
ABSTRACT

VEHICLE RE-ROUTING STRATEGIES FOR CONGESTION
AVOIDANCE

by
Juan (Susan) Pan

Traffic congestion causes driver frustration and costs billions of dollars annually in lost

time and fuel consumption. This dissertation introduces a cost-effective and easily

deployable vehicular re-routing system that reduces the effects of traffic congestion.

The system collects real-time traffic data from vehicles and road-side sensors, and

computes proactive, individually tailored re-routing guidance, which is pushed to

vehicles when signs of congestion are observed on their routes. Subsequently, this

dissertation proposes and evaluates two classes of re-routing strategies designed to be

incorporated into this system, namely, Single Shortest Path strategies and Multiple

Shortest Paths Strategies.

These strategies are firstly implemented in a centralized system, where a server

receives traffic updates from cars, computes alternative routes, and pushes them

as guidance to drivers. The extensive experimental results show that the proposed

strategies are capable of reducing the travel time comparable to a state-of-the-art

Dynamic Traffic Assignment (DTA) algorithm, while avoiding the issues that make

DTA impractical, such as lack of scalability and robustness, and high computation

time. Furthermore, the variety of proposed strategies allows the system to be tuned

to different levels of trade-off between re-routing effectiveness and computational

efficiency. Also, the proposed traffic guidance system is robust even if many drivers

ignore the guidance, or if the system adoption rate is relatively low.

The centralized system suffers from two intrinsic problems: the central server has

to perform intensive computation and communication with the vehicles in real-time,

which can make such solutions infeasible for large regions with many vehicles; and driver

privacy is not protected since the drivers have to share their location as well as the

origins and destinations of their trips with the server, which may prevent the adoption

of such solutions. To address these problems, a hybrid vehicular re-routing system

is presented in this dissertation. The system off-loads a large part of the re-routing

computation at the vehicles, and thus, the re-routing process becomes practical in

real-time. To make collaborative re-routing decisions, the vehicles exchange messages

over vehicular ad hoc networks. The system is hybrid because it still uses a server

to determine an accurate global view of the traffic. In addition, the user privacy is

balanced with the re-routing effectiveness. The simulation results demonstrate that,

compared with a centralized system, the proposed hybrid system increases the user

privacy substantially, while the re-routing effectiveness is minimally impacted.

VEHICLE RE-ROUTING STRATEGIES FOR CONGESTION
AVOIDANCE

by
Juan (Susan) Pan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2014

Copyright c© 2014 by Juan (Susan) Pan

ALL RIGHTS RESERVED

APPROVAL PAGE

VEHICLE RE-ROUTING STRATEGIES FOR CONGESTION
AVOIDANCE

Juan (Susan) Pan

Dr. Cristian M. Borcea, Dissertation Advisor Date
Associate Professor, Computer Science, New Jersey Institute of Technology

Dr. Guiling Wang, Committee Member Date
Associate Professor, Computer Science, New Jersey Institute of Technology

Dr. Vincent Oria, Committee Member Date
Associate Professor, Computer Science, New Jersey Institute of Technology

Dr. Iulian Sandu Popa, Committee Member Date
Assistant Professor, Computer Science, University of Versailles Saint-Quentin

Dr. Wu Chou, Committee Member Date
VP, Chief IT Scientist, Huawei Research Lab

BIOGRAPHICAL SKETCH

Author: Juan (Susan) Pan

Degree: Doctor of Philosophy

Date: January 2014

Date of Birth: May 16, 1981

Place of Birth: Xinning, Guangdong, China

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2014

• Master of Science in Computer Science,
Tianjin University, Tianjin, China, 2006

• Bachelor of Science in Computer Science,
Hebei University of Technology, Tianjin, China, 2003

Major: Computer Science

Presentations and Publications:

Juan (Susan) Pan, Iulian Sandu Popa and Cristian Borcea, “A Hybrid Vehicular
Traffic Re-routing System for Congestion Avoidance,” IEEE Transactions on
Vehicular Technology (to be submitted)

Juan (Susan) Pan and Cristian Borcea, “Vehicular Sensor Networks,” Chapter in
the Handbook of Sensor Networking: Advanced Technologies and Applications,
CRC Press (to be submitted)

Juan (Susan) Pan, Iulian Sandu Popa, Karine Zeitouni, and Cristian Borcea, “Proactive
Vehicular Traffic Re-routing for Lower Travel Time,” IEEE Transactions on
Vehicular Technology, Vol. 62, No. 8, 2013

Daniel Boston, Steve Mardenfeld, Juan (Susan) Pan, Quentin Jones, Adriana Iamnitchi,
and Cristian Borcea, “Leveraging Bluetooth Co-location Traces in Group
Discovery Algorithms,” To appear in Elsevier Pervasive and Mobile Computing
Journal , Special Section on Mobile Social Networks, 2014.

iv

Susan Juan Pan, Mohammad A. Khan, Iulian Sandu Popa, Karine Zeitouni, and
Cristian Borcea, “Proactive Vehicle Re-routing Strategies for Congestion
Avoidance,” in Proceedings of the 8th IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS ’12), May 2012.

Juan (Susan) Pan, Li Li, Wu Chou, “Real-Time Collaborative Video Watching
on Mobile Devices with REST Services,” in Proceedings of the 3th FTRA
International Conference on Mobile, Ubiquitous and Intelligent Computing
(MUSIC 2012), June 2012.

Susan Juan Pan, Daniel Boston, and Cristian Borcea, “Analysis of Fusing Online and
Co-presence Social Networks,” in Proceedings of the 2nd IEEE Workshop on
Pervasive Collaboration and Social Networking (PerCol 2011), March 2011.

Steve Mardenfeld, Daniel Boston, Susan Juan Pan, Quentin Jones, Adriana Iamnitchi,
and Cristian Borcea, “GDC: Group Discovery using Co-location Traces,” in
Proceedings of the 2nd IEEE Symposium on Social Computing Applications
(SCA-10), August 2010.

v

To my husband: David Paglia
for all his love and support
over the years. He has been
my comfort through all the
difficult moments.

vi

ACKNOWLEDGMENT

I would truly like to express my most sincere appreciation to my Dissertation Advisor,

Dr. Cristian Borcea who has continually challenged my abilities as a researcher over

the years. Dr. Borcea has been a constant mentor to me, always dedicating the time

to mold my weaknesses into strengths.

Special thanks are given to Dr. Iulian Sandu Popa from University of Versailles

Saint-Quentin, France for his great efforts of collaborating with me to accomplish this

work. I am grateful for the time he has dedicated to this dissertation and for all his

contributions for improving my research.

I thank Dr. Vincent Oria for all his encouragement and assistance early on in

this project and many opportunities he had given me to help me grow.

I would like to thank Dr. Guiling Wang for her generous advice. I am very

grateful for all the time she took out of her schedule to listen to me and offer valuable

advice.

I wish to give my sincere thanks to Dr. Wu Chou for supervising and leading

me during my internship. It was an honor to work together with him. The lesson he

taught me is essential in several aspects of my career. Finally, I would like to thank

Drs. Sandu Popa, Oria, Wang, and Chou for being part of my dissertation committee.

