to the client application and no update is sent. This approach
is feasible for TJam since speed and direction of moving vehicles
can be easily estimated on a highway. Furthermore, the client ap-
plication sends an update if no answer is received within a certain
timeout. In the experiments, the timeout is set to 7.5 seconds.

Four main metrics have been employed in the experimental eval-
uation.

• The interresponse time measures the elapsed time between
consecutive correct answers. It also includes the time to up-
date the parameters of the user request at the service side.

• The service discovery time measures the elapsed time to dis-
cover a metaservice and receive the first correct response from
the migratory service.

• The service quality is the percentage of correct answers out
of the total number of received answers.

• The response-update rate is the average number of responses
that the client application receives per each update message
that has been sent.

Our main goal was to study how a migratory service allows the
user to constantly receive correct observations in spite of disconnec-
tions and mobility. As Figure 5.16 shows, the service migration suc-
cessfully follows the movement of the user. Specifically, the graph

5.7 Application prototype 151

0

400

800

1200

1600

2000

2400

2800

3200

3600

0 50 100 150 200 250 300 350 400

time (s)

lo
c
a

ti
o

n
(m

)

user location

service location/correct answer

service location/wrong answer

updates

user range

Figure 5.16: Location traces of the TJam migratory service follow-
ing the user movement without any task interruption.

compares the location of the user to the location of the service. If
the service position is out of the range of interest, the answer is
labeled as wrong. When disconnections occur, the client applica-
tion sends update messages. One update message is necessary to
get almost six correct responses, thus reducing the communication
overhead due to context changes.

Table 5.4 summarizes these experimental results. It reports the
average value and the 90% confidence interval for every metric. In
these experiments, the TJam’s sleep time was only 500 ms. The
reason why the interresponse time is rather high is that it includes
the time to propagate and process the updates sent from the client
side to re-calibrate the query parameters. However, these values
are more than acceptable for this type of application.

In a more extensive study reported in [Riva et al., 2007], we
simulated and evaluated two different versions of TJam, namely
TJam-Smart and TJam-Base in order to investigate the scalability
of our approach in larger-scale networks. TJam-Smart implements
our model of context-aware migration. TJam-Base implements a
baseline centralized approach. In TJam-Base, a few mobile nodes

152 5 Context-aware Migratory Services

Table 5.4: Results of the TJam migratory service experiments in
an ad hoc network of 11 HP iPAQs.

Metric Avg [90% Conf. Interval]

Interresponse time (s) 5.46 [0.21]

Service discovery time (s) 5.19 [0.79]

Service quality (correct answers/total answers) 0.93 [0.01]

Response-update rate (responses per update) 5.88 [0.01]

host the service in the network. After receiving a client request,
the TJam-Base service node computes the traffic jam probability
by directly querying nodes in the region of interest, sends back the
computed results to the client, automatically updates the query
parameters, and finally initiates a new query cycle.

These services were simulated using the ns-2 simulator [NS-
2, 2007], enhanced with the CMU-wireless extensions [Monarch,
2007]. To simulate TJam-Smart and TJam-Base we used a mi-
croscopic simulation model called Micro-VTG, which is based on
the random-way point mobility model used by ns-2. The scenario
generator accepts as parameters the simulation time, road length,
number of lanes per road, average speed of the vehicles, average
gap distance between vehicles on the same lane, number of service
(or metaservice) nodes, and number of client nodes. More details
about Micro-VTG can be found in [Nadeem et al., 2004], where
it was used to generate highway traffic and in [Zhou et al., 2005]
where it was used to generate city traffics.

In the simulation study, we investigated the scalability of the Mi-
gratory Services approach by varying the number of clients, as well
as the effects of the vehicular traffic variability by varying speed and
density of the vehicles. Summarizing this analysis, the simulation
results showed that TJam-Smart performs better than TJam-Base
in terms of response time, network utilization, and packet overhead.

Based on the experimental results, we can conclude that besides
increasing the density of the vehicles, also increasing the speed of
the vehicles helps reduce the communication overhead and provide
better performance. This occurs because higher mobility increases
network connectivity [Grossglauser and Tse, 2002].

5.8 Concluding remarks 153

Finally, the results indicated how the service migration mecha-
nism employed by TJam-Smart is more efficient and scalable than
the traditional centralized mechanism used by TJam-Base. Essen-
tially, with a higher number of clients and with different traffic
conditions, the Migratory Services approach guarantees better re-
sults than the statically centralized approach due to the smaller
number of packets that need to be exchanged.

5.8 Concluding remarks

This chapter presented a context-aware service model that allows
Urbanets to provide services that quickly adapt to changes of their
execution context, while still guaranteeing service continuity to the
client. A Migratory Services framework monitors these changes
and reacts by triggering a service migration each time it renders
the current hosting node unsuitable for supporting the service ex-
ecution any longer. As a result, the service resumes its execution
on a new node where it can effectively accomplish its task. Ser-
vice migrations are transparent to client applications because the
framework constantly presents a single virtual end point for every
migratory service. This approach is particularly useful to support
long-running and stateful end-to-end client-service interactions.

The Migratory Services framework provides communication prim-
itives, migratory service control, context management, and reliabil-
ity support. The framework was implemented in Java on top of the
Smart Messages platform. We evaluated the framework by assess-
ing its performance in terms of latency and memory consumption in
a small-scale ad hoc network of smart phones. This framework was
used to build TJam, a proof-of-concept migratory service, that dy-
namically predicts if traffic jams are likely to occur in a given region
of a highway by using only car-to-car short-range wireless commu-
nication. Its performance was evaluated using a slightly larger-scale
ad hoc network of PDAs. The experimental results demonstrated
the viability of our model. Furthermore, the programming interface
offered by the framework has proved intuitive and flexible enough
to be capable of supporting a large variety of applications.

154 5 Context-aware Migratory Services

CHAPTER 6

Conclusions

This chapter closes the dissertation by (i) summarizing our contri-
butions, (ii) discussing some open issues, (iii) identifying several
directions for future work, and (iv) presenting concluding remarks.

6.1 Contributions

The Internet has become such a great success over the years because
of its appeal to regular people. This is not the case with sensor
networks, which are nowadays perceived as “something” remote
in the forest or on the battlefield. With mobile devices becoming
ubiquitous, the time is ripe to bring sensor data out of their close-
loop networks into the center of daily urban life. This goal can be
achieved through Urbanets, spontaneously created urban networks
consisting of mobile multi-sensor platforms, such as smart phones
and vehicular systems, individual sensors incorporated in buildings
or roads, and sensor networks deployed by municipalities.

However, as the Urbanet applications domain diversifies, pro-
gramming each application from scratch will be rather inefficient.
A common distributed computing platform that can support such
applications becomes then necessary. Urbanets are challenging pro-
gramming environments due to their high volatility, software and
hardware heterogeneity, resource constraints, and very large scale.
These requirements hinder the direct adoption of traditional distri-
buted computing models, which assume underlying networks with
functionally homogeneous nodes, stable configurations, and known

155

156 6 Conclusions

delays. On the other hand, research on sensor networks and mobile
ad hoc networks can be leveraged to provide novel architectures
and models that address the Urbanet-specific requirements.

Our work has focused on designing, implementing, and evalu-
ating a common distributed computing platform that can support
the development and execution of Urbanet applications. The con-
tributions of this work and the answers to the investigated research
questions can be summarized as follows.

The design and development of two middleware platforms that
can effectively support people-centric mobile sensing applications.
Unlike existing solutions, these platforms (i) are distributed, (ii)
are infrastructure-less, (iii) support real-time collection of sensed
data, and (iv) provide on-demand collection at the frequency and
with the accuracy specified by every single application. Their distri-
buted nature and independence from available infrastructures per-
mit achieving better resource utilization, improved scalability, and
fault-tolerance. The implementation of these platforms on modern
smart phones and their experimental evaluation in small-scale ad
hoc networks have demonstrated the feasibility and the effectiveness
of our design principles and models. Moreover, experiments in real
testbeds and field trials organized during the sailing regatta gave
our development work a realistic perspective. Additional contribu-
tions of our work come from the fact that the entire development
was done on smart phones. Given their resource constraints, their
limited programming environment, and poor debugging support,
the implementation had to be lightweight in memory and process-
ing.

A declarative and a client-server programming model that can
support Urbanet applications. Contory offers a declarative pro-
gramming paradigm that views Urbanets as a distributed sensor
database and exposes a simple SQL-like interface to programmers.
Context-aware Migratory Services provides a client-service model
where services migrate to different nodes in the network to maintain
a semantically correct and continuous interaction with clients. A
number of prototype applications targeting real-life scenarios have
been developed using such models. In programming these appli-
cations, compared to traditional socket-based approaches and mid-
dleware for static resource-rich networks, our middleware platforms

6.1 Contributions 157

have been successful in hiding problems related to distribution, sen-
sor failures, and resource and network volatility. High-level func-
tions such as geographical-based execution, context queries, and
resource-driven migration can definitely shorten the development
time, as it has been in the case of the DYNAMOS sailing applica-
tion implemented twice, before and after Contory was developed.
However, besides providing transparency, these middleware plat-
forms also allow programmers to control the execution dynamically
through several context rules and to assess the quality of results
through qualifying attributes. For example, a programmer using
Contory can decide to specify precisely how and using which re-
sources a query should be executed. Otherwise, he can let the
middleware free to decide how the execution should be carried out
and which amount and type of resources should be consumed.

A set of adaptation strategies and support for control policies
to accomplish dynamic resource management, cope with network
volatility, and guarantee fault-tolerance in networks of resource-
constrained mobile devices. The proposed middleware architectures
cope with network volatility in different ways. When Contory de-
tects that a certain context provider has become unavailable, it
dynamically selects an alternative provider currently available. In
addition, Contory dynamically adapts its execution to the current
device’s status and available resources. The Context-aware Mi-
gratory Services framework responds to volatility by migrating the
service execution to suitable nodes every time the execution context
changes beyond the acceptable limits. In addition, it also maintains
a backup service that takes over in case of service failure or net-
work partitions. We implemented these strategies on smart phones
and evaluated their effectiveness in testbed networks of phones and
sensors. For example, Contory was able to tolerate temporary GPS
disconnections. Migratory Services was able to recover from fail-
ures of the primary service or guarantee service continuity while
executing in a network of mobile PDAs.

Finally, we believe that design principles and algorithms at the
basis of our middleware architectures are generic enough to be ap-
plicable to solve similar problems of resource management, adapt-
ability, network volatility, and reliability in a large number of appli-
cation domains relative to mobile and ubiquitous computing. More-

158 6 Conclusions

over, our experiences with real system prototypes running on smart
phones can be of interest also to developers of other research do-
mains.

6.2 Open issues

There are still several problems that need to be solved before Ur-
banet applications can be widely and practically deployed. For
example, our work does not directly address issues such as security,
trust, privacy, and incentives for cooperation. On the other hand,
we also believe that many of the proposed solutions for sensor net-
works and MANETs can be adapted to Urbanets.

