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ABSTRACT
Embedded systems greatly outnumber desktop computing
systems and are witnessing rapid growth as increasing num-
bers of industrial, commercial and consumer devices incor-
porate embedded intelligence. In addition, there are emerg-
ing application classes which were hitherto not feasible, but
will be enabled by the programmability and connectivity of
these pervasive computing elements. The scale and fragility
of these networks make traditional distributed computing
models inadequate.
Presented is a system architecture, Smart Messages, for

computation and communication in large networks of net-
worked embedded systems. In this model, communication is
realized by sending Smart Messages in the network. These
messages are comprised of code, which is executed at each
hop in the path of the message, and a payload which the
message carries in the network. The execution of the mes-
sage at each hop determines the next hop in the path of the
message, thus smart messages are responsible for their own
routing.
This paper details the motivation for Smart Messages,

describes the smart message model and proposes a system
architecture to support this model. We conjecture that
smart messages provide a suitable distributed computing
model for networks of embedded devices and discuss some
design issues.

1. INTRODUCTION
Embedded systems have outnumbered traditional desktop

computing systems for several years and will continue to
do so in the future. A new trend in embedded systems is
to provide networking, either wired or wireless. As device
costs plummet, it will soon be feasible to deploy networks
of embedded computing devices of the order of tens of thou-
sands to millions of nodes. These networks will be inherently
heterogeneous, both in the interconnection technologies, and
in the individual functions of the component nodes. Each
node will be targeted towards performing a speci�c task,
such as sensing motion, and the hardware will be accord-
ingly specialized. These embedded computing devices will
typically be mobile and have constrained energy resources,
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and are very likely to be battery powered. Even in cases
where devices are not mobile and could be connected to a
permanent source of power, the cost and di�culty of elec-
trical wiring of power to individual devices might preclude
the use of a permanent power source.
Networked embedded systems poses a unique set of chal-

lenges. Unlike the Internet, these networks will typically be
deployed in situations void of human attention, situations
in which it is unacceptable to require a human to hit a
\reset" button to recover from a failure. The availability
of nodes may vary greatly with time, with nodes becoming
unreachable due to mobility, depletion of energy resources
or catastrophic failure. Traditional naming architectures
such as TCP/IP, that provide unique names on a per device
basis, and depend on binding of properties to names at the
time of message dispatch are inappropriate for networks of
such scale and volatility. Instead, alternative addressing
schemes where the binding between a desired destination
and a unique name may vary over the lifetime of a message
traversing the network are required 1.
Despite the architectural and interconnection diversity of

these networks, it should be possible to utilize them to
perform global tasks, ranging from those as simple as col-
lection, aggregation and delivery of data from sensors and
routing of data tra�c in the network, up to more com-
plex tasks like collectively tracking motion across a geo-
graphical area. Individual nodes will have unique proper-
ties such as geographic location, motion, energy resources
or hardware. For applications to be able to fully harness
these unique resources, we believe that these computing
elements must be programmable and support user-de�ned
applications. Merely providing system support for remote
programmability doesn't solve the problem.
To bene�t from programmability, and the aggregated com-

puting resources deployed in these networks, new distributed
computing models must be employed, which will necessar-
ily be di�erent from the traditional distributed computing
models for several reasons. First, at such large network
scale, a property-based naming rather than a unique iden-
ti�er for the participant nodes in the computation must
be supported. Second, given the 
uidity and volatility of
these networks in terms of node con�guration and network
topology, it may be impossible to synchronize computation,
and round-trip communication may never complete. Third,

1Intentional naming [2] has recently addressed this problem
for IP networks.
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Figure 1: Smart Message Model Example

applications should accept partial execution as long as it is
relevant, i.e. meets a certain quality of result (QoR).
We propose a new system architecture for large networks

of embedded systems, based on the idea of intelligent car-
riers of data in a network. Communication in the network
consists of collections of code and mobile data referred to
as Smart Messages. Smart Messages migrate through the
network, a single network hop at a time, executing at each
step. They are responsible for determining their own paths
through the network, utilizing a minimal set of facilities
provided by nodes in the network. Nodes in the network that
support Smart Messages are referred to as cooperative nodes,
and they provide architecturally independent environments
for the receipt and execution of Smart Messages.
We conjecture that the Smart message architecture is 
ex-

ible enough to support a wide variety of applications, rang-
ing from data collection and dissemination, content based
routing and object tracking to more traditional distributed
computing applications in which execution of a task is spread
across a collection of devices.
The rest of this paper is organized as follows. The fol-

lowing section describes the model of use of Smart Mes-
sages. Section 3 describes the Smart Message architecture,
followed by section 4, which discusses issues that must be
investigated in the Smart Message architecture. Section 5
discusses related work and Section 6 describes the status of
the research.