I would like to acknowledge Dr. Li Li who was always patient with me and take

the time to answer my numerous questions and brainstorm solutions to various issues

that arose while working together with him. I really appreciate his help.

I would like to thank all the faculty and administration of the Computer Science

department at NJIT as well as all my colleagues in the Networking Laboratory for

their intellectual and moral support through the years.

In the end, I would like to acknowledge my husband, David Paglia; my parents,

Zhixin Pan, Xiping Shen; and my parents in law, George Paglia and Lynn Paglia. I’m

vii

blessed for having such a great family. Their unconditional love has always been the

strength for me to confront various difficulties towards the path to the goal. Without

them, nothing would have been possible.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Vehicle Re-routing Systems . 2

1.1.1 Current In-car Navigation Systems 2

1.1.2 Dynamic Traffic Assignment 3

1.1.3 Vehicular-based Cooperative Traffic Guidance Systems 4

1.2 Problem Statement . 6

1.3 Contributions of Dissertation . 7

1.4 Structure of Dissertation . 10

2 RELATED WORK . 11

2.1 Existing Vehicle Routing Services . 11

2.2 K Shortest Path Generation . 12

2.3 Dynamic Traffic Assignment Model 13

2.4 Vehicular Ad hoc Networks . 14

2.5 Location Privacy Protection . 16

2.6 Chapter Summary . 18

3 SYSTEM OVERVIEW AND CHALLENGES 19

3.1 Basic Centralized Design . 19

3.1.1 Traffic Data Representation and Estimation 21

3.1.2 Congestion Prediction . 21

3.1.3 Selection of Vehicles to be Re-routed 22

3.1.4 Ranking the Selected Vehicles 23

3.1.5 Alternative Route Computation and Assignment 24

3.2 Challenges . 25

3.2.1 Privacy . 25

3.2.2 Robustness . 26

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.3 Accurate Real-time Traffic View 26

3.2.4 Effective Real-time Guidance 27

3.2.5 Implementation, Evaluation and Deployment 28

3.2.6 Communication Overhead and Scalability 28

3.3 Chapter Summary . 30

4 CENTRALIZED RE-ROUTING STRATEGIES 32

4.1 Single Shortest Path Strategies . 32

4.1.1 Dynamic Shortest Path (DSP) 32

4.1.2 A∗ Shortest Path with Repulsion (AR∗) 33

4.2 Multiple Shortest Paths Strategies . 37

4.2.1 Random k Shortest Paths (RkSP) 38

4.2.2 Entropy Balanced k Shortest Paths (EBkSP) 38

4.2.3 Flow Balanced k Shortest Paths (FBkSP) 41

4.3 Re-routing Process . 44

4.4 Dynamic Traffic Assignment . 46

4.5 Chapter Summary . 47

5 EVALUATION OF CENTRALIZED SYSTEM 48

5.1 Experimental Settings . 48

5.2 Results and Analysis . 51

5.2.1 Average Travel Time . 51

5.2.2 Average Number of Re-routings 53

5.2.3 Distribution of Travel Time and Re-routing Frequency 56

5.2.4 CPU Time . 58

5.2.5 Traffic Density . 61

5.2.6 Number of Alternative Paths 64

5.2.7 Urgency Function . 64

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.2.8 The Weight of Repulsion in AR∗ 65

5.2.9 Re-routing Period . 67

5.2.10 Congestion Threshold . 67

5.2.11 Compliance Rate . 70

5.2.12 Penetration Rate . 72

5.3 Chapter Summary . 74

6 HYBRID RE-ROUTING SYSTEM . 76

6.1 Challenges of the Hybrid System . 78

6.2 System Overview . 79

6.2.1 Design Principles . 79

6.2.2 System Architecture . 80

6.3 Privacy-aware Traffic Reporting . 82

6.3.1 Privacy Metric . 82

6.3.2 Density Reporting . 83

6.3.3 Report Collection and Travel Time Computation 85

6.4 Distributed Re-routing Strategies . 86

6.5 VANET Optimizations for Re-routing Information Sharing 90

6.5.1 Prioritized Dissemination . 90

6.5.2 K Path Compression . 92

6.5.3 XOR Coding for Packet Loss Recovery 94

6.5.4 Distance-based Timer for Message Broadcast 96

6.6 Chapter Summary . 97

7 EVALUATION OF HYBRID SYSTEM . 98

7.1 Experimental Settings . 98

7.2 Results and Analysis . 99

7.2.1 Average Travel Time . 99

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

7.2.2 Distribution of Travel Time . 100

7.2.3 Average Privacy Leakage . 102

7.2.4 Average Number of Re-routings 103

7.2.5 Distribution of Re-routing Frequency 104

7.2.6 Computation Cost . 104

7.2.7 Impact of K Path Compression 106

7.2.8 Effectiveness of XOR Coding 107

7.2.9 Impact of Packet Size on Network Throughput 108

7.2.10 Impact of Broadcast Timeout Parameter 109

7.3 Chapter Summary . 111

8 CONCLUSION . 112

BIBLIOGRAPHY . 114

xii

LIST OF TABLES

Table Page

5.1 Statistics of the Two Road Networks . 49

5.2 Parameters in Centralized Re-routing Algorithms 50

5.3 Comparison between Compliance and Penetration Rate 73

5.4 Comparison of all the Five Centralized Strategies 75

7.1 Parameters in Distributed Re-routing Algorithms 99

7.2 Simulation Parameters . 99

7.3 Average Computation Time for One Pair of Origin and Destination . . . 105

7.4 Comparison of all the Distributed Re-routing Strategies 111

xiii

LIST OF FIGURES

Figure Page

3.1 The system overview. 20

3.2 The vehicle selection process. 23

4.1 AR∗ re-routing example. All road segments have same weight and β = 0.5. 37

4.2 A EBkSP re-routing example. All segments have same weight. 40

4.3 A FBkSP example. ωfg = ωgh = ωhi = ωij = ωch = 1, ωab = ωbc = ωcd =
ωde = ωaf = ωbg = ωdi = ωej = 2. 42

5.1 The simulation process. 50

5.2 Traffic flow in the road networks. 51

5.3 Average travel time (L=(3,4), k=4, urgency=ACI, period=450s, δ=0.7,
β=0.05). 52

5.4 Average number of re-routings (L=(3,4), k=4, urgency=ACI, period=450s,
δ=0.7, β=0.05). 54

5.5 Number of congested road segments on the Brooklyn network over time/iterations.
(L=3, k=4, urgency=ACI, period=450s, δ=0.7, β=0.05). 55

5.6 CDF of relative travel time and re-routing frequency per hour on Brooklyn
network.(L=3, k=4, urgency=ACI, period=450s, δ=0.7, β=0.05). . . 57

5.7 CPU time for both the networks(L=3, k=4, urgency=ACI, period=450s,
δ=0.7, β=0.05). 59

5.8 The average travel time and CPU time for Brooklyn network for different
traffic densities (L=3, k=4, urgency=ACI, period=450s, δ=0.7, β=0.05). 62

5.9 Average travel time, CPU time for RkSP, EBkSP and FBkSP as function
of k for the Brooklyn network (L=3, k=(2, 3, 4, 5, 6), urgency=ACI,
period=450s, δ=0.7). 63