Security, trust, and privacy are essential requirements to enable
sharing of resources, information, and services in ad hoc networks.
In particular, these aspects are crucial in our implementations that
make use of mobile code. The migrating code needs to be protected
from a malicious node and a hosting node needs to be protected
from malicious migrating code. The underlying assumption of our
prototype systems is that they can rely on a network of trusted enti-
ties or that the operating system together with the Smart Messages
platform provide the protection needed. Compared to traditional
mobile agents for relatively stable IP-based networks, the Smart
Messages platform has also to cope with the lack of a central au-
thority which hampers the direct adoption of well-know techniques
based on key authentication and group management. As described
in [Kang et al., 2004], the Smart Messages platform integrates a ba-
sic security architecture that provides protected access to the tag
space, thus ensuring protection against malicious SMs.

More specifically, in Migratory Services, we can identify several
security threats mainly caused by malicious nodes present in the
network. First of all, control mechanisms are necessary to pre-
vent a malicious migratory service to access private data or make
an excessive use of resources of the hosting node. For example, a
migratory service could exhaust the energy of the hosting device,
corrupt users’ personal data, launch an attack in the device, or in-
fect other applications running on the device. These problems are
partly solved by the Smart Messages platform by requiring SMs to
express upper boundaries on resource usage and by performing ad-

6.2 Open issues 159

mission control of incoming SMs. On the other hand, a malicious
node in the network may alter the data (e.g., state) of a migratory
service and compromise its correct execution. Or it may even al-
ter the code of a migratory service and propagate viruses in the
network. As proposed in Smart Messages, this can be solved by al-
lowing migratory services to be migrated in an encrypted form. In
this case, each node will need to carry a pair of public/private keys.
To terminate or corrupt the execution of a migratory service, a ma-
licious node may also attract a migratory service by pretending to
possess false resources or to be in a certain location (i.e., “fake mi-
gratory services”). This can be partly solved with redundancy. For
example, the secondary service can integrate mechanisms to detect
possible corruptions of the primary service and thus promptly re-
establish a correct execution. However, ultimately, a trusted third
party is necessary to certify that nodes in the network claim to pro-
vide services and resources that they actually own. In the special
case of fake locations, these can also be verified in a collaborative
manner by querying neighboring nodes.

Trust issues are more critical than in traditional sensor networks
because of the spontaneous and people-centric nature of Urbanets.
Trust deals with the estimation of a node’s future behaviour. In
assessing the trust in a certain node, a node can rely on its direct
experiences with such a node as well as on others’ recommendations.
A recommendation is “the perception that a node creates through
past actions about its intentions and norms” [Mui et al., 2002]. To
isolate malicious users, reputation mechanisms such as [Liu and
Issarny, 2004; Michiardi and Molva, 2002; Zhu and Mutka, 2004]
can be integrated in our systems.

Privacy issues directly influence the user acceptance of this type
of systems. In environments full of sensors that keep track of any en-
tity and any event, privacy concerns naturally arise. To address pri-
vacy issues there are two basic strategies that can be taken [Meyer
and Rakotonirainy, 2003]. The first one ensures protection by in-
structing sensor devices to reduce the amount of private data being
disseminated. The second strategy reduces the amount of informa-
tion being acquired and stored to the minimum. Additionally, other
important approaches to solve privacy issues are privacy preserving
data mining techniques [Agrawal and Srikant, 2000; Verykios et al.,
2004]. These modify the original data through different perturba-

160 6 Conclusions

tion algorithms so that the private data remain private without
affecting the statistics to be collected. In our systems, the utiliza-
tion and sharing of location information represent the most critical
sources of privacy concerns. The user needs to control who gets
access to her private location information and understand the us-
age that will be made of such an information. The IETF Geopriv
Working Group has published a RFC [Cuellar et al., 2004] that
describes the requirements for the Geopriv Location Object (LO)
and for the protocols that use it. LO is a data structure used to
securely exchange location data. It consists of location data and
a set of user-specified privacy rules that specify to which entities,
under which conditions, and at which granularity (e.g., street, city,
country) location data can be released. Finally, we also believe
that the actual deployment of fully working Urbanet services will
make people less protective and thus will contribute to the social
acceptance of approaches like ours.

A key assumption in our work is that nodes in Urbanets are will-
ing to cooperate and they trust each others. Incentive models for
cooperation are necessary so that entities can benefit from coop-
erating with others, even though some entity refuses to cooperate.
A system of credits such as the one proposed in [Zhu and Mutka,
2004] could be integrated in our systems. A cost is associated to
each query generation and a payment is received each time relevant
sensor data are provided.

In addition, in the future, several types of Urbanet environments
are expected to cooperate among themselves as well as with exter-
nal services such as transport systems, surveillance and emergency
services, or tourist information infrastructures. Therefore, each Ur-
banet middleware should offer a standardized interface to foster
interoperability with other platforms and overcome hardware and
software heterogeneity. Our solutions were designed to work despite
Urbanets’ heterogeneity with the assumption that the underlying
Smart Messages platform provides a common execution environ-
ment across heterogeneous devices. Tiny sensors such as motes do
not run our middleware; they can be accessed in two ways: either
directly queried by mobile nodes in proximity (e.g., iMotes over
Bluetooth) or accessed indirectly through a base station running
our middleware.

Our experiences with these middleware platforms in small-scale

6.3 Future work 161

ad hoc networks of HP iPAQs and smart phones have been prom-
ising. Along with typical interference problems in places with high
density of wireless devices, power remains the most constraining
technical factor. Most of the algorithms and middleware services
have also been simulated in order to investigate their performance
in large-scale ad hoc networks. However, simulation experiments
were conducted by co-authors and therefore their results were not
included in this dissertation. The ultimate validation of our solu-
tions will derive from extensive user evaluation in large-scale mobile
networks of real-life scenarios.

6.3 Future work

In this section, we discuss several research topics for future work.
We describe the main issues they involve and possible solutions to
them.

Query and data aggregation in mobile ad hoc networks: Cur-
rently, Contory performs multi-query optimization only among que-
ries submitted by the same device, but this can be extended to
merge queries from different devices that have selection predicates
with overlapping ranges of attributes. Moreover, in our future re-
search, we will investigate mechanisms for in-network data aggre-
gation that work in the presence of mobility. For instance, mobil-
ity can lead to situations where a certain context item is aggre-
gated multiple times at different nodes, thus negatively afftecting
the quality of results. Mechanisms for data and query aggrega-
tion have been so far proposed for static and homogenous sensor
networks and understanding how to apply these to mobile and het-
erogenous environments is a challenging research problem.

Energy-awareness on mobile devices: Monitoring and reconfigu-
ration mechanisms to control and adjust the utilization of resources
on battery-powered devices will be more and more important in
the future given the fact that there will always be an even higher
demand for “mobile energy”. Our experience was that policy-
based approaches, despite their popularity, cannot always be flexi-
ble enough. Moreover, a priori specification of reconfiguration rules
is almost impossible due to the required close coupling with the plat-

162 6 Conclusions

form characteristics. Instead, learning resource utilization seems to
be more promising and potentially capable of finding out the right
tricks for energy saving on each specific device. To fully address the
energy problem, energy-aware mechanisms are needed at all system
levels. Middleware needs to be energy-aware in performing network
selection, aggregating data, and suspending and resuming applica-
tions. The operating system needs to be energy-aware in managing
hardware devices and scheduling data transfers. In addition, the
operating system must serve as a central monitoring unit for the
entire device and propagate contextual information to the upper
layers. Finally, it is necessary to coordinate energy-saving actions,
resolve potential conflicts, and prioritize tasks whenever possible.

Dependability in spontaneous networking: Dependability of fu-
ture pervasive middleware and applications and in particular of
spontaneous networking are essential, albeit often ignored, require-
ments to be investigated. Ubiquitous connectivity has opened the
way to a variety of interactions among mobile devices ranging from
simple file transfers to more complex stateful interactions. Depend-
ability has been a hot topic of distributed systems, but almost no
mechanism has been applied to distributed networks of resource-
constrained devices, such as ad hoc networks. The only fault-tol-
erance issues studied so far in ad hoc networks are at the network
layer.

6.4 Concluding remarks

This dissertation has focused on providing middleware support and
appropriate programming abstractions to support the development
and execution of people-centric mobile sensing applications in Ur-
banets. In developing Urbanet applications, the choice of which
middleware (or programming model) to employ depends on the ap-
plications’ semantics.

With Contory, the intelligence is mainly in the middleware, while
the applications are provided with a very simple programming in-
terface to specify how to collect sensor data. Contory provides high
transparency by adapting to changing operating conditions, but it
also allows applications to assess the quality of results through qual-
ifying attributes. Yet, Contory offers limited flexibility to program

6.4 Concluding remarks 163

complex distributed applications. Let us consider the case in which
the sensed data need to be processed using complex algorithms and
communicated to the application only if certain conditions are ver-
ified. If the application developer wants to specify and control the
execution of such algorithms in a remote region, Contory does not
offer an appropriate programming support. With Contory, obser-
vations are collected in the remote region and transferred to the
application that can subsequently and locally process the data.

An alternative solution is that observations are collected and
algorithms are executed by a node (i.e., service) located in the re-
gion of interest and only relevant results are then transmitted to
the application. This kind of approach can turn out to be more
efficient and effective depending on the type of algorithm to be ex-
ecuted, frequency of computation, distance of the region, and so
forth. The Context-aware Migratory Services framework supports
this second approach. Therefore, with this programming model,
client applications are very simple, services can be very complex,
and the middleware provides significant help by automatically and
continuously adapting to the rapidly changing operating contexts.

To conclude, the convergence of sensor networks and mobile ad
hoc networks into Urbanets offers a lot of opportunities to support
mobile users in their daily urban lives. Without the need for any
preexisting infrastructure, a variety of sensing applications can be
flexibly and quickly established and executed to deliver customized
services. The middleware platforms presented in this dissertation
represent one of the first attempts to take advantage of these envi-
ronments. Further steps will have to address more technical issues
as well as social and legal concerns.

164 6 Conclusions

References

Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin,

D., Guibas, L., Kansal, A., Madden, S., and Reich, J.

2007. Mobiscopes for Human Spaces. IEEE Pervasive Maga-
zine 6, 2 (April-June), 20–29. IEEE Educational Activities De-
partment.

Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D.,
George, J., George, S., Gu, L., He, T., Krishnamurthy,

S., Luo, L., Son, S., Stankovic, J., Stoleru, R., and

Wood, A. 2004. EnviroTrack: Towards an Environmental Com-
puting Paradigm for Distributed Sensor Networks. In Proceedings
of the 24th International Conference on Distributed Computing
Systems (ICDCS’04), pp. 582–589. IEEE Computer Society.