2. MODEL
We propose a distributed computing model based on Smart

Messages (SM) and cooperative devices in a network. A
Smart Message (SM) is an intelligent carrier of data in the
network. 2 It migrates through the network one network hop
at a time, executing at each step. The execution performed
at each step may di�er based on peculiar properties of that
node. For example, on nodes in the network which have
sensors of interest to the SM, it may read, and even process
sensor data. Other nodes in the network might be used as
ad-hoc \stepping stones" between nodes of interest.
Figure 1a illustrates a network consisting of three types of

2Smart packets [16], mobile agents [20, 10, 14] and active
messages [19] can also be seen as \intelligent carriers" of
data. Similarities and di�erences are discussed in the related
work section.

nodes, represented with squares, circles and triangles. The
nodes represented by squares are nodes of interest to an SM
which is launched from the circular node in the lower left
of Figure 1a. The goal of the application implemented by
this SM is to visit the �ve square nodes and to propagate a
local data item of each node to the next one visited in order.
The numbered arrows show the path and numerical order of
nodes visited by the SM. The network maintains no routing
infrastructure, and the SM is responsible for determining
a path to its destination, the square node marked with the
number `5' in the �gure. The SM may use other nodes in the
network, the circular and triangular nodes, as intermediates
hops as it navigates through the network.
In moving from one node to the next, the SM must there-

fore carry with it the last value it read, maintaining state as
it moves from node to node through the network. Figure 1b
shows the state of the network after the SM is done navigat-
ing the network, and thus the application it implements is
complete. This SM may represent a simple object tracking
application, in which the motion of the SM through the
network is determined by values it reads at sensors on nodes,
the SM's path being recorded in the state of the network.
Devices in a network of embedded systems will typically

have a wide variety of processor and system architectures.
To support SMs across heterogenous architectures, it will be
necessary to provide a hardware abstraction layer such as
a virtual machine, that shields SMs from the peculiarities
of the individual node architectures. Cooperative nodes
provide a limited data store, termed the Tag Space, which is
persistent across the executions of SMs. An SM executing
at a node may read certain Tags and may create new Tags
in the node's Tag Space. In our example, the data the SM
transports from one node to another gets written into the
destination's Tag space. Tags can also be used for naming
and routing as well as for data exchange, data sharing and
synchronization between SMs.
During its execution on a node in the network, an SM may

spawn new SMs which may be sent out to other cooperative
nodes in the network. A \reliable" SM may, for instance,
spawn SM(s) to collect routing information or discover the
path to the next node of interest before leaving. A col-
lection of such SMs executing in a network constitute an
application. A network may simultaneously contain several
executing applications, as illustrated in Figure 1c. In the
�gure, nodes of interest to the �rst application are the square
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nodes, and nodes exclusive to the path of this application are
colored white. Nodes of interest to the second application
are depicted with triangles, and nodes exclusive to its path
are colored black. Nodes in the network which may at
some point be either part of the �rst or second application
are colored grey. For example, the grey triangle is just a
\stepping stone" on the path of the the �rst application,
but is a node of interest to the second application. Likewise
the grey square is a node of interest to the �rst application
but is just an intermediate host for the second application.

3. SYSTEM ARCHITECTURE
The goal of the Smart Message architecture is to keep the

support required from nodes in the network to the bare mini-
mum, placing intelligence in the Smart Messages rather than
in individual nodes. Placing intelligence in SMs, and pro-
viding a common minimal support from cooperative nodes,
provides 
exibility and obviates the need for the potentially
impossible task of updating all nodes in a network for the
implementation of a new application or protocol. 3

Figure 2 illustrates the general architecture of a device,
termed a cooperative node that supports the execution of
Smart Messages. The primary logical components of such a
device are the processor and peripherals, a virtual machine
to provide a hardware abstraction layer for executing SMs,
memory for loading smart messages, and global Tags, which
are persistent across Smart Message executions. The virtual
machine provides a uniform view to executing SMs and in-
corporates basic system software support. It implements the
security policies of the cooperative device, preventing po-
tentially malicious SMs from accessing restricted resources.
The Scylla virtual machine [17] was designed speci�cally to
support architectures such as Smart Messages, and it is the
intended virtual machine for an initial implementation. The
architecture is however not tied to Scylla, which may be
replaced with another virtual machine such as Sun Microsys-
tems KVM [18].