5.10 Average travel time as function of β for both networks. (L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β ∈[0.01,0.5]). 65

5.11 Average travel time as function of the re-routing period for the Brooklyn
network (L=3, k=4, urgency=ACI, period=(150s,300s,450s,600s,750s),
δ=0.7). 66

xiv

LIST OF FIGURES
(Continued)

Figure Page

5.12 Average travel time as function of the congestion threshold for the Brooklyn
network (L=3, k=4, urgency=ACI, period=450s, δ=(0.4, 0.5, 0.6, 0.7,
0.8, 0.9)). 68

5.13 Average travel time as a function of the compliance rate on Brooklyn
network. (L=3, k=4, urgency=ACI, period=450s, δ=0.7, β=0.05). . . 69

5.14 Average travel time as a function of the penetration rate on Brooklyn
network (L=3, k=4, urgency=ACI, period=450s, δ=0.7, β=0.05). . . 71

6.1 The hybrid system. 81

6.2 The ranking function. 91

6.3 K path compression. 93

6.4 Message forwarding with network coding field. 95

7.1 Average travel time (Tmax=0.2s, k=8). 100

7.2 CDF of relative travel time (Tmax=0.2s, k=8). 101

7.3 Privacy leakage in dEBkSP and dAR∗. 102

7.4 Average number of re-routing (Tmax=0.2s, k=8). 103

7.5 Re-routing frequency. 104

7.6 The average travel time with and without compression. 106

7.7 The average travel time with and without XOR coding. 107

7.8 The average number of route information received from other vehicles. . 108

7.9 Average number of trip data gathered in the first re-routing period. . . . 109

7.10 Number of received re-routing data items. 110

xv

CHAPTER 1

INTRODUCTION

Traffic congestion has become an ever-increasing problem worldwide. Congestion

reduces efficiency of transportation infrastructure and increases travel time, air

pollution, and fuel consumption. In 2010, traffic congestion caused urban Americans

to travel 4.8 billion hours more than necessary and to purchase an extra 1.9 billion

gallons of fuel, for a congestion cost of $101 billion. It is predicted that by 2015,

this cost will rise to $133 billion (i.e., more than $900 for every commuter). The

amount of wasted fuel will jump to 2.5 billion gallons (i.e., enough to fill more than

275,000 gasoline tanker trucks) [74]. While congestion is largely thought of as a big

city problem, delays are becoming increasingly common in small cities and some rural

areas as well. Hence, finding effective solutions for congestion mitigation at reasonable

costs is becoming a stringent problem. The thesis of my dissertation is that more

effective vehicle re-routing guidance can be proactively provided to individual drivers

in timely manner, based on the collaborative knowledge collected from smart phones or

systems embedded in vehicles, to alleviate the effects of congestion on the roads.

The advances of the emerging sensing and computing technologies enables

pervasive development of the Intelligent Transportation System (ITS). ITS aims to

enhance the traveler experience by integrating technology and intelligence into the

existing transportation infrastructure. Vehicle re-routing system (VRS) technology

is a subset of ITS. In the past 30 years, various VRS technologies have been studied

and developed around the world utilizing different schemes to achieve lower travel

time for drivers. Currently static distributed road-side sensors (e.g., induction loops,

video cameras) and vehicles acting as mobile sensors (i.e., using embedded vehicular

systems or smart phones) can collect real-time data to monitor the traffic at fine

1

2

granularity. For example, the Mobile Millennium project [35] demonstrated that

only a low percentage of drivers need to provide data to achieve an accurate traffic

view. Others [28, 47] have presented an adaptive traffic light system based on wireless

communication between vehicles and fixed controller nodes deployed in intersections.

Unlike a large amount of research which focuses on accurately collecting and

calibrating the data (e.g., predicting travel times in specific areas at particular times

of day or improving the traffic light cycles), this dissertation focuses on alleviating

congestion by providing drivers with better alternative routes in real-time. Implicitly,

fuel consumption and pollution will be reduced as well.

The rest of this chapter presents an overview of vehicle re-routing technology

in Section 1.1, including the first generation in-car navigation systems, dynamic

traffic assignment theory and vehicular network traffic guidance systems. Section 1.2

presents the problem statement addressed by the dissertation. Section 1.3 discusses

the challenges of providing re-routing guidance for vehicles. The contributions of this

dissertation are presented in Section 1.4, and contributors to this work are recognized

in Section 1.5. Finally, Section 1.6 details the structure of this dissertation.

1.1 Vehicle Re-routing Systems

1.1.1 Current In-car Navigation Systems

The first generation in-car navigation systems and web services were limited from the

start, as they only considered the road network, but not the traffic conditions, when

computing the shortest route to a destination. This was due to the unavailability of

traffic data. With the deployment of traffic surveillance infrastructure on more roads

(e.g., loop detectors, video cameras), the global population has started to witness

the implementation of web-based services/applications that present the drivers with

the current view of the traffic and let them decide which route to follow. This is in

line with Wardrop’s first traffic equilibrium principle [85], which essentially states

3

that a user-optimum traffic equilibrium is found when drivers make their own selfish

decisions (i.e., Nash equilibrium [43]). However, the usefulness of these applications is

also limited: (i) they have accurate information mostly about highways and thus are

not very useful for city traffic, and (ii) they cannot avoid congested areas and, at the

same time, it is known that no true equilibrium can be found under congestion [16].

Non-recurring congestions, which represent over 50% of all congestions [17], are

especially problematic, as drivers cannot use their experienced travel times to deal

with them.

Recently, companies such as Google [1] and TomTom [2] have started to use

infrastructure-based traffic information to compute traffic-aware shortest routes. These

solutions are better than just showing the traffic conditions because they can guide

drivers as function of other factors such as historic traffic and current weather. While

this is a significant advancement, it still only applies to major roads. This problem

may be overcome by collecting data from the drivers’ smart phones [39, 61].

A more serious issue is that these solutions do not try to avoid congestions

explicitly (i.e., they are reactive solutions) and provide the same guidance for all

vehicles on the road at a certain moment as function of their destination (i.e., pull

model in which drivers query for the shortest route to destination). Therefore, similar

to route oscillations in computer networks, could lead to unstable global traffic behavior.

When this happens, congestion is switched from one route to another, if significant

numbers of drivers follow the guidance.

1.1.2 Dynamic Traffic Assignment

Dynamic Traffic Assignment (DTA) applies mathematical methodologies to model

traffic dynamics throughout the road network. The goal of DTA is to compute, for

each driver, an optimal route assignment such that no driver can improve his/her

travel time by unilaterally shifting to alternative routes [85]. The key challenge is that

4

when the drivers are assigned certain routes, the travel time along the routes changes

due to the increased volume and the limited capacity of the roads, especially when

a road is over-saturated. This varied road travel time in turn affects other drivers’

route choices. The currently perceived instantaneous travel time does not necessarily

equate with the experienced/expected travel time in the future [16]. Therefore, in

such highly dynamic conditions, a proper theoretical model of the road capacity

and travel time plays a significant role. Currently, most of the popular DTA tools

use simulation-based approaches to model the dynamics of the road travel time and

compute drivers’ route assignments iteratively. Specifically, given certain demand of

(origin,destination) pairs, initial route assignments are communicated to each vehicle.