Abowd, G. D. 1999. Classroom 2000: An Experiment with the
Instrumentation of a Living Educational Environment. IBM Sys-
tems Journal 38, 4, 508–530.

Abowd, G. D., Iftode, L., and Mitchell, H. 2005. Guest
Editors’ Introduction: The Smart Phone - A First Platform for
Pervasive Computing. IEEE Pervasive Computing 4, 2 (April-
June), 18–19. IEEE Educational Activities Department.

Agrawal, R. and Srikant, R. 2000. Privacy-Preserving Data
Mining. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’00), pp. 439–
450. ACM Press.

165

166 References

Akkaya, K. and Younis, M. 2005. A survey on routing protocols
in wireless sensor networks. Ad Hoc Networks 3, 3 (May), 325–
349. Elsevier B.V.

Akyildiz, I., Su, W., Sankarasubramaniam, Y., and

Cayirci, E. 2002. A Survey on Sensor Networks. IEEE Commu-
nications Magazine 40, 8 (August), 102–114. IEEE Educational
Activities Department.

Arbanowski, S., Ballon, P., David, K., Droegehorn,

O., Eertink, H., Kellerer, W., van Kranenburg, H.,
Raatikainen, K., and Popescu-Zeletin, R. 2004. I-centric
Communications: Personalization, Ambient Awareness, and
Adaptability for Future Mobile Services. IEEE Communications
Magazine 42, 9 (September), 63–69. IEEE Educational Activities
Department.

Aura 2007. Aura Project. www-2.cs.cmu.edu/~aura.

Bagrodia, R., Chu, W., Kleinrock, L., and Popek, G. 1995.
Vision, Issues, and Architecture for Nomadic Computing. IEEE
Personal Communications 2, 6 (December), 14–27. IEEE Edu-
cational Activities Department.

Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen,

S., and Yang, H.-I. 2002. The Case for Cyber Foraging. In Pro-
ceedings of the 10th ACM SIGOPS European workshop: beyond
the PC (EW10), pp. 87–92. ACM Press.

Baldus, H., Klabunde, K., and Müsch, G. 2004. Reliable Set-
Up of Medical Body-Sensor Networks. In Proceedings of the First
European Workshop on Wireless Sensor Networks (EWSN’04),
Volume 2920 of Lecture Notes in Computer Science, pp. 353–363.
Springer-Verlag.

Banavar, G. and Bernstein, A. 2002. Software Infrastructure
and Design Challenges for Ubiquitous Computing Applications.
Communications of the ACM 45, 12 (December), 92–96. ACM
Press.

Bardram, J. E. 2005. The Java Context Awareness Framework
(JCAF) - A Service Infrastructure and Programming Framework

References 167

for Context-Aware Applications. In Proceedings of the Third In-
ternational Conference on Pervasive Computing (Pervasive’05),
Volume 3468 of Lecture Notes in Computer Science, pp. 98–115.
Springer-Verlag.

Barr, R., Bicket, J. C., Dantas, D. S., Du, B., Kim, T.

W. D., Zhou, B., and Sirer, E. G. 2002. On the Need for
System-Level Support for Ad Hoc and Sensor Networks. ACM
SIGOPS Operating Systems Review 36, 2 (April), 1–5. ACM
Press.

Basagni, S., Chlamtac, I., Syrotiuk, V. R., and Woodward,

B. A. 1998. A Distance Routing Effect Algorithm for Mobil-
ity (DREAM). In Proceedings of the Forth Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom’98), pp. 76–84. ACM Press.

Beigl, M., Gellersen, H.-W., and Schmidt, A. 2001. Me-
diaCups: Experiences with Design and Use of Computer-
Augmented Everyday Objects. Computer Networks 35, 4
(March), 401–409. Elsevier B.V.

Bellavista, P., Corradi, A., Montanari, R., and Ste-

fanelli, C. 2003. Context-Aware Middleware for Resource Man-
agement in the Wireless Internet. IEEE Transactions on Software
Engineering 29, 12 (December), 1086–1099. IEEE Computer So-
ciety.

Bellavista, P., Corradi, A., Montanari, R., and Ste-

fanelli, C. 2006. A Mobile Computing Middleware for
Location- and Context-aware Internet Data Services. ACM
Transactions on Internet Technology (TOIT) 6, 4 (November),
356–380. ACM Press.

Biegel, G. and Cahill, V. 2004. A Framework for Developing
Mobile, Context-aware Applications. In Proceedings of the Sec-
ond IEEE International Conference on Pervasive Computing and
Communications (PerCom’04), pp. 361–365. IEEE Computer So-
ciety.

Bisignano, M., Calvagna, A., Modica, G. D., and Tomar-

chio, O. 2003. Expeerience: A JXTA Middleware for Mobile

168 References

Ad-Hoc Networks. In Proceedings of the Third International Con-
ference on Peer-to-Peer Computing (P2P’03), pp. 214–215. IEEE
Computer Society.

Blazevic, L., Boudec, J.-Y. L., and Giordano, S. 2005. A
Location-Based Routing Method for Mobile Ad Hoc Networks.
IEEE Transactions on Mobile Computing 4, 2 (March), 97–110.
IEEE Educational Activities Department.

Bonnet, P., Gehrke, J., and Seshadri, P. 2001. Towards
Sensor Database Systems. In Proceedings of the Second Inter-
national Conference on Mobile Data Management (MDM’01),
Volume 1987 of Lecture Notes in Computer Science, pp. 3–14.
Springer-Verlag.

Borcea, C., Intanagonwiwat, C., Kang, P., Kremer, U.,
and Iftode, L. 2004. Spatial Programming Using Smart
Messages: Design and Implementation. In Proceedings of the
24th International Conference on Distributed Computing Systems
(ICDCS’04), pp. 690–699. IEEE Computer Society.

Borcea, C., Intanagonwiwat, C., Saxena, A., and Iftode,

L. 2003. Self-Routing in Pervasive Computing Environments us-
ing Smart Messages. In Proceedings of the First IEEE Interna-
tional Conference on Pervasive Computing and Communications
(PerCom’03), pp. 87–96. IEEE Computer Society.

Borcea, C., Iyer, D., Kang, P., Saxena, A., and Iftode, L.

2002. Cooperative Computing for Distributed Embedded Sys-
tems. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), pp. 227–236. IEEE
Computer Society.

Boulis, A., Han, C.-C., and Srivastava, M. B. 2003. Design
and Implementation of a Framework for Programmable and Effi-
cient Sensor Networks. In Proceedings of the First International
Conference on Mobile Systems, Applications and Services (Mo-
biSys’03), pp. 187–200. ACM Press.

Braginsky, D. and Estrin, D. 2002. Rumor Routing Algorithm
for Sensor Networks. Proceedings of the First Workshop on Sen-
sor Networks and Applications (WSNA’02), 22–31.

References 169

Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., and

Jetcheva, J. 1998. A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols. In Proceedings of
the Forth Annual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom’98), pp. 85–97. ACM
Press.

BTnodes 2007. BTnodes - A Distributed Environment for Proto-
typing Ad Hoc Networks. http://www.btnode.ethz.ch.

Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg,

S. 1993. The primary-backup approach. In S. Mullender (Ed.),
Distributed systems (2nd Ed.), ACM Press Frontier Series, pp.
199–216. ACM Press/Addison-Wesley Publishing Co.

Burrell, J., Brooke, T., and Beckwith, R. 2004. Vineyard
Computing: Sensor Networks in Agricultural Production. IEEE
Pervasive Computing 3, 1 (Jan-Mar), 38–45. IEEE Educational
Activities Department.

Buttyán, L. and Hubaux, J.-P. 2003. Stimulating Cooperation
in Self-Organizing Mobile Ad Hoc Networks. Mobile Networks
and Applications 8, 5 (October), 579–592. Kluwer Academic
Publishers.

Campbell, A. T., Eisenman, S. B., Lane, N. D., Miluzzo,

E., and Peterson, R. 2006. People-Centric Urban Sensing.
In Proceedings of the Second ACM/IEEE Annual International
Wireless Internet Conference (WICON’06).

Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane,

G., and Mickunas, M. 2002. Towards Security and Privacy for
Pervasive Computing. In Proceedings of the Second Mext-NSF-
JSPS International Symposium on Software Security - Theories
and Systems, pp. 1–15.

Capra, L., Emmerich, W., and Mascolo, C. 2003. CARISMA:
Context-Aware Reflective mIddleware System for Mobile Appli-
cations. IEEE Transactions on Software Engineering 29, 10 (Oc-
tober), 929–945. IEEE Computer Society.

170 References

Cardell-Oliver, R., Smettem, K., Kranz, M., and Mayer,

K. 2005. A Reactive Soil Moisture Sensor Network: Design and
Field Evaluation. International Journal of Distributed Sensor
Networks 1, 2 (April-June), 149–162. Taylor & Francis.

Cartel 2007. CarTel Project. http://cartel.csail.mit.edu.

Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M.,
and Zhao, J. 2001. Habitat Monitoring: Application Driver for
Wireless Communications Technology. 2001 ACM SIGCOMM
Workshop on Data communication in Latin America and the
Caribbean, 20–41. ACM Press.

Cerpa, A. and Estrin, D. 2004. ASCENT: Adaptive Self-
Configuring Sensor Networks Topologies. IEEE Transactions on
Mobile Computing 3, 3 (July), 272–285. IEEE Educational Ac-
tivities Department.

Chakraborty, D. and Finin, T. 2006. Toward Distributed Ser-
vice Discovery in Pervasive Computing Environments. IEEE
Transactions on Mobile Computing 5, 2 (February), 97–112.
IEEE Educational Activities Department.

Chandra, R., Ramasubramanian, V., and Birman, K. 2001.
Anonymous Gossip: Improving Multicast Reliability in Mobile
Ad-Hoc Networks. In Proceedings of the 21th IEEE International
Conference on Distributed Computing Systems (ICDCS’01), pp.
275–283.

Chang, J.-H. and Tassiulas, L. 2000. Energy Conserving Rout-
ing in Wireless Ad-hoc Networks. In Proceedings of the IEEE IN-
FOCOM’00 Conference on Computer Communications, pp. 22–
31.

Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R.

2001. Span: An Energy-efficient Coordination Algorithm for To-
pology Maintenance in Ad Hoc Wireless Networks. In Proceedings
of the 7th Annual International Conference on Mobile Computing
and Networking (MobiCom’01), pp. 85–96. ACM Press.

Chen, G., Li, M., and Kotz, D. 2004. Design and Implementa-
tion of a Large-Scale Context Fusion Network. In Proceedings of

References 171

the First Annual International Conference on Mobile and Ubiq-
uitous Systems: Networking and Services (MobiQuitous’04), pp.
246–255. IEEE Computer Society.

Chen, H., Finin, T., and Joshi, A. 2005. The SOUPA Ontology
for Pervasive Computing. Whitestein Series in Software Agent
Technologies. Springer-Verlag.