3.1 Tag Memory Structure

3Some of these arguments were presented in the active
networking community with modest success. Unlike in
active networks, scalability is of primary importance, and
partial results may be acceptable in networks of embedded
systems.

Each node that supports Smart Messages manages a struc-
tured memory region, the Tag Space, consisting of a limited
number of Tags that are persistent across the execution of
SMs. Although the Tag space provides persistent storage
across SM execution, it is not speci�cally intended to be
implemented with any particular type of storage medium,
and is equally likely to be implemented with volatile RAM
or nonvolatile FLASH memory.
Each tag consists of an identi�er, a digital signature, life-

time information, and data. The identi�er �eld is the name
of the Tag, and is similar to a �le name in a �lesystem.
An SM may only write to an existing Tag or delete a tag
if its signature matches that in the signature �eld of the
Tag. Smart Message signatures are discussed further in the
following subsection. The tag lifetime speci�es the time at
which the tag will be reclaimed by the virtual machine from
the tag space. Figure 3 illustrates the structure of Tags on
a device.
Tags may be used for a myriad of applications. They may

be used to store state in a network. They may indicate the
state of a node, for example a node might have a Tag which
represents a local sensor. Reading this Tag returns a reading
from the sensor, and SMs cannot delete such a Tag. SMs
may use Tags to name nodes of interest or to store routing
information. For example SMs which are part of an appli-
cation that carries data through a network may create tags
at visited nodes in the network, caching discovered route
information. This information is stored in the data portion
of a tag, thus an application may implement traditional
routing algorithms, using Tags to store routing tables. Tags
may also be used for synchronization as discussed further in
Section 3.3.

3.2 Smart Message Format
Smart Messages are comprised of a digital signature, code

and data sections, and a resource table. The digital sig-
nature identi�es an SM, and is used by cooperative nodes
to enforce access of an SM to Tags. The code and data
sections are comprised of components referred to as bricks.
Each code brick is an independent program that may be used
together with the other code and data bricks to generate a
new, possibly smaller SM. The data bricks contain mobile
data of the SM that can be accessed by the SM during
execution. The resource table consists of Tag identi�ers,
execution starting points and resource estimates (execution
time, new tags to be created, communication tra�c, etc).
Before the SM is scheduled for the execution, the Tags in
the resource table are checked against local Tags, to set the
resource limits usage and the starting point in the execution.
The resource estimates denote a bound on the expected need
of the SM at a node, and may be used for scheduling or to
reject SMs that the node cannot satisfy. Figure 4 depicts
the structure of a Smart Message.

3.3 Smart Message Execution
Executing Smart Messages are embodied in Tasks and

executed over the virtual machine. During this execution, a
task may modify the data section of the message as well as
the local Tags to which it has access, or may send new smart
messages comprised of one or more of the bricks contained
in the original Smart Message, to another node.
An executing task is never preempted by the virtual ma-

chine, but a task may yield the virtual machine by explicitly
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requesting to do so, by blocking on a Tag to be written on the
local node by another SM. However, if the execution time
estimate based on which the task was scheduled expires,
the task can be forcefully terminated. New Smart Messages
can always be received at a node provided there are su�-
cient memory resources, but the corresponding tasks will be
scheduled only after the current task completes its execution
on yields the VM. When an executing Task terminates or
blocks, the virtual machine may select a blocked Task for
execution, if the tag on which it is blocked has been written
in the meantime (by other tasks) or its lifetime has expired.
This mechanism can be used by an SM which spawns SMs

for route discovery then blocks on a routing tag. When
a spawned SM returns, it updates the this tag and exits,
causing the original SM to become unblocked. Since tags are
persistent, routing information once acquired can be used by
subsequent tasks with similar interests, thus amortizing the
routing discovery e�ort.