Afterwards, in each consecutive step, the route assignments in the previous step are

adjusted gradually until a certain convergence criterion is achieved where minimal

adjustment is needed.

Although DTA provides analytical and theoretical guidelines for traffic assignment,

there is still a significant gap between the theoretical or simulation results and

potentially deployable solutions. One major issue is the computation overhead. Each

DTA iteration requires a complex simulation process. To achieve moderate accuracy

and convergence rate, many iterations are needed, which introduces huge computational

overhead. Other issues include: convergence, sensitivity, realism of traffic dynamics,

tractability for large scale road networks, capability of providing real-time guidance,

behavior in the presence of congestion, ability to function when not all drivers are

part of the system, and robustness to drivers who ignore the guidance [16].

1.1.3 Vehicular-based Cooperative Traffic Guidance Systems

Despite significant advances of in-car navigation system (e.g., Garmin, TomTom),

web services for route computation (e.g., Google, Microsoft), and dynamic traffic

5

assignment [16,51], the global population is still spending a tremendous amount of

time in traffic jams.

The emerging advances in sensors and vehicle communication technology (e.g.,

Vehicular Ad Hoc Networks (VANETs)) provides a powerful platform for a wide range

of distributed computing applications such as Vehicular-based Cooperative Traffic

Guidance Systems.

In recent years, most new vehicles come already equipped with GPS receivers

and navigation systems. Car manufacturers such as Ford, GM, BMW and Toyota

have already announced efforts to include significant computing power within their

automotive design [8, 73, 83, 84]. After Google revealed its first self-driving car, a

number of auto-makers began venturing into this research area. This trend is expected

to continue and, in the near future, the number of vehicles equipped with computing

technologies and wireless network interfaces will increase dramatically. These vehicles

will be able to run network protocols that will exchange messages for safer and more

fluid traffic on the roads.

Several protocols have been proposed for implementing vehicular communication.

The most promising standard is IEEE 802.11p. The physical layer of 802.11p is a

dedicated short-range 5.9 GHz for communication among vehicles and with roadside

infrastructure [40].

So far, two classes of Vehicular-based Cooperative Traffic Guidance Systems

have been studied: infrastructure-less solutions based on inter-vehicle communication

and infrastructure-based solutions relying on the peer-to-peer paradigm.

Trafficview [62] and StreetSmart [20] are examples for the first class. They

make use of wireless communication and GPS, which enable vehicles to collect and

disseminate traffic information. This provides meaningful data to the drivers. Some

other applications include intelligent traffic light adjustment [28] and bio-inspired

organic system [69,76,80]. In the second category, Peertis [71,72] discussed an efficient

6

and scalable architecture that incorporates a P2P overlay into a vehicular network

based on cellular Internet communication to provide better service. Unlike the client

server architecture discussed in the previous section, these solutions fully utilize

VANETs communication power to provide distributed traffic services. Nevertheless,

they simply use the collected data for naive sub-optimal shortest path computation

which potentially switch congestion from one spot to another. Besides, VANETs have

throughput and latency problems for larger scale networks and these problems become

worse in highly congested areas. Due to wireless contention, the dropped packets lead

to incomplete traffic view, thus to suboptimal decisions.

1.2 Problem Statement

This dissertation addresses the problem of providing efficient re-routing paths for drivers

of cars on the roads with signs of congestion in centralized and hybrid (centralized

server and VANETs) system. This dissertation argues that the time is ripe for

building a proactive, intelligent, and real-time traffic guidance solution based on the

dynamic situation in the road network. In this system, vehicles can be viewed as

both mobile sensors (i.e., collect real-time traffic data) and actuators (i.e., change

their path in response to newly received guidance). The system is cost-effective and

easily deployable because it does not require road-side infrastructure; it can work

using only smart phones carried by drivers 1. Where road-side sensors are available,

this system can take advantage of them to supplement the data provided by vehicles,

thereby building an accurate representation of the global real-time traffic conditions.

Periodically, the system evaluates the congestion levels in the road network. When

signs of congestion are observed on certain road segments, the system computes

proactive, individually-tailored re-routing guidance, which is pushed to vehicles that

would pass through the congested segments. It is important to note that the drivers

1In the future, once vehicular embedded systems become widespread, they could be used
instead of smart phones.

7

are not “forced” to follow alternative routes: the guidance may or may not be accepted

by drivers.

The problem statement is how to build a traffic re-routing system and

re-routing algorithms that will be successful in a real-life deployment? This

system requires software that addresses the following questions: How to monitor the

traffic accurately in the presence of low system penetration rate? How to protect

drivers’ privacy (i.e., location privacy) and, at the same time, achieve an optimal

global view of the real-time traffic? How to predict congestion in real-time on different

road types, based on data reported from smart phones and existing infrastructure?

What algorithms should be used to compute and deliver effective re-routing guidance

to individual drivers, before they encounter into congested areas? How to make

the system robust and adaptable in the presence of drivers who ignore the provided

guidance? How to make the system scalable to potentially millions of vehicles in terms

of both computation and communication?

1.3 Contributions of Dissertation

This dissertation introduces a cost-effective and easily deployable vehicular traffic

guidance system that reduces the effect of traffic congestions. Then, five re-routing

strategies designed to be incorporated in this system are proposed and evaluated:

• Dynamic Shortest Path (DSP), which assigns to each vehicle the current shortest
time path to destination;

• A∗ shortest path with Repulsion (AR∗), which modifies the A∗ shortest path
algorithm [32] by considering both the travel time and the paths of the other
vehicles (as a repulsive force) in the computation of the shortest path.

• Random k Shortest Paths (RkSP), which computes k-shortest paths for each
re-routed vehicle and randomly assigns the vehicle to one of them.

• Entropy Balanced k Shortest Paths (EBkSP), which computes k-shortest paths
for each vehicle and assigns the vehicle to the path with the lowest popularity
as defined by the path entropy.

8

• Flow Balanced k Shortest Paths (FBkSP), which computes k-shortest paths for
each vehicle and assigns the vehicle to the path that minimizes the impact of
traffic flow in a network region.

DSP and AR∗ are built on top of the classical shortest path algorithms that is

adapted to the context of a real-time traffic guidance system. DSP is a basic strategy

that updates dynamically the vehicles’ routes when there are signs of congestion in

the road network, to the current, travel time based shortest path. The simplicity of

DSP suggests high computational efficiency. At the same time, DSP may have limited

effectiveness in alleviating congestion in difficult circumstances (e.g., if the traffic is

very dense) because it may lead to switching congestion from one spot to another.

AR∗ tackles this shortcoming by taking into account the other vehicles’ paths in the

computation of a new vehicle route. However, the price to pay is increased complexity

and therefore, increased computational cost.

To obtain a more flexible trade-off between the effectiveness and the efficiency

of the re-routing, a second group of strategies are proposed, that are based on the

k-shortest paths algorithm. The proposed is idea is to compute the set of k-best

alternative paths for a re-routed vehicle and then assign each vehicle to the path

that reduces the road network utilization with respect to the other vehicles’ paths.