Cheng, S. Y. and Trivedi, M. M. 2006. Turn-Intent Analysis
Using Body Pose for Intelligent Driver Assistance. IEEE Per-
vasive Computing 5, 4, 28–37. IEEE Educational Activities De-
partment.

Cheong, E., Liebman, J., Liu, J., and Zhao, F. 2003. Tiny-
GALS: A Programming Model for Event-Driven Embedded Sys-
tems. In Proceedings of the 2003 ACM Symposium on Applied
Computing (SAC’03), pp. 698–704. ACM Press.

Chintalapudi, K., Fu, T., Paek, J., Kothari, N., Rangwala,

S., Caffrey, J., Govindan, R., Johnson, E., and Masri, S.

2006. Monitoring Civil Structures with a Wireless Sensor Net-
work. IEEE Internet Computing 10, 2, 26–34. IEEE Educational
Activities Department.

Chlamtac, I., Conti, M., and Liu, J. J.-N. 2003. Mobile ad hoc
networking: imperatives and challenges. Ad Hoc Networks 1, 1
(July), 13–64. Elsevier B.V.

Chong, C.-Y. and Kumar, S. 2003. Sensor Networks: Evolution,
Opportunities, and Challenges. Proceedings of the IEEE 91, 8
(August), 1247–1256. IEEE Educational Activities Department.

Chu, M., Haussecker, H., and Zhao, F. 2002. Scalable
Information-Driven Sensor Querying and Routing for ad hoc
Heterogeneous Sensor Networks. International Journal of High
Performance Computing Applications 16, 3 (August), 293–313.
SAGE Publications.

Chung, E. S., Hong, J. I., Lin, J., Prabaker, M. K., Lan-

day, J. A., and Liu, A. L. 2004. Development and Evaluation
of Emerging Design Patterns for Ubiquitous Computing. In Pro-
ceedings of the 2004 Conference on Designing Interactive Systems
(DIS’04), pp. 233–242. ACM Press.

172 References

Contory 2007. Contory. http://hoslab.cs.helsinki.fi/
savane/projects/contory.

Cooltwon 2007. Cooltown Project. http://www.hpl.hp.com/
archive/cooltown.

Cooperstock, J. R., Fels, S. S., Buxton, W., and Smith,

K. C. 1997. Reactive Environments. Communications of the
ACM 40, 9 (September), 65–73. ACM Press.

Corson, S. and Macker, J. 1999. Mobile Ad Hoc Networking
(MANET): Routing Protocol Performance Issues and Evaluation
Considerations. RFC 2501 (January), Internet Engineering Task
Force. Available at http://www.ietf.org/rfc/rfc2501.txt.

Couloris, G., Dollimore, J., and Kindberg, T. 2001. Distri-
buted Systems Concepts and Design (3rd ed.). Addison-Wesley.

Crespo, A., Buyukkokten, O., and Garcia-Molina, H. 2003.
Query Merging: Improving Query Subscription Processing in a
Multicast Environment. IEEE Transactions on Knowledge and
Data Engineering 15, 1 (January), 174–191. IEEE Educational
Activities Department.

Cristian, F. 1991. Understanding fault-tolerant distributed sys-
tems. Communications of the ACM 34, 2 (February), 56–78.
ACM Press.

Cuellar, J., Morris, J., Mulligan, D., Peterson, J., and

Polk, J. 2004. Geopriv Requirements. RFC 3693 (February),
Internet Engineering Task Force. Available at http://www.ietf.
org/rfc/rfc3693.txt.

Culler, D., Estrin, D., and Srivastava, M. 2004. Guest Ed-
itors’ Introduction: Overview of Sensor Networks. IEEE Com-
puter 37, 8 (August), 41–49. IEEE Educational Activities De-
partment.

Das, S. R., Perkins, C. E., and Belding-Royer, E. M. 2000.
Performance Comparison of Two On-demand Routing Protocols
for Ad Hoc Networks. In Proceedings of the IEEE INFOCOM’00
Conference on Computer Communications, pp. 3–12.

References 173

Davies, N., Friday, A., Wade, S. P., and Blair, G. S. 1998.
L2imbo: A Distributed Systems Platform for Mobile Computing.
ACM Mobile Networks and Applications (MONET), Special Issue
on Protocols and Software Paradigms of Mobile Networks 3, 2,
143–156. Kluwer Academic Publishers.

De Couto, D. S. J. and Morris, R. 2001. Location Prox-
ies and Intermediate Node Forwarding for Practical Geographic
Forwarding. Technical Report MIT-LCS-TR-824 (June), MIT
Laboratory for Computer Science.

Dey, A. K. and Adowd, G. D. 1999. Toward a Better Under-
standing of Context and Context-Awareness. Technical Report
GIT-GVU-99-22 (June), Georgia Institute of Technology, College
of Computing.

Dey, A. K., Salber, D., and Abowd, G. 2001. A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyp-
ing of Context-Aware Applications. Human-Computer Interac-
tion 16, 2-4, 97–166.

Dube, R., Rais, C., Wang, K., and Tripathi, S. 1997. Signal
Stability based Adaptive Routing for Ad Hoc Mobile Networks.
IEEE Personal Communications 4, 1 (February), 36–45. IEEE
Educational Activities Department.

Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J.,
and Burgelman, J.-C. 2001. Scenarios for Ambient Intelligence
in 2010. IST Advisory Group Final Report, Eur. Comm.

DYNAMOS 2007. DYNAMOS Project. http://virtual.vtt.fi/
virtual/proj2/dynamos.

EasyLiving 2007. EasyLiving Project. http://research.
microsoft.com/easyliving.

Ember 2007. Ember. http://www.ember.com.

Endeavour 2007. Endeavour. http://endeavour.cs.berkeley.
edu.

Estrin, D., Culler, D., Pister, K., and Sukhatme, G. 2002.
Connecting the Physical World with Pervasive Networks. IEEE

174 References

Pervasive Computing 1, 1 (January), 59–69. IEEE Educational
Activities Department.

Estrin, D., Girod, L., Pottie, G., and Srivastava, M. 2001.
Instrumenting the World with Wireless Sensor Networks. In
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’01), Volume 4, pp. 2033–
2036.

Fall, K. 2003. A Delay-Tolerant Network Architecture for Chal-
lenged Internets. In Proceedings of the 2003 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’03), pp. 27–34. ACM Press.

Flinn, J., Park, S., and Satyanarayanan, M. 2002. Balancing
Performance, Energy, and Quality in Pervasive Computing. In
Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS’02), pp. 217–226. IEEE Computer
Society.

Flinn, J. and Satyanarayanan, M. 2004. Managing Battery
Lifetime with Energy-Aware Adaptation. ACM Transactions on
Computer Systems (TOCS) 22, 2 (May), 137–179. ACM Press.

Floyd, S. and Jacobson, V. 1993. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM Transactions
on Networking (TON) 1, 4 (August), 397–413. IEEE Press.

Fok, C. L., Roman, G. C., and Lu, C. 2005. Mobile Agent
Middleware for Sensor Networks: An Application Case Study. In
Proceedings of the Forth International Conference on Information
Processing in Sensor Networks (IPSN’05), pp. 382–387. IEEE
Press.

Ford, L. and Fulkerson, D. 1962. Flows in Networks. Princeton
Univ. Press.

Foundation for Intelligent Physical Agents 2002a. FIPA
Device Ontology Specification. Geneva, Switzerland. Specification
number SI00091.

References 175

Foundation for Intelligent Physical Agents 2002b. FIPA
Quality of Service Ontology Specification. Geneva, Switzerland.
Specification number SC00094.

Fuego Core 2007. Fuego Core Project. http://hoslab.cs.
helsinki.fi/savane/projects/fuego-core.

Fung, W. F., Sun, D., and Gehrke, J. 2002. COUGAR: The
Network Is the Database. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data (SIG-
MOD’02), pp. 621–621. ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

Gehrke, J. and Madden, S. R. 2004. Query Processing In Sen-
sor Networks. IEEE Pervasive Computing 3, 1, 46–55. IEEE
Educational Activities Department.

Gerla, M. 2005. From battlefields to urban grids: New research
challenges in ad hoc wireless networks. Pervasive and Mobile
Computing 1, 1 (March), 77–93. Elsevier B. V.

Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S.,
Anderson, T., Bershad, B., Borriello, G., Gribble, S.,
and Wetherall, D. 2004. System Support for Pervasive Appli-
cations. ACM Transactions on Computer Systems (TOCS) 22, 4
(November), 421–486. ACM Press.

Grimm, R. and et al 2001. Systems Directions for Pervasive
Computing. In Proceedings of the 8th Workshop on Hot Topics in
Operating Systems (HotOS-VIII), Elmau/Oberbayern, Germany,
pp. 147–151. IEEE Computer Society, Washington, DC.

Grossglauser, M. and Tse, D. N. C. 2002. Mobility increases
the capacity of ad hoc wireless networks. IEEE/ACM Trans-
actions on Networking (TON) 10, 4 (August), 477–486. IEEE
Press.

Grudin, J. 2002. Group Dynamics and Ubiquitous Computing.
Commununications of the ACM 45, 12 (December), 74–78. ACM
Press.

176 References

Gummadi, R., Gnawali, O., and Govindan, R. 2005. Macro-
programming Wireless Sensor Networks Using Kairos. In Pro-
ceedings of the First IEEE International Conference on Distri-
buted Computing in Sensor Systems (DCOSS’05), Volume 3560
of Lecture Notes in Computer Science, pp. 126–140. Springer-
Verlag.

Haas, Z. J. and Pearlman, M. R. 2001. The performance of
query control schemes for the zone routing protocol. IEEE/ACM
Transactions on Networking (TON) 9, 4 (August), 427–438.
IEEE Press.

Hadim, S. and Mohamed, N. 2006. Middleware: Middleware
Challenges and Approaches for Wireless Sensor Networks. IEEE
Distributed Systems Online 7, 3, 1. IEEE Educational Activities
Department.

He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher,

T., Luo, L., Stoleru, R., Yan, T., Gu, L., Hui, J., and

Krogh, B. 2004. Energy-Efficient Surveillance System using
Wireless Sensor Networks. In Proceedings of the Second Interna-
tional Conference on Mobile Systems, Applications, and Services
(MobiSys’04), pp. 270–283. ACM Press.

Hedetniemi, S., Hedetniemi, S., and Liestman, A. 1988. A
Survey of Gossiping and Broadcasting in Communication Net-
works. Networks 18, 4, 319–349. John Wiley & Sons.

Hedrick, C. L. 1988. RFC 1058: Routing Information Protocol.
Available at: http://www.ietf.org/rfc/rfc1058.txt.

Heinzelman, W., Murphy, A., Carvalho, H., and Perillo,

M. 2004. Middleware to Support Sensor Network Applications.
IEEE Network 18, 1, 6–14. IEEE Educational Activities Depart-
ment.