4. DESIGN ISSUES
In the following, we brie
y outline some design issues that

confront the Smart Message architecture.
The networks in which Smart Messages are deployed will

be inherently volatile, due to node mobility, energy resource
constraints, and catastrophic failure. It is essential to be
able to provide some notion of functionality even under
these conditions. It might be necessary to tradeo� energy
e�ciency for reliability - engaging in extra communications
by generating extra Smart Messages to provide redundancy.
It is desirable to be able to amortize the cost of opera-

tions performed by a Smart Message over time and across
the executions of other Smart Messages. This is possible
through the use of Tags to cache data at nodes that may
be subsequently read by migratory Smart Messages. The
requirements on sizes of Tag Spaces to make this e�ective
remain to be investigated, as do the Tradeo�s between Tag
Space size and performance, network reliability, energy e�-
ciency, and device cost.
It will often be desirable to obtain partial results from a

computation. The concepts of correctness of a computation
will need to be reconsidered, and a metric for the quality of
a result developed.
The requirement to carry code in Smart Messages raises

the issue of overhead in terms of code transmission in the
network and there is a tradeo� between the 
exibility pro-
vided and this overhead. Several schemes may be used to
reduce this overhead, for example cooperative nodes may
cache code bricks of Smart Messages.
Given the wide variety of processor and system architec-

tures that will exist in the network, it is necessary to provide
a hardware abstraction layer to shield applications from the
details of the individual node architectures. The amount of
system software support required, and whether this should
be included in the virtual machine implementation or placed
at a layer below it is an open question. If this virtual
machine enforces security policies, should these policies be
set per device or across an entire network, and what kind of

security infrastructure is appropriate.
It will be necessary to de�ne a programming model for

constructing applications made up of Smart Messages. The
facilities provided by the programming interface and lan-
guage must match those of the underlying architecture. Whether
current solutions are su�cient, or new solutions are needed
remains to be seen.

5. RELATED WORK
Smart messages bear some similarity to active messages [19],

smart packets [16] and mobile agents [20, 10, 14].
Like active messages, the arrival of a smart message at a

node leads to the execution of a task on the node. Unlike
Active messages that point to a handler at the destination,
smart messages carry code with them. Beyond the super-
�cial similarity between the Smart Messages and Active
Messages, the two models address two completely di�erent
problems. Active messages target fast communication in
system-area networks and therefore, the handler execution is
short and triggered as soon as the active message arrives. On
the other hand, smart messages target remote programma-
bility of massive networks of embedded devices. Energy
savings and quality of result are typically more important
in these scenarios than performance.
Smart messages are similar to mobile agents [20, 10, 14]

which also involve migration of code in the network. A
mobile agent may be viewed as a task that explicitly mi-
grates from node to node assuming the underlying network-
ing assures its transport between them. Smart messages
unlike mobile agents, are de�ned to be responsible for their
own routing in a network. The smart message architecture
further de�nes infrastructure that nodes in a network sup-
porting smart messages must implement, which makes this
self routing in smart messages possible.
The smart packet architecture [16] provides a 
exible means

of network management through the use of mobile code.
Smart packets are implemented over the Internet Protocol
architecture, using the IP options header. They are routed
just like other data tra�c in the network, and only exe-
cute on arrival at a speci�c location. Unlike smart packets,
Smart Messages are executed at each hop in the network and
his execution determines the net hop in the route. Smart
Messages, unlike smart packets encapsulate the state of the
application as it is executed at each hop in the network.
Mobile ad hoc networking research such as[11, 3, 13, 12]

and its applications [15], has resulted in numerous routing
protocols for peer-to-peer multi-hop networking in infras-
tructures without base-stations. These protocols have gen-
erally been designed for networks based on the Internet Pro-
tocol, and have been targeted primarily towards traditional
mobile computing applications such as mobile personal com-
puters and PDAs. These protocols can be leveraged and
implemented over the smart message architecture.
Recent work speci�c to large networks of embedded sys-

tems has focused networking protocols for wired and wireless
sensor networks [4, 9, 7, 6] and system architectures for
�xed function sensor networks [8]. This research is comple-
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mentary to the Smart Message architecture. It is our hope
to provide enough 
exibility in our architecture to enable
the implementation of these models over the Smart Message
architecture.

6. STATUS
We plan to validate the model through simulations and a

hardware prototype implementation. We are in the process
of �nalizing a simulation platform for this architecture, with
which we plan to investigate tradeo�s in the Smart Message
architecture such as reliability through the use of multiple
SMs versus energy costs, scheduling and routing policies as
well as scalability of the model across a large network of
devices.
We plan to investigate the implementation of previously

proposed protocols for data dissemination [7], data collec-
tion [9] and energy e�cient routing [6], over the Smart
Message architecture.
We have commenced a hardware prototype implementa-

tion, with a implementation of the Scylla virtual machine[17]
for the Hitachi SH3 architecture. We plan to extend this
implementation to other microprocessor and microcontroller
platforms, and also to implement a test-bed using wireless
networking technologies such as Bluetooth [5, 1].
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