These strategies are expected to be more effective than the simple DSP, since they

take into account the other vehicle paths. Yet the KSP strategies should be more

computationally efficient than AR∗, since they limit the traffic flow optimization to

the k alternative paths. Three policies are proposed to select the best path among the

k-shortest paths as indicated above, i.e., random selection in RkSP, popularity based

selection in EBkSP, and flow balanced selection in FBkSP.

The system was first implemented using a centralized architecture where a

centralized server is responsible for both collecting traffic reports and re-routing

path computation. The proposed system was extensively evaluated, integrating the

five strategies through simulations over two medium-size urban road networks and

9

across several parameters including the re-routing period, the congestion threshold,

the vehicle selection level, the vehicle priority, the number of alternative paths, the

drivers’ compliance rate, and the penetration rate. Moreover, a tool implementing

a state-of-the-art DTA algorithm for traffic optimization was employed, to quantify

both the improvement of the travel time provided by DTA and its computational

cost. The results indicate that the five strategies significantly decrease the average

travel time compared to “no-rerouting”, thus lowering the average travel time at

least by 2 times in most cases, and up to 5 times in certain cases. Compared to

DTA, these strategies yield similar travel times at (much) lower computational costs.

Additionally, these strategies are much more scalable with the number of vehicles than

DTA. Among the proposed strategies, AR∗ has the lowest average travel time, but the

highest computational cost. EBkSP and FBkSP can achieve comparable travel times

as AR∗, while demanding lower CPU times for the re-routing computations. DSP has

by far the lowest computational cost, but it is also the least efficient at reducing the

travel time. Finally, it is worth mentioning that these re-routing strategies are still

effective in alleviating congestion even if many drivers ignore the guidance or if the

system adoption rate is relatively low, which is important in facilitating the adoption

of the system at a large scale.

The main focus of the first part of this dissertation are the routing algorithms

in a centralized design. However, as for a practical deployable solution, scalability

and privacy are essential. Since a purely centralized system internally suffers from

scalability and privacy problems and a fully distributed system can not obtain a full

picture of the road network traffic, a hybrid system is proposed. It is called “hybrid”

since the system still requires a central server to obtain a global accurate traffic view. A

privacy-aware reporting mechanism is designed to send traffic reports probabilistically

as a function of the vehicle density on the roads. To measure privacy leakage, each

traffic report is associated with a importance factor defined by the entropy of the road

10

segments. Once signs of congestion are detected by the cental server, only vehicles

that reported recently and are close to congestion spots are notified. The traffic

view is propagated in VANET and the computation is off-loaded to individual vehicle

where distributed re-routing algorithms are executed collaboratively. Specifically, the

EBkSP and AR∗ algorithms are extended to distributed versions, namely dEBkSP and

dAR∗. In order to achieve similar performance compared to the centralized design,

four optimizations techniques are presented: prioritized broadcast, distance-based

timer, network coding and k path compression.

Extensive simulation results demonstrate that the privacy leakage is reduced by

90% while only sacrificing 10% of the travel time. Additionally, re-routing frequency

is reduced by 25%. Although dAR∗ exhibits lower travel time, analysis shows that

dEBkSP has better scalability since the computation of k shortest paths is evenly

distributed to vehicles.

1.4 Structure of Dissertation

The subsequent chapters of this thesis dissertation are structured as follows: Chapter

2 reviews related work. Chapter 3 describes the basic centralized system model and

the challenges. Chapter 4 explains the two classes of re-routing strategies and the

DTA algorithm used as baseline. Chapter 5 presents the experimental results and

analysis for the centralized system. The hybrid system design is presented in Chapter

6. Chapter 7 shows the evaluation results of the hybrid system. The dissertation

concludes in Chapter 8.

CHAPTER 2

RELATED WORK

This chapter presents background and related work literature in the domain of vehicle

routing services in Section 2.1, efficient K shortest path generation in Section 2.2,

dynamic traffic assignment model in Section 2.3, vehicular ad hoc networks in

Section 2.4 and location privacy in Section 2.5. The chapter concludes in Section 2.6.

2.1 Existing Vehicle Routing Services

Projects such as Mobile Millennium [39,90], CarTel [21], JamBayes [38], Nericell [61],

and surface street estimation [31] use vehicle probe data collected from on-board

GPS devices to reconstruct the state of traffic and estimate shortest travel time. The

proposed research moves beyond this idea: instead of investigating the feasibility

and accuracy of using mobile phones as traffic sensors, this dissertation focuses on

using that information to recommend routes more intelligently, thus, achieving better

efficiency in terms of avoiding congestion and reducing travel time.

Services such as INRIX [3] provide real-time traffic information at a certain

temporal accuracy, which allows drivers to choose alternative routes if they are showing

lower travel times. According to Wardrop’s first traffic equilibrium principle [85],

this could lead to a user-optimum traffic equilibrium. It is known, however, that no

true equilibrium can be found under congestion [42]. Several initiatives have been

take in the directions of predicting long-term recurrent and short term non-recurrent

congestions [4]. However, the usefulness of these applications is also limited: (i) they

have accurate information mostly about highways and thus are not very useful for city

traffic, and (ii) they cannot avoid congestions and, at the same time, it is known that

no true equilibrium can be found under congestion [16]. Non-recurring congestions,

11

12

which represent over 50% of all congestions [17], are especially problematic as drivers

cannot use their experienced travel times to deal with them.

2.2 K Shortest Path Generation

A large body of existing route planning research focuses on fast generation of k-shortest

paths [53,75] in highly dynamic scenarios with frequent traffic information updates.

In particular, [75] presents transit-node routing and highway-node routing to reduce

the average query time and memory requirements. The work in [53] proposes two

new classes of approximation techniques (e.g., K-AS-Aggressive, K-AS-Variance,Y-

Moderate) that use pre-computation and avoidance of complete recalculations on every

update to speed up the processing of continuous route planning queries. However,

current instantaneous shortest paths are not necessarily equal to time-dependent

shortest paths. These algorithms calculate shortest paths based only on the snapshot

of current traffic conditions without considering the dynamic future conditions.

One of the essential properties of the travel time on the road network is the

time-dependency. Computing shortest paths in a time varying spatial network is

challenging since the edge (i.e., road segment) travel times changes dynamically. In

this case, the computation not only considers the instantaneous travel time in one

single snapshot of the traffic graph but also the relationship among the consecutive

snapshots across time. George et at. [27] demonstrated a faster greedy time-dependent

shortest path algorithm (SP-TAG) by using a Time Aggregated Graph (TAG) data

structure instead of the time-expanded graph. SP-TAG saves storage and computation

cost allowing the properties of edges and nodes to be modeled as a time series instead

of replicating nodes and edges at each time unit. While algorithms such as SP-TAG

provide insights into the dynamics of traffic network, two obstacles remain besides

increased computational cost. Firstly, it is impractical to assume the system knows

the exact travel time series of every single road segment given the traffic dynamics.

13

Secondly, these algorithms do not help with switching congestion from one spot to

another if all the drivers are provided the same time-dependent shortest path.

2.3 Dynamic Traffic Assignment Model

An alternative to this work could be the research done on dynamic traffic assignment

(DTA) which leads to either system-optimal or user-optimal route assignments. DTA

research can be classified into two categories: analytical methods and simulation-based

models. Analytical models such as [24, 57, 58] formulate DTA as either nonlinear

programming problems, optimal control problems, or variational inequalities. Although

they provide theoretical insights, the computational intractability prevents their

deployment in real systems [66].