Heinzelman, W. R., Chandrakasan, A., and Balakrishnan,

H. 2000. Energy-Efficient Communication Protocol for Wireless
Microsensor Networks. In Proceedings of the 33rd Hawaii Inter-
national Conference on System Sciences (HICSS’00), Volume 8,
pp. 8020. IEEE Computer Society.

References 177

Heinzelman, W. R., Kulik, J., and Balakrishnan, H. 1999.
Adaptive Protocols for Information Dissemination in Wireless
Sensor Networks. In Proceedings of the Fifth Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom’99), pp. 174–185. ACM Press.

Hightower, J. and Borriello, G. 2001. Location Systems for
Ubiquitous Computing. IEEE Computer 34, 8 (August), 57–66.
IEEE Computer Society Press.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.,
and Pister, K. 2000. System Architecture Directions for Net-
worked Sensors. In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), pp. 93–104. ACM Press.

Hill, J. L. 2003. System Architecture for Wireless Sensor Net-
works. Ph. D. thesis, University of California, Berkeley.

Hill, J. L. and Culler, D. E. 2002. Mica: A Wireless Platform
for Deeply Embedded Networks. IEEE Micro 22, 6, 12–24. IEEE
Computer Society Press.

Hohl, F., Mehrmann, L., and Hamdan, A. 2002. A Context
System for a Mobile Service Platform. In Proceedings of the
International Conference on Architecture of Computing Systems
(ARCS’02), pp. 21–33. Springer-Verlag.

Hong, I. and Landay, J. A. 2001. An Infrastrucutre Approach to
Context-aware Computing. Human-Computer Interaction 16, 2-
3, 287–303.

Hong, J. and Landay, J. 2004. An Architecture for Privacy-
Sensitive Ubiquitous Computing. In Proceedings of the Second
International Conference on Mobile Systems, Applications, and
Services (Mobisys’04), pp. 177–189.

Hong, X., Xu, K., and Gerla, M. 2002. Scalable routing proto-
cols for mobile ad hoc networks. IEEE Network Magazine 16, 4,
11–21. IEEE Educational Activities Department.

178 References

Hou, T.-C. and Li, V. 1986. Transmission range control in mul-
tihop packet radio networks. IEEE Transactions on Commu-
nications 34, 1 (January), 38–44. IEEE Educational Activities
Department.

Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko,

M., Miu, A. K., Shih, E., Balakrishnan, H., and Mad-

den, S. 2006. CarTel: A Distributed Mobile Sensor Computing
System. In Proceedings of the Forth ACM Conference on Embed-
ded Networked Sensor Systems (SenSys’06), pp. 125–138. ACM
Press.

Intanagonwiwat, C., Govindan, R., and Estrin, D. 2000.
Directed Diffusion: A Scalable and Robust Communication Par-
adigm for Sensor Networks. In Proceedings of the 6th Snnual
International Conference on Mobile Computing and Networking
(MobiCom’00), pp. 56–67. ACM Press.

Intel Mote 2007. Intel Mote. http://www.intel.com/research/
exploratory/motes.htm.

Iwata, A., Chiang, C.-C., Pei, G., Gerla, M., and Chen,

T.-W. 1999. Scalable Routing Strategies for Ad Hoc Wireless
Networks. IEEE Journal on Selected Areas in Communications,
Special Issue on Ad-Hoc Networks 17, 8 (August), 1369–1379.
IEEE Educational Activities Department.

Johnson, D. B. and Maltz, D. A. 1996. Dynamic source routing
in ad hoc wireless networks. Mobile Computing 353, 153–181.
Kluwer Academic Publishers.

JSR 256 2007. JSR 256 (“Mobile Sensor API”). http://jcp.org/
en/jsr/detail?id=256.

JSR 82 2007. JSR 82 (“JavaTM APIs for Bluetooth”). http://
jcp.org/en/jsr/detail?id=82.

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S.,
and Rubenstein, D. 2002. Energy-efficient Computing for
Wildlife Tracking: Design Tradeoffs and Early Experiences with
ZebraNet. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), pp. 96–107. ACM Press.

References 179

Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., and

Iftode, L. 2004. Smart Messages: A Distributed Computing
Platform for Networks of Embedded Systems. The Computer
Journal, Special Focus on Mobile and Pervasive Computing, 475–
494. The British Computer Society. Oxford University Press.

Kangasharju, J., Tarkoma, S., and Lindholm, T. 2005. Xebu:
A Binary Format with Schema-based Optimizations for XML
Data. In Proceedings of the 6th International Conference on Web
Information Systems Engineering, pp. 528–535.

Kansal, A., Somasundara, A. A., Jea, D. D., Srivastava,

M. B., and Estrin, D. 2004. Intelligent Fluid Infrastructure
for Embedded Networks. In Proceedings of the Second Interna-
tional Conference on Mobile Systems, Applications, and Services
(MobiSys’04), pp. 111–124. ACM Press.

Karp, B. and Kung, H. T. 2000. GPSR: Greedy Perimeter State-
less Routing for Wireless Networks. In Proceedings of the 6th
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom’00), pp. 243–254.

Katz, R. H. 1994. Adaptation and Mobility in Wireless Informa-
tion Systems. IEEE Personal Communications 1, 1, 6–17. IEEE
Educational Activities Department.

Kehr, R., Zeidler, A., and Vogt, H. 1999. Towards a Generic
Proxy Execution Service for Small Devices. Workshop on Future
Services for Networked Devices (FuSeNetD’99).

Kiess, W. and Mauve, M. 2007. A Survey on Real-World Imple-
mentations of Mobile Ad-Hoc Networks. Ad Hoc Networks 5, 3
(April), 324–339. Elsevier B.V.

Kindberg, T. and Fox, A. 2002. System Software for Ubiqui-
tous Computing. IEEE Pervasive Computing 1, 1, 70–81. IEEE
Educational Activities Department.

Kiss, C. 2006. Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies 2.0. W3C Working Draft.

Kleinrock, L. 2003. An Internet Vision: The Invisible Global
Infrastructure. Ad Hoc Networks 1, 1 (July), 3–11. Elsevier B.V.

180 References

Kling, R. 2003. Intel Mote: An Enhanced Sensor Network
Node. In International Workshop on Advanced Sensors, Struc-
tural Health Monitoring, and Smart Structures.

Ko, Y.-B. and Vaidya, N. H. 1998. Location-Aided Routing
(LAR) in Mobile Ad Hoc Networks. In Proceedings of the Forth
Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom’98), pp. 66–75.

Korpipää, P. 2005. Blackboard-based software framework and
tool for mobile device context awareness. Ph. D. thesis, VTT
Electronics, Espoo. Available at: http://www.vtt.fi/inf/pdf/
publications/2005/P579.pdf.

Kranakis, E., Singh, H., and Urrutia, J. 1999. Compass Rout-
ing on Geometric Networks. In Proceedings of the 11th Canadian
Conference on Computational Geometry (CCCG’99), pp. 51–54.

Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra,

J., Flanigan, M., Kushalnagar, N., Nachman, L., and

Yarvis, M. 2005. Design and Deployment of Industrial Sen-
sor Networks: Experiences from a Semiconductor Plant and the
North Sea. In Proceedings of the Third International Conference
on Embedded Networked Sensor Systems (SenSys’05), pp. 64–75.
ACM Press.

KVM 2007. K Virtual Machine. http://java.sun.com/products/
cldc.

Landay, J. A. and Borriello, G. 2003. Design Patterns for
Ubiquitous Computing. IEEE Computer 36, 8 (August), 93–95.
IEEE Computer Society Press.

Levis, P. and Culler, D. 2002. Maté: A Tiny Virtual Machine
for Sensor Networks. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X’02), pp. 85–95. ACM Press.

Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R.,
Woo, A., Brewer, E., and Culler, D. 2004. The Emergence
of Networking Abstractions and Techniques in TinyOS. Pro-
ceedings of the First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI’04), 1–14.

References 181

Li, S., Lin, Y., Son, S. H., Stankovic, J. A., and Wei, Y.

2004. Event Detection Services Using Data Service Middleware in
Distributed Sensor Networks. Journal of Telecommunication Sys-
tems, special issue on Wireless Sensor Networks 26, 2–4 (June),
351–368. Kluwer Academic Publishers.

Liu, C. and Kaiser, J. 2005. A Survey of Mobile Ad Hoc net-
work Routing Protocols. Technical report (October), MiNEMA
Report. The Survey was published as University of Ulm Tech.
Report Series, Nr.2003-08. Available at: http://www.minema.
di.fc.ul.pt/papers.html.

Liu, J., Chu, M., Liu, J., Reich, J., and Zhao, F. 2003.
State-Centric Programming for Sensor-Actuator Network Sys-
tems. IEEE Pervasive Computing 2, 4 (Oct.-Dec.), 50–62. IEEE
Educational Activities Department.

Liu, J. and Issarny, V. 2004. Enhanced Reputation Mechanism
for Mobile Ad Hoc Networks. In Proceedings of the Second Inter-
national Conference on Trust Management (iTrust2004), Volume
2995 of Lecture Notes in Computer Science, pp. 48–62. Springer-
Verlag.

Liu, J. and Issarny, V. 2005. Signal Strength based Service Dis-
covery (S3D) in Mobile Ad Hoc Networks. In Proceedings of the
16th Annual IEEE International Symposium on Personal Indoor
and Mobile Radio Communications (PIMRC’05), Volume 2, pp.
811–815.

Liu, T. and Martonosi, M. 2003. Impala: A Middleware System
for Managing Autonomic, Parallel Sensor Systems. In Proceedings
of the 9th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’03), pp. 107–118. ACM Press.

Liu, T., Sadler, C. M., Zhang, P., and Martonosi, M. 2004.
Implementing Software on Resource-Constrained Mobile Sensors:
Experiences with Impala and ZebraNet. In Proceedings of the Sec-
ond International Conference on Mobile Systems, Applications,
and Services (MobiSys’04), pp. 256–269. ACM.

Lorincz, K., Malan, D. J., Fulford-Jones, T. R. F., Na-

woj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh,

182 References

M., and Moulton, S. 2004. Sensor Networks for Emergency
Response: Challenges and Opportunities. IEEE Pervasive Com-
puting 3, 4, 16–23. IEEE Educational Activities Department.

Lundquist, J. D., Cayan, D. R., and Dettinger, M. D. 2003.
Meteorology and Hydrology in Yosemite National Park: A Sen-
sor Network Application. In Information Processing in Sensor
Networks (IPSN’03), pp. 518–528.

Luo, J., Eugster, P., and Hubaux, J. 2004. Pilot: Probabilistic
lightweight group communication system for ad hoc networks. In
IEEE Transactions on Mobile Computing, Volume 3, pp. 164–
179.