Simulation-based approaches [16,25,52,81] have gained greater acceptability in

recent years, in which the time-dependent user equilibrium is computed by iterative

simulations. The simulations are used to model the theoretical insights that cannot be

derived from analytical approaches. This process computes the assignment of traffic

flows until the travel times of all drivers are stationary. Unfortunately, there are

still a number of issues associated with these approaches that make their deployment

difficult: tractability for large scale road networks given the computational burden

associated with the simulator, capability of providing real-time guidance, effectiveness

in the presence of congestion, and behavior of drivers who ignore the guidance. For

example, they assume the set of Origin-Destination (OD) pairs and the traffic rate

between every OD pair are known. This information is highly dynamic especially in

city scenarios, leading to frequent iterations of computationally expensive algorithms

even when not needed from a driver benefit point of view. Additionally, the OD set

is large, and the DTA algorithms may not be able to compute the equilibrium fast

enough to inform the vehicles about their new routes in time to avoid congestions.

The proposed system, on the other hand, is designed to be effective and fast, although

14

not optimal, in deciding which vehicles should be re-routed when signs of congestion

occur as well as computing alternative routes for these vehicles.

The complexity of DTA systems has led scientists to look for inspiration in

Biology and Internet protocols. In [76], Wedde et al. developed a road traffic routing

protocol, BeeJamA, based on honey bee behavior. Similarly, Tatomir et al. [80]

proposed a route guidance system based on trail-laying ability of ants. Inspired by the

well-known Internet routing protocols, prothmann et al. [69] proposed decentralized

Organic Traffic Control. However, since they employ ad hoc networking, these

approaches have only a partial view of the traffic conditions, which may lead to less

accurate re-routing. Also, simply treating vehicles as packets which always listen

to the guidance ignores the nature of human behavior. Furthermore, these systems

react to real-time data without insight into future conditions, thus introducing greater

vulnerability to switching congestion from one spot to another.

There has been several other literatures that aim to provides near-optimal route

to drivers but better scalability compared to DTA. The first related work is the Ph.D

Thesis [49] from MIT. The basic idea is divided into two steps: Calculated the possible

first k shortest paths from source to destination, and then determine which path

each vehicle should take by minimizing a Lyapunov-style cost function. Meanwhile,

the work [93] uses dynamic programming keep tracking traffic information in the

network. Every time a car comes an intersection, it calculates the first-k shortest path

candidates and proportionally chooses a candidate by using probability calculated

from boltzmann distribution.

2.4 Vehicular Ad hoc Networks

There has been significant effort and progress on Vehicular Ad hoc Networks (VANETs)

technology in recent years. VANETs are based on vehicle-to-vehicle and vehicle-to-

infrastructure wireless communication. IEEE 802.11p is an approved amendment to

15

the IEEE 802.11 standard to add wireless access in vehicular environments (WAVE). It

defines enhancements to 802.11 required to support Intelligent Transportation Systems

(ITS) applications. Essentially, the VANETs research can be classified into three

categories: routing, communication optimization, applications. These three categories

tackle the VANETs key issues from the bottom to the top.

Obviously, routing is the fundamental point providing the basis for communication

of the platform. For example, one of the major works is presented by [64] where

RBVT-R and RBVT-P protocols are proposed. Both protocols leverage real-time

vehicular traffic information to create road-based paths consisting of successions of

road intersections that have, with high probability, network connectivity among them.

Simulation results shows 40% increase in delivery ratio and 85% decrease in average

delay.

The second category involves applying optimization techniques to minimize the

communication overhead. The work in [79] described an effective safety alert broadcast

algorithm for VANETs. Similarly, the technique in [50] presented a domain specific

data aggregation scheme and a genetic algorithm to minimize the overall bandwidth

requirements and placement of the roadside units in the initial deployment. Since

VANETs are used for collaboration and information sharing, one of the key challenges

is to avoid “broadcast storm”. The work in [63] firstly analyzed this issue in MANETs

and proposed a probabilistic, counter-based and distance-based schema to reduce

redundant messages. As an extension, [89] investigated this problem in VANETs.

Article [46] described how to utilize 2-hop neighborhood information more effectively

to reduce redundant transmissions.

The traffic efficiency can be further improved by using network coding [22] and

data compression. In [41], Katti et al. lay out a basic mechanism to efficiently

forward packets by mixing packets from different sources using XOR. Meanwhile, Lee

et al. [82] proposed a network coding-based file swarming protocol targeting VANETs

16

to allow shorter file downloading time. As for data compression, one example is MIT

CarSpeak project [45], which proposed a loss-resilient compression octree structure to

reduce the packet size and prevent packet loss.

Potential applications in VANETs are safety and non-safety related. Examples

of safety related applications are in paper [13] which presents an overview of highway

cooperative collision avoidance. The other services includes automatic road traffic alert

dissemination, dynamic route planning, service for parking availability, audio and video

file sharing between moving vehicles, and context-aware advertisement [62,70,72,94].

The proposed hybrid system in this dissertation shares some similarities and

differences with the above works. The similarity is that the hybrid design allows

each vehicle to exchange its trip information across the VANETs. The difference

is that a centralized server acts as a coordinator to collect the accurate traffic view

based on the updates from each vehicle. Once congestion is detected, the latest traffic

view is pushed to the selected vehicles and optimal individually tailored paths are

distributively computed by each vehicle. The advantage is that real computation is

off-loaded to VANETs to reduce computational cost which improves the scalability of

the system. Furthermore, the hybrid system incorporates a privacy enhancing module,

which dramatically reduces the location privacy leakage because each vehicle only

submits location reports probabilistically in highly congested areas. In other words,

the centralized server (through 3/4G network) and VANETs work together to fully

utilize both internet access and VANETs ad-hoc communication.

2.5 Location Privacy Protection

There is always a trade-off between privacy and information sharing or disclosure. On

the one side, the amount of the information gathered directly affects the effectiveness

of the system. On the other hand, information disclosure violates the people’s

privacy (e.g., location, trajectory). The questions is how to measure the privacy and

17

minimize the privacy leakage. As for the measurement, the work in [60] analyzes

the information leaks in the lookup mechanisms of structured peer-to-peer (P2P)

anonymous communication systems and how these leaks can be used to compromise

anonymity. Meanwhile, paper [14] defined Self Exposure Risk Index (SERI) and

External Exposure Risk Index (XERI) to assess the privacy leakage.

As for location privacy, a large body of work focuses on spatial cloaking [29] to

provide k-anonymity, which guarantees a user to be indistinguishable from at least k-1

others. The work in [26] argues that both spatial and temporal dimensions should

be considered in the algorithm to achieve better k-anonymity, where a framework is

designed to enables each mobile client to specify the minimum level of anonymity that

it desires and the maximum temporal and spatial tolerances that it is willing to accept.