Lyytinen, K. and Yoo, Y. 2002. Issues and Challenges in
Ubiquitous Computing, Introduction. Commununications of the
ACM 45, 12 (December), 62–65. ACM Press.

Macias, J. A. and y, J. G. 2006. WSN and MANET: Are they
alike? Book Chapter in Sensor Network and Configuration: Fun-
damentals, Techniques, Platforms, and Experiments. Springer-
Verlag.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong,

W. 2002. TAG: a Tiny AGgregation Service for Ad-Hoc Sen-
sor Networks. ACM SIGOPS Operating Systems Review 36, SI
(Winter 2002), 131–146. ACM Press.

Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong,

W. 2003. The Design of an Acquisitional Query Processor for
Sensor Networks. In Proceedings of the 2003 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD’03),
pp. 491–502. ACM Press.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and

Hong, W. 2005. TinyDB: An Acquisitional Query Processing
System for Sensor Networks. ACM Transactions on Database
Systems (TODS) 30, 1, 122–173. ACM Press.

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R.,
and Anderson, J. 2002. Wireless Sensor Networks for Habitat

References 183

Monitoring. In Proceedings of the First ACM International Work-
shop on Wireless Sensor Networks and Applications (WSNA’02),
pp. 88–97. ACM Press.

manet IETF WG 2007. Mobile Ad-hoc Networks (manet)
IETF Working Group. http://www.ietf.org/html.charters/
manet-charter.html.

Mascolo, C., Capra, L., and Emmerich, W. 2002. Mobile
Computing Middleware. Advanced Lectures on Networking , 20–
58. Springer-Verlag.

Mascolo, C., Capra, L., Zachariadis, S., and Emmerich,

W. 2002. XMIDDLE: A Data-Sharing Middleware for Mobile
Computing. Wireless Personal Communications 21, 1, 77–103.
Kluwer Academic Publishers.

Mauve, M., Widmer, A., and Hartenstein, H. 2001. A Survey
on Position-Based Routing in Mobile Ad-Hoc Networks. IEEE
Network 15, 6, 30–39. IEEE Educational Activities Department.

Mayer, K., Taylor, K., and Ellis, K. 2004. Cattle Health
Monitoring using Wireless Sensor Networks. In Proceedings of
the Second IASTED International Conference on Communica-
tion and Computer Networks (CCN’04), pp. 64–75.

McQuillan, J., Richer, I., and Rosen, E. 1978. ARPANET
Routing Algorithm Improvements - First Semiannual Technical
Report. BBN Report 3803 (April).

Meier, R. and Cahill, V. 2002. STEAM: Event-Based Mid-
dleware for Wireless Ad Hoc Network. In Proceedings of the
First International Workshop on Distributed Event-Based Sys-
tems (DEBS’02), pp. 639–644. IEEE Computer Society.

MetroSense 2007. MetroSense Project. http://metrosense.cs.
dartmouth.edu.

Meyer, S. and Rakotonirainy, A. 2003. A Survey of Research
on Context-aware Homes. In Proceedings of the Australasian In-
formation Security Workshop Conference on ACSW Frontiers
2003 (CRPITS’03), Volume 21, pp. 159–168. Australian Com-
puter Society, Inc.

184 References

Michahelles, F., Matter, P., Schmidt, A., and Schiele, B.

2003. Applying Wearable Sensors to Avalanche Rescue. Com-
puters and Graphics 27, 6, 839–847. Elsevier B.V.

Michiardi, P. and Molva, R. 2002. Core: A Collaborative Repu-
tation Mechanism to enforce node cooperation in Mobile Ad Hoc
Networks. In Proceedings of the IFIP TC6/TC11 Sixth Joint
Working Conference on Communications and Multimedia Secu-
rity, pp. 107–121. Kluwer, B.V.

Migratory Services 2007. Context-aware Migratory Services. http:
//hoslab.cs.helsinki.fi/savane/projects/msf/.

MITes 2007. MIT Environmental sensors: A Portable Kit of
Wireless Sensors for Naturalistic Data Collection. http://web.
media.mit.edu/~emunguia/miteswebsite.

Monarch 2007. Monarch Project. http://www.monarch.cs.rice.
edu.

Mui, L., Mohtashemi, M., and Halberstadt, A. 2002. A
computational model of trust and reputation. In Proceedings
of the 35th Annual Hawaii International Conference on System
Sciences (HICSS’02), pp. 2431–2439.

Murphy, A. L., Picco, G. P., and Roman, G.-C. 2001. LIME:
A Middleware for Physical and Logical Mobility. In Proceedings
of the 21st International Conference on Distributed Computing
Systems (ICDCS’01), pp. 524. IEEE Computer Society.

Murthy, S. and Garcia-Luna-Aceves, J. J. 1996. An Efficient
Routing Protocol for Wireless Networks. ACM Mobile Networks
and Applications 1, 2 (October), 183–197. Kluwer Academic Pub-
lishers.

Musolesi, M., Mascolo, C., and Hailes, S. 2005. EMMA:
Epidemic Messaging Middleware for Ad hoc networks. Personal
Ubiquitous Computing 10, 1, 28–36. Springer-Verlag.

Nadeem, T., Dashtinezhad, S., Liao, C., and Iftode, L. 2004.
TrafficView: Traffic Data Dissemination using Car-to-Car Com-
munication. ACM Mobile Computing and Communications Re-
view (MC2R) 8, 3 (July), 6–19. ACM Press.

References 185

Navas, J. C. and Imielinski, T. 1997. GeoCast - Geographic
Addressing and Routing. In Proceedings of the Third Annual
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom’97), pp. 66–76. ACM Press.

Nelson, R. and Kleinrock, L. 1984. The Spatial Capacity of a
Slotted ALOHA Multihop Packet Radio Network with Capture.
IEEE Transactions on Communications 32, 6 (June), 684–694.
IEEE Educational Activities Department.

Ni, Y. 2006. Programming ad hoc networks. Ph. D. thesis, Rutgers
University, Department of Computer Science.

Ni, Y., Kremer, U., Stere, A., and Iftode, L. 2005. Program-
ming Ad-Hoc Networks of Mobile and Resource-Constrained De-
vices. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’05),
pp. 249–260. ACM Press.

Noble, B. D. and Satyanarayanan, M. 1999. Experience with
adaptive mobile applications in Odyssey. Mobile Networks and
Applications 4, 4 (December), 245–254. Kluwer Academic Pub-
lishers.

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton,

J. E., Flinn, J., and Walker, K. R. 1997. Agile Application-
Aware Adaptation for Mobility. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles (SOSP’97),
pp. 276–287. ACM Press.

NS-2 2007. Network Simulator ns-2. http://www.isi.edu/nsnam/
ns.

Olsen, C. M. and Narayanaswami, C. 2006. PowerNap: An
Efficient Power Management Scheme for Mobile Devices. IEEE
Transactions on Mobile Computing 5, 7, 816–828. IEEE Educa-
tional Activities Department.

Oxygen 2007. Oxygen Project. http://oxygen.csail.mit.edu.

Ozdemir, O., Ray, P., Isik, C., C.K.Mohan, Varshney, P.,
Khalifa, H., and Zhang, J. 2005. Application of Wireless

186 References

Sensor Networks for AI-based Monitoring and Control of Built
Environments. Innovations and Commercial Applications of Dis-
tributed Sensor Networks (ICA DSN).

Paradiso, J. A. and Starner, T. 2005. Energy Scavenging
for Mobile and Wireless Electronics. IEEE Pervasive Comput-
ing 4, 1, 18–27. IEEE Educational Activities Department.

Park, V. D. and Corson, M. S. 1997. A Highly Adaptive Dis-
tributed Routing Algorithm for Mobile Wireless Networks. In
Proceedings of the IEEE INFOCOM’97 Conference on Computer
Communications, Volume 3, pp. 1405–1413.

Perkins, C. and Royer, E. 1999. Ad-Hoc On-Demand Distance
Vector Routing. In Proceedings of the Second IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA’99), pp.
90–100.

Perkins, C. E. and Bhagwat, P. 1994. Highly dynamic
Destination-Sequenced Distance-Vector routing (DSDV) for mo-
bile computers. In Proceedings of the Conference on Communica-
tions Architectures, Protocols and Applications (SIGCOMM’94),
pp. 234–244. ACM Press.

Pon, R., Batalin, M. A., Gordon, J., Kansal, A., Liu, D.,
Rahimi, M., Shirachi, L., Yu, Y., Hansen, M., Kaiser,

W. J., Srivastava, M., Sukhatme, G., and Estrin, D. 2005.
Networked Infomechanical Systems: A Mobile Embedded Net-
worked Sensor Platform. In Proceedings of the Forth Interna-
tional Conference on Information Processing in Sensor Networks
(IPSN’05), pp. 376–381. IEEE Press.

Portolano 2007. Portolano Project. http://portolano.cs.
washington.edu.

Raatikainen, K. 2005. A New Look at Mobile Computing. In
Proceedings of the International Workshop on Convergent Tech-
nologies (IWCT’05).

Raatikainen, K., Christensen, H., and Nakajima, T. 2002.
Application Requirements for Middleware for Mobile and Per-
vasive Systems. ACM Mobile Computing and Communications
Review (MC2R) 6, 4 (October), 16–24.

References 187

Raento, M., Oulasvirta, A., Petit, R., and Toivonen, H.

2005. ContextPhone: A Prototyping Platform for Context-Aware
Mobile Applications. IEEE Pervasive Computing 4, 2 (Jan-
March), 51–59. IEEE Educational Activities Department.

Ranganathan, A., Al-Muhtadi, J., Chetan, S., Campbell,

R., and Mickunas, M. D. 2004. MiddleWhere: A Middle-
ware for Location Awareness in Ubiquitous Computing Appli-
cations. In Proceedings of the 5th ACM/IFIP/USENIX Inter-
national Middleware Conference (Middleware’04), Volume 3231
of Lecture Notes in Computer Science, pp. 397–416. Springer-
Verlag.

Ranganathan, A. and Campbell, R. H. 2003. A Middleware
for Context-Aware Agents in Ubiquitous Computing Environ-
ments. In ACM/IFIP/USENIX International Middleware Con-
ference (Middleware’03), 143–161.

Raverdy, P.-G., Riva, O., de La Chapelle, A., Chibout, R.,
and Issarny, V. 2006. Efficient Context-aware Service Discov-
ery in Multi-Protocol Pervasive Environments. In Proceedings of
the 7th International Conference on Mobile Data Management
(MDM’06), Volume 00, pp. 3–10. IEEE Computer Society.

Ravi, N., Borcea, C., Kang, P., and Iftode, L. 2004. Portable
Smart Messages for Ubiquitous Java-Enabled Devices. In The
First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous’04), pp. 412–
421. IEEE Computer Society.

Riekki, J., Huhtinen, J., Ala-Siuru, P., Alahuhta, P.,
Kaartinen, J., and Röning, J. 2003. Genie of the Net, an
Agent Platform for Managing Services on Behalf of the User.
Computer Communications 26, 11, 1188–1198.