Various techniques can be used to achieve advanced k-anonymity, for example, [92]

computes location entropy while [55] uses the prefix of the location hash value. To

prevent the location tracking, [77] achieves k-anonymity by injecting k-1 fake location

traces. Fundamentally, k-anonymity reduces the quality of the user’s localization,

which is not applicable for continuous location based services such as real-time vehicle

re-routing. The technique in [59] demonstrates path confusion approach which uses

mobility prediction to create a web of intersecting paths, preventing un-trusted

location based services from tracking users while providing highly accurate real-time

location updates. An uncertainty-aware path cloaking algorithm is proposed in [36] for

preserving privacy in GPS traces that can guarantee a level of privacy even for users

driving in low-density areas. All the above mechanisms require a trusted centralized

entity such as a proxy server for location reporting.

This dissertation argues that the proposed hybrid system greatly improves the

driver’s location privacy. The server only needs to acquire data from high density roads

to produce a roughly accurate traffic view. The vehicles utilize VANETs to estimate

road locate density and only upload to the central server probabilistically when

18

necessary. Afterwards, once again, through VANETs, the traffic view is propagate

and optimal re-routing route computed distributively. On one hand, the probabilistic

update scheme on high density road dramatically reduce the location leakage. On the

other hand, risk of location tracking is distributed on the VANETs.

2.6 Chapter Summary

This chapter discussed the existing studies related to intelligent vehicular re-routing

systems. The vehicular routing services are initially presented followed by fast k

path generation and dynamic traffic assignment. Finally, VANET communication

optimizations and location privacy systems were also reviewed.

CHAPTER 3

SYSTEM OVERVIEW AND CHALLENGES

This chapter firstly provides general overview of the basic centralized design of the

proposed smart vehicle re-routing system, traffic data representation and estimation

in Section 3.1.1, congestion prediction in Section 3.1.2, selection of vehicles to be

re-routed in Section 3.1.3, ranking the selected vehicles in Section 5.2.7 and alternative

route computation and assignment in Section 3.1.5. The potential challenges (e.g.,

privacy, scalability, robustness) are discussed in Section 3.2. Finally, the summary of

the chapter is presented Section 3.3.

3.1 Basic Centralized Design

The objective of this dissertation is to implement and evaluate a real-time, cost-effective,

and easily deployable vehicular traffic guidance system that reduces the effect of traffic

congestions and lowers the trip times for all drivers. Implicitly, fuel consumption

and pollution will be reduced as well. To achieve this goal, a system was developed

consisting of smart phone-based vehicular networks and a back end server infrastructure

for traffic monitoring and coordination. Smart phones were chosen as the vehicular

platform because they are already carried by drivers in many vehicles, are powerful

(have several communication interfaces, GPS, accelerometer, powerful CPU, plenty of

storage, etc.), and are easily programmable. Once they become widespread, vehicular

computing systems could be considered instead of smart phones. Figure 3.1 presents

a comparison between these existing solutions and the system. This dissertation

proposes to leverage the smart phone ubiquity to design and quickly deploy a cheap

and effective traffic re-routing system. Such a system will benefit all of us through

faster routes, less money spent on gas, and lower pollution.

19

20

Figure 3.1 The system overview.

Particularly, the system model is composed of: (1) a centralized traffic monitoring

and re-routing service (which can physically be distributed across several servers),

and (2) a vehicle software stack for periodic traffic data reporting (position, speed,

direction) and showing alternative routes to drivers. Vehicles run this software either

on a smart phone or an embedded vehicular system. Vehicles are equipped with GPS

receivers and can communicate with the service over the Internet when needed. When

starting a trip, each vehicle informs the service of its current position and destination;

the service sends back a route computed according to its strategy. It is assumed that

the service knows the road network as well as the capacity and legal speed limits on

all roads.

Logically, the traffic guidance system operates in four phases executed periodically:

(1) data collection and representation; (2) traffic congestion prediction; (3) vehicle

selection for re-routing; and (4) alternative route assignment for each such vehicle and

pushing the guidance to the vehicles. Since data collection has been studied extensively

in the literature, This issue is not addressed and it is assume that the centralized

service receives traffic data from vehicles and road-side sensors where available. Each

of the other phases are discussed in detail in this section and Chapter 4.

21

3.1.1 Traffic Data Representation and Estimation

The road network is represented as a directed, weighted graph, where nodes correspond

to intersections, edges to road segments, and weights to estimated travel times. The

weights are updated periodically as new traffic data becomes available. Several methods

can be employed to estimate the travel time over a road segment. For instance, using

vehicle probe data collected from on-board GPS devices to reconstruct the state of

traffic is a well-studied topic [51, 90]. Greenshield’s model [10] is used to estimate

the travel time since it is used extensively in dynamic traffic assignment models by

transportation researchers. The model considers that there is a linear relationship

between the estimated road speed Vi and the traffic density Ki (vehicles per meter)

on road segment i, as in Equation 3.1:

Vi = Vf (1−
Ki

Kjam

) Ti = Li/Vi (3.1)

where Kjam and Vf are the traffic jam density and the free flow speed for road

segment i, while Ti and Li are the estimated travel time and length for the same

segment. The free flow speed Vf is defined as the average speed at which a motorist

would travel if there were no congestion or other adverse conditions. To simplify

this implementation, it is considered that the free flow speed is the road speed

limit. Basically, Ki/Kjam is the ratio between the current number of vehicles

and the Nmax. Nmax is the max number of vehicle allowed on the road. The

current number of vehicles is obtained from the traffic data collected by the service,

whereas Nmax = length of road/(avg vehicle length+min gap).

3.1.2 Congestion Prediction

Periodically, the service checks the road network to detect signs of congestion. A road

segment is considered to exhibit congestion signs when Ki/Kjam > δ, where δ ∈ [0, 1]

is a predefined threshold value. Choosing the right value for δ is particularly important

22

for the service performance. If it is too low, the service could trigger unnecessary

re-routing; this may lead to an increase in the drivers’ travel times. If it is too high,

the re-routing process could be triggered too late and congestion will not be avoided.

The evaluation in Chapter 5 confirms these hypotheses.

3.1.3 Selection of Vehicles to be Re-routed

When a certain road segment presents signs of congestion, the service looks for nearby

vehicles to re-route. Specifically, vehicles are selected from incoming segments (i.e.,

segments which bring traffic into the congested one). To decide how far from congestion

to look for candidates for re-routing, the service uses a parameter L (level). This

parameter denotes the furthest distance (in number of segments) a candidate vehicle

can be away from the congested segment. In practice, L could be computed as function

of the severity of congestion; for example, the “level of service” (LOS) can be used

to define in the Highway Capacity Manual [54]. L’s value has to be large enough

to mitigate congestion. If L is too high, however, more vehicles than necessary will

be selected for re-routing, which can have undesired consequences (e.g., creating

congestion in another spot). Since the focus of this dissertation is on the re-routing

algorithms and the analysis of their performance, L was considered tuning parameter

that is varied during these experiments.

The service performs a breadth first search (BFS) on the inverted network graph

(i.e., the road network graph is directed), starting from the congested segments with

maximum depth L and considers all these cars as candidates for re-routing. The

process is illustrated in Figure 3.2. Assuming L=2 and signs of congestion are detected

on the segment Sc, the system recursively selects the vehicles situated on the incoming

segments of the congested segment in two steps. First, the vehicles located on segments

S1 are included in the candidate set, followed by the vehicles situated on segments S2.

23

Figure 3.2 The vehicle selection process.