Riekki, J., Isomursu, P., and Isomursu, M. 2004. Evaluating
the Calmness of Ubiquitous Applications. In 5th International
Conference on Product Focused Software Process Improvement
(PROFES’04), Volume 3009 of Lecture Notes in Computer Sci-
ence, pp. 105–119. Springer-Verlag.

188 References

Riva, O. 2006. Contory: A Middleware for the Provisioning of
Context Information on Smart Phones. In Proceedings of the
7th ACM International Middleware Conference (Middleware’06),
Volume 4290 of Lecture Notes in Computer Science, pp. 219–239.
Springer-Verlag.

Riva, O. 2007. Bibliography on Context-Awareness Support. Un-
published. Available at: http://www.cs.helsinki.fi/u/riva/
cas.pdf.

Riva, O. and Borcea, C. 2007. The Urbanet Revolution: Sensor
Power to the People! IEEE Pervasive Magazine 6, 2 (April-
June), 41–49. IEEE Educational Activities Department.

Riva, O. and di Flora, C. 2006a. Contory: A Smart Phone Mid-
dleware Supporting Multiple Context Provisioning Strategies. In
Second IEEE International Workshop on Services and Infrastruc-
ture for the Ubiquitous and Mobile Internet (SIUMI’06). IEEE
Computer Society.

Riva, O. and di Flora, C. 2006b. Unearthing Design Patterns
to Support Context-Awareness. In Third IEEE International
Workshop on Middleware Support for Pervasive Computing (Per-
Ware’06). Pisa, Italy: IEEE Computer Society.

Riva, O. and Kangasharju, J. 2007. Challenges and Lessons
in Developing Middleware on Smart Phones. Under sub-
mission. Available at: http://www.cs.helsinki.fi/u/riva/
publications/riva_ieeecomputer07.pdf.

Riva, O., Nadeem, T., Borcea, C., and Iftode, L. 2007.
Context-aware Migratory Services in Ad Hoc Networks. IEEE
Transactions on Mobile Computing 6, 12 (December), 1313–1328.
IEEE Educational Activities Department.

Riva, O. and Toivonen, S. 2006. A Model of Hybrid Service
Provisioning Implemented on Smart Phones. In Proceedings of
the Third IEEE International Conference on Pervasive Services
(ICPS’06), pp. 47–56. IEEE Computer Society.

Riva, O. and Toivonen, S. 2007. The DYNAMOS Approach
to Context-Aware Service Provisioning in Mobile Environments.

References 189

Journal of Systems and Software 80, 12 (December), 1956–1972.
Elsevier B.V.

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R. H., and Nahrstedt, K. 2002. A Middleware In-
frastructure for Active Spaces. IEEE Pervasive Computing 1, 4,
74–83. IEEE Educational Activities Department.

Römer, K. and Mattern, F. 2004. The Design Space of Wireless
Sensor Networks. IEEE Wireless Communications 11, 6 (Decem-
ber), 54–61. IEEE Educational Activities Department.

Roussos, G., Marsh, A. J., and Maglavera, S. 2005. Enabling
Pervasive Computing with Smart Phones. IEEE Pervasive Com-
puting 4, 2, 20–27. IEEE Educational Activities Department.

Royer, E. M. and Toh, C.-K. 1999. A Review of Current Rout-
ing Protocols for Ad Hoc Mobile Wireless Networks. IEEE Per-
sonal Communications 6, 2 (April), 46–55. IEEE Educational
Activities Department.

Sadagopan, N., Krishnamachari, B., and Helmy, A. 2005.
Active Query Forwarding in Sensor Networks. Ad Hoc Net-
works 3, 1, 91–113. Elsevier B.V.

Saha, D. and Mukherjee, A. 2003. Pervasive Computing: A
Paradigm for the 21st Century. IEEE Computer 36, 3 (March),
25–31. IEEE Educational Activities Department.

Salem Hadim and Jameela Al-Jaroodi and Nader Mo-

hamed 2006. Trends in Middleware for Mobile Ad Hoc Networks.
Journal of Communications (JCM) 1, 4 (July), 11–21.

Satyanarayanan, M. 1996. Fundamental Challenges in Mobile
Computing. In Proceedings of the 15th ACM Symposium on
Principles of Distributed Computing (PODC’96), pp. 1–7. ACM
Press.

Satyanarayanan, M. 2001. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications 8, 4 (August), 10–
17. IEEE Educational Activities Department.

190 References

Schilit, B. N., Adams, N. L., and Want, R. 1994. Context-
Aware Computing Applications. In Proceedings of the IEEE
Workshop on Mobile Computing Systems and Applications, pp.
85–90. IEEE Computer Society Press.

Schmidt, A. 2000. Implicit Human-Computer Interaction through
Context. Personal Technologies 4, 2-3 (June), 191–199. Springer
London.

Schmidt, A., Adoo, K. A., Takaluoma, A., Tuomela, U.,
Laerhoven, K. V., and de Velde, W. V. 1999. Advanced
Interaction in Context. In Proceedings of the First Symposium
on Handheld and Ubiquitous Computing (HUC’99), Karlsruhe,
Germany, pp. 89–101.

Schurgers, C., Tsiatsis, V., Ganeriwal, S., and Srivastava,

M. 2002. Optimizing Sensor Networks in the Energy-Latency-
Density Design Space. IEEE Transactions on Mobile Comput-
ing 1, 1, 70–80. IEEE Educational Activities Department.

SenseWeb 2007. SenseWeb Project. http://research.microsoft.
com/nec/senseweb.

SensorPlanet 2007. Nokia SensorPlanet Project. http://www.
sensorplanet.org.

Shankar, C., Al-Muhtadi, J., Campbell, R., and Mickunas,

M. D. 2005. Mobile Gaia: A Middleware for Ad hoc Pervasive
Computing. IEEE Consumer Communications and Networking
Conference (CCNC’05), 223–228.

Shen, C.-C., Srisathapornphat, C., and Jaikaeo, C. 2001.
Sensor Information Networking Architecture and Applications.
IEEE Personal Communication Magazine 8, 4 (August), 52–59.
IEEE Educational Activities Department.

Singh, S. and Raghavendra, C. S. 1998. PAMAS: Power
Aware Multi-Access Protocol with Signalling for Ad Hoc Net-
works. ACM SIGCOMM Computer Communication Review 28, 3
(July), 5–26. ACM Press.

References 191

Sloman, M. 1994. Policy Driven Management for Distributed Sys-
tems. Journal of Network and Systems Management 2, 4, 333–
360. Springer Netherlands.

Smarts-Its 2007. Smart-Its Project. http://www.smart-its.org.

Soot 2007. Soot: A Java Optimization Framework. http://www.
sable.mcgill.ca/soot.

Souto, E., aes, G. G., Vasconcelos, G., Vieira, M., Rosa,

N., Ferraz, C., and Kelner, J. 2005. Mires: A Pub-
lish/Subscribe Middleware for Sensor Networks. Personal Ubiq-
uitous Computing 10, 1, 37–44. Springer-Verlag.

Stojmenovic, I. and Lin, X. 2001. Power-Aware Localized Rout-
ing in Wireless Networks. IEEE Transactions on Parallel and
Distributes Systems 12, 11 (November), 1122–1133.

Sun, J.-Z. 2001. Mobile Ad-hoc Networking: An Essential Tech-
nology for Pervasive Computing. In Proceedings of International
Conferences on Info-tech and Info-net, Volume 3, pp. 316–321.

Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M.,
Mainwaring, A. M., and Estrin, D. 2004. Habitat Monitor-
ing with Sensor Networks. Commununications of the ACM 47, 6
(June), 34–40. ACM Press.

Tafazolli, R. (Ed.) 2004. Technologies for the Wireless Future:
Wireless World Research Forum (WWRF). John-Wiley & Sons.

Tafazolli, R. (Ed.) 2006. Technologies for the Wireless Future:
Wireless World Research Forum (WWRF), Volume 2. John-
Wiley & Sons.

Takagi, H. and Kleinrock, L. 1984. Optimal Transmission
Ranges for Randomly Distributed Packet Radio Terminals. IEEE
Transactions on Communications 32, 3 (March), 246–257. IEEE
Educational Activities Department.

Tarkoma, S., Kangasharju, J., Lindholm, T., and

Raatikainen, K. 2006. Fuego: Experiences with Mobile Data
Communication and Synchronization. In Proceedings of the 17th

192 References

Annual IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC’06), pp. 1–5.

TinyOS 2007. TinyOS. http://www.tinyos.net.

Tiwari, A., Ballal, P., and Lewis, F. L. 2007. Energy-
Efficient Wireless Sensor Network Design and Implementation
for Condition-based Maintenance. ACM Transactions on Sensor
Networks 3, 1, 1–23. ACM Press.

Toh, C.-K. 1996. A Novel Distributed Routing Protocol To Sup-
port Ad hoc Mobile Computing. In Proceedings of the IEEE
15th Annual International Phoenix Conference on Computers
and Communications, (IPCCC’96), pp. 480–486. IEEE.

Tubaishat, M. and Madria, S. 2003. Sensor Networks: An
Overview. IEEE Potentials 22, 2, 20–23. IEEE Educational
Activities Department.

UrbanSensing 2007. Urban Sensing Project. http://censweb.ats.
ucla.edu/projects/2006/Systems/Urban_Sensing/.

Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., and Corke,

P. 2005. Data Collection, Storage, and Retrieval with an Under-
water Sensor Network. In Proceedings of the Third International
Conference on Embedded Networked Sensor Systems (SenSys’05),
pp. 154–165. ACM Press.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P.,
Saygin, Y., and Theodoridis, Y. 2004. State-of-the-art in
Privacy Preserving Data Mining. ACM SIGMOD Record 33, 1,
50–57. ACM Press.

Waldo, J. 2005. Embedded Computing and Formula One Racing.
IEEE Pervasive Computing 4, 3 (July-September), 18–21. IEEE
Educational Activities Department.

Want, R., Borriello, G., Pering, T., and Farkas, K. I. 2002.
Disappearing Hardware. IEEE Pervasive Computing 1, 1, 36–47.
IEEE Educational Activities Department.

Want, R., Hopper, A., Falcao, V., and Gibbons, J. 1992.
The Active Badge Location System. ACM Transactions on In-
formation Systems (TOIS) 10, 1, 91–102. ACM Press.

References 193

WAP Forum 2001. User Agent Profiling Specification. WAG
UAProf. Version 20-Oct-2001. WAP-248-UAProf-20011020-a.

Weiser, M. 1991. The Computer for the Twenty-First Century.
Scientific American 265, 3 (September), 94–104.

Weiser, M. 1994. The World is not a Desktop. ACM Interac-
tions 1, 1 (January), 7–8. ACM Press.

Weiser, M. and Brown, J. S. 1997. The Coming Age of Calm
Technolgy. In P. J. Denning and R. M. Metcalfe (Eds.), In
Beyond Calculation: the Next Fifty Years, New York, NY, pp.
75–85. Copernicus.

Welsh, M. and Mainland, G. 2004. Programming Sensor
Networks Using Abstract Regions. In Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI’04), pp. 29–42.

Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O.,
Johnson, J., Ruiz, M., and Lees, J. 2006. Deploying a Wire-
less Sensor Network on an Active Volcano. IEEE Internet Com-
puting 10, 2 (March), 18–25. IEEE Educational Activities De-
partment.

Whitehouse, K., Liu, J., and Zhao, F. 2006. Semantic Streams:
a Framework for Composable Inference over Sensor Data. In
Proceedings of the Third European Workshop on Wireless Sensor
Networks (EWSN’06), Volume 3868 of Lecture Notes in Com-
puter Science. Springer-Verlag.

Whitehouse, K., Sharp, C., Brewer, E., and Culler, D.

2004. Hood: A Neighborhood Abstraction for Sensor Networks.
In Proceedings of the Second International Conference on Mobile
Systems, Applications, and Services (MobiSys’04), pp. 99–110.
ACM.

Wies, R. 1994. Policies in Network and Systems Management
- Formal Definition and Architecture. Journal of Networks and
Systems Management 2, 1 (March), 63–83. Springer Netherlands.

Wireless World Research Forum 2001. Book of Visions 2001.
http://www.wireless-world-research.org/.

194 References

Woo, K., Yu, C., Lee, D., Youn, H. Y., and Lee, B. 2001.
Non-Blocking, Localized Routing Algorithm for Balanced En-
ergy Consumption in Mobile Ad Hoc Networks. In Proceedings
of the 9th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MAS-
COTS’01), pp. 117–124. IEEE Computer Society.

White, G., Kangasharju, J., Brutzman, D., and Williams,

S. (Eds.) 2007. Efficient XML Interchange Measurements Note.
World Wide Web Consortium. W3C Working Draft.

WRC 2007. Resource Description Framework (RDF). http://www.
w3.org/RDF.

Xu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D.,
Broad, A., Govindan, R., and Estrin, D. 2004. A Wireless
Sensor Network for Structural Monitoring. In Proceedings of the
Second International Conference on Embedded networked Sensor
Systems (SenSys’04), pp. 13–24. ACM Press.

Xu, Y., Heidemann, J., and Estrin, D. 2001. Geography-
informed Energy Conservation for Ad Hoc Routing. In Proceed-
ings of the 7th Annual International Conference on Mobile Com-
puting and Networking (MobiCom’01), pp. 70–84. ACM Press.

Yao, Y. and Gehrke, J. 2002. The Cougar Approach to In-
Network Query Processing in Sensor Networks. ACM SIGMOD
Record 31, 3 (September), 9–18. ACM.

Yao, Y. and Gehrke, J. 2003. Query Processing in Sensor Net-
works. In Proceedings of the First Biennal Conference on In-
novative Data Systems Research (CIDR’03), pp. 233–244. ACM
Press.

Yau, S. and Karim, F. February 2004. A context-sensitive mid-
dleware for dynamic integration of mobile devices with network
infrastructures. Journal Parallel Distributed Computing 64, 2,
301–317. Academic Press, Inc.

Yau, S. S., Karim, F., Wang, Y., Wang, B., and Gupta, S.

2002. Reconfigurable Context-Sensitive Middleware for Pervasive
Computing. IEEE Pervasive Computing 1, 3 (July-Sept), 33–40.
IEEE Educational Activities Department.

References 195

Ye, W., Heidemann, J., and Estrin, D. 2002. An Energy-
Efficient MAC Protocol for Wireless Sensor Networks. In Proceed-
ings of the IEEE INFOCOM’02 Conference on Computer Com-
munications, Volume 3, pp. 1567–1576.

Yoneki, E. 2005. Evolution of Ubiquitous Computing with Sensor
Networks in Urban Environments. Workshop on Metapolis and
Urban Life.

Yu, C., Lee, B., and Youn, H. Y. 2003. Energy Efficient Routing
Protocols for Mobile Ad Hoc Networks. Wireless Communica-
tions and Mobile Computing Journal 3, 8 (December), 959–973.
John-Wiley & Sons.

Yu, Y., Govindan, R., and Estrin, D. 2001. Geographical and
Energy Aware Routing: A Recursive Data Dissemination Proto-
col for Wireless Sensor Networks. Technical Report UCLA/CSD-
TR-01-0023 (May), UCLA Computer Science Department Tech-
nical Report.

Zhang, W., Kantor, G., and Singh, S. 2004. Integrated Wire-
less Sensor/Actuator Networks in an Agricultural Application.
In Proceedings of the Second International Conference on Embed-
ded Networked Sensor Systems (SenSys’04), pp. 317–317. ACM
Press.

Zhong, S., Chen, J., and Yang, Y. R. 2003. Sprite: A Simple,
Cheat-Proof, Credit-Based System for Mobile Ad-Hoc Networks.
In Proceedings of the IEEE INFOCOM’03 Conference on Com-
puter Communications, pp. 1987–1997.

Zhou, P., Nadeem, T., Kang, P., Borcea, C., and Iftode,

L. 2005. EZCab: A Cab Booking Application Using Short-Range
Wireless Communication. In Proceedings of the Third IEEE In-
ternational Conference on Pervasive Computing and Communi-
cations (PerCom’05), pp. 27–38. IEEE Computer Society.

Zhu, D. and Mutka, M. W. 2004. Promoting cooperation among
strangers to access internet services from an ad hoc network. In
Proceedings of the Second IEEE International Conference on Per-
vasive Computing and Communications (PerCom’04), pp. 229–
240. IEEE Computer Society.

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 Uni-
versity of Helsinki, Finland.

A-2000-1 P. Moen: Attribute, event sequence, and event type similarity notions for
data mining. 190+9 pp. (Ph.D. thesis).

A-2000-2 B. Heikkinen: Generalization of document structures and document assem-
bly. 179 pp. (Ph.D. thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based distri-
buted systems. 151+15 pp. (Ph.D. thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp.
(Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement rela-
tions. 157 pp. (Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp.
(Ph.D. thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp.
(Ph.D. thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D.
thesis)

A-2002-1 A.-P. Tuovinen: Object-oriented engineering of visual languages. 185 pp.
(Ph.D. thesis)

A-2002-2 V. Ollikainen: Simulation techniques for disease gene localization in isolated
populations. 149+5 pp. (Ph.D. thesis)

A-2002-3 J. Vilo: Discovery from biosequences. 149 pp. (Ph.D. thesis)

A-2003-1 J. Lindström: Optimistic concurrency control methods for real-time data-
base systems. 111 pp. (Ph.D. thesis)

A-2003-2 H. Helin: Supporting nomadic agent-based applications in the FIPA agent
architecture. 200+17 pp. (Ph.D. thesis)

A-2003-3 S. Campadello: Middleware infrastructure for distributed mobile applica-
tions. 164 pp. (Ph.D. thesis)

A-2003-4 J. Taina: Design and analysis of a distributed database architecture for
IN/GSM data. 130 pp. (Ph.D. thesis)

A-2003-5 J. Kurhila: Considering individual differences in computer-supported special
and elementary education. 135 pp. (Ph.D. thesis)

A-2003-6 V. Mäkinen: Parameterized approximate string matching and local-similarity-
based point-pattern matching. 144 pp. (Ph.D. thesis)

A-2003-7 M. Luukkainen: A process algebraic reduction strategy for automata theo-
retic verification of untimed and timed concurrent systems. 141 pp. (Ph.D.
thesis)

A-2003-8 J. Manner: Provision of quality of service in IP-based mobile access net-
works. 191 pp. (Ph.D. thesis)

A-2004-1 M. Koivisto: Sum-product algorithms for the analysis of genetic risks. 155
pp. (Ph.D. thesis)

A-2004-2 A. Gurtov: Efficient data transport in wireless overlay networks. [B 141 pp.
(Ph.D. thesis)

A-2004-3 K. Vasko: Computational methods and models for paleoecology. 176 pp.
(Ph.D. thesis)

A-2004-4 P. Sevon: Algorithms for Association-Based Gene Mapping. 101 pp. (Ph.D.
thesis)

A-2004-5 J. Viljamaa: Applying Formal Concept Analysis to Extract Framework
Reuse Interface Specifications from Source Code. 206 pp. (Ph.D. thesis)

A-2004-6 J. Ravantti: Computational Methods for Reconstructing Macromolecular
Complexes from Cryo-Electron Microscopy Images. 100 pp. (Ph.D. thesis)

A-2004-7 M. Kääriäinen: Learning Small Trees and Graphs that Generalize. 45+49
pp. (Ph.D. thesis)

A-2004-8 T. Kivioja: Computational Tools for a Novel Transcriptional Profiling Method.
98 pp. (Ph.D. thesis)

A-2004-9 H. Tamm: On Minimality and Size Reduction of One-Tape and Multitape
Finite Automata. 80 pp. (Ph.D. thesis)

A-2005-1 T. Mielikäinen: Summarization Techniques for Pattern Collections in Data
Mining. 201 pp. (Ph.D. thesis)

A-2005-2 A. Doucet: Advanced Document Description, a Sequential Approach. 161
pp. (Ph.D. thesis)

A-2006-1 A. Viljamaa: Specifying Reuse Interfaces for Task-Oriented Framework Spe-
cialization. 285 pp. (Ph.D. thesis)

A-2006-2 S. Tarkoma: Efficient Content-based Routing, Mobility-aware Topologies,
and Temporal Subspace Matching. 198 pp. (Ph.D. thesis)

A-2006-3 M. Lehtonen: Indexing Heterogeneous XML for Full-Text Search. 185+3
pp.(Ph.D. thesis).

A-2006-4 A. Rantanen: Algorithms for 13C Metabolic Flux Analysis. 92+73 pp.(Ph.D.
thesis).

A-2006-5 E. Terzi: Problems and Algorithms for Sequence Segmentations. 141 pp.
(Ph.D. Thesis).

A-2007-1 P. Sarolahti: TCP Performance in Heterogeneous Wireless Networks.(Ph.D.
Thesis).

A-2007-2 M. Raento: TCP Exploring privacy for ubiquitous computing: Tools, meth-
ods and experiments. (Ph.D. thesis).

A-2007-3 L. Aunimo: Methods for Answer Extraction in Textual Question Answering
127+18 pp. (Ph.D. Thesis).

A-2007-4 T. Roos: Statistical and Information-Theoretic Methods for Data Analysis.
82+75pp. (Ph.D. Thesis).

A-2007-5 S. Leggio: A Decentralized Session Management Framework for Heteroge-
neous Ad-Hoc and Fixed Networks 230 pp. (Ph.D. Thesis).