The union of all the vehicles affected by all the congestion segments was selected

in whole network within the same level, then do vehicle ranking (Section 5.2.7), path

computations and the assignments (Chapter 4).

3.1.4 Ranking the Selected Vehicles

The selected vehicles need to be ranked and assigned to alternative paths according to

their rank for all strategies, except DSP. In this way, the performance of the strategies

improve. The impact a congested road segment has on a vehicle’s travel time is

different depending on the remaining distance to the vehicle’s destination. Intuitively,

the drivers that are close to their arrival point may have a different perception of the

congestion than the drivers that are far away from their destinations. This system

uses an urgency function to rank the vehicles that are selected for re-routing. Hence,

the vehicles with higher urgency are re-routed first and get relatively better routes.

Definition 1. Given a set of vehicles V = (v1, v2, v3, ..., vm) to be re-routed, two

urgency functions were defined to compute the re-routing priority of a vehicle in V :

• Relative Congestion Impact: RCI=(RemTT -RFFTT)/RFFTT

• Absolute Congestion Impact: ACI=RemTT -RFFTT

where RemTT is the remaining travel time, and RFFTT is the remaining free flow

travel time for the vehicle.

24

RCI measures the congestion impact on a vehicle relative to its remaining travel

time, whereas ACI emphasizes the absolute increase in the travel time. Therefore,

RCI gives a higher priority to vehicles that are close to their destinations, while ACI

ranks first the vehicles that are further from their destinations. In Section 5.2, these

two urgency functions are evaluated under different re-routing strategies.

3.1.5 Alternative Route Computation and Assignment

There are two main requirements for the re-routing algorithm: (1) compute an

alternative routes for each driver that improve both single driver’s trip time and global

network efficacy (2) push the guidance to drivers fast to allow them enough time to

switch on the new route. Essentially, a best effort algorithm is required, which finds

good enough alternatives with real-time constraint.

Accordingly, two types of solutions were developed. The first solution is “Single

Shortest Path Strategies”, the second one is “Multiple Shortest Paths Strategies”.

The former computes one single path for each vehicle collaboratively according to

the other vehicles’s paths. The later computes k loopless shortest paths [48, 56, 67]

according to current travel time and pick the optimal one for each vehicle. This is

because one of the main goals of the system is to prevent moving congestion from

one path to another. If all vehicles are re-routed on their current shortest paths, the

algorithm might end-up doing exactly that. For this reason, vehicles are provided with

alternative paths that lower their currently predicted travel time, but these paths do

not have to be the shortest. The specification of the re-routing algorithms is presented

in Chapter 4.

25

3.2 Challenges

3.2.1 Privacy

In order to accurately estimate the traffic conditions and provide individual re-routing

guidance, the system must be aware with relatively high accuracy of the current

position and destination/route of each vehicle. This requirement may lead to major

privacy concerns and could preclude the adoption of the system. Therefore, it is

necessary to explore ways to reduce drivers’ privacy exposure risks.

The first solution is to send the traffic reports anonymously. In this way, drivers

prevent others from linking their location to their identity. However, it is well known

that identity can still be inferred from location traces by linking them together or

with external sources [34]. Hence, a goal of the system is to balance between data

collection accuracy and driver’s privacy. Spatial and temporal cloaking are the main

techniques for k-anonymity, which guarantees a user to be indistinguishable from at

least k-1 others [26]. However, k-anonymity sacrifices the location accuracy, thus is not

applicable for continuous location based services in this case. Naturally, minimizing

the report frequency for each driver fits better since the location must be precise

whereas a small sample is sufficient. Indeed, according to the Mobile Millennium

Project [33], reports from 2-3% of drivers (or 2-3% of the time) are enough to obtain

an accurate view of the traffic. Virtual Trip Lines have been proposed precisely in

this context [35]. Besides, high density also provide natural obstacle for an un-trusted

identity to identify or distinguish vehicles on the road. Accordingly, in Chapter 6, a

distributed privacy by utilizing VANETs is proposed. Specifically, each vehicle on

VANETs periodically detect road density and only send traffic report to the server

based on certain probability when road density is high enough. This way, the server

only receives limited amount of vehicle location data but still roughly accurate traffic

view. Once congestion is detected, VANETs helps further propagate the traffic map

26

and re-routing path is computed locally on each vehicle. Chapter 7, this hybrid privacy

protection module is evaluated through extensive simulations.

3.2.2 Robustness

This dissertation aims to create a robust system that works well in the presence of

less than 100% penetration rate and acceptance rate. The main goal of the system

is to provide benefits to drivers who have the system and accept the guidance even

for low penetration and acceptance rates. A question that needs to be answered is:

what are the minimum rates that allow the system to work properly? As by-product,

because the system avoids congestions, the trip times are in fact lowered for all traffic

participants. However, the individual benefits may vary significantly.

A salient feature of this system is its ability to adapt to drivers behavior. Smart

phones can learn how drivers react to guidance and pass this knowledge to the

re-routing algorithm. For example, the algorithm may give preference for re-routing

to drivers who have a high acceptance rate.

3.2.3 Accurate Real-time Traffic View

The system has to adapt the number and frequency of reports submitted by smart

phones to balance the need for an accurate global view of the traffic with the needs

for privacy, scalability, and low communication overhead. These reports, in potential

conjunction with historic data, are used to predict travel time and congestion on each

road segment.

The average speed/travel time on a road segment can be determined accurately

even if a low number of vehicles report. However, the question is: how to estimate

the volume of traffic if only some vehicles report? A simple solution is to take

advantage of one-hop ad hoc WiFi communications between phones (i.e., broadcast

“hello” messages) to locally estimate the traffic density of the segment as function of

27

the number of messages heard per unit of time and transmission range. Then, the

system may aggregate such reports from different vehicles on the same segment to

achieve good volume estimations.

At this stage, only speed, volume, and road capacity are considered in predictions.

As for future work, additional information such as road characteristics, traffic light

delays, or weather conditions has to be incorporated in an effective deployable system.

3.2.4 Effective Real-time Guidance

There are two main requirements for the re-routing algorithm: (1) provide alternative

routes with lower trip times (or do not interfere), and (2) push the guidance to drivers

fast to allow them enough time to switch on the new route. Essentially, a best effort

algorithm is required, which finds good enough alternatives in the allocated time

constraint (i.e., time to reach the re-routing intersection).

This algorithm provides good alternative paths by considering all vehicles’

route choices. In another words, more effective and efficient paths are computed for

each vehicle based on collaborative knowledge to avoid the re-occurrence of another

congestion. It provides better scalability than DTA since it avoid iterative and complex

simulations during the computation process. Moreover, to meet real-time constraint,

a distributed hybrid scheme is presented in Chapter 7 to offload time consuming path

computation to VANETs. Both centralized and hybrid architecture is investigated

through simulations extensively with varies parameters.

Another factor that impacts the driver benefits is the selection of vehicles for

re-routing. The system needs a good utility function to select the best candidate

vehicles. The system should re-route vehicles proportional to its distance to congestion.

Moreover, it is necessary to evaluate the impact on the vehicle if it switches the

pathes. Therefore, the system firstly picked the vehicles within certain segments from

congested spot. Afterwards, a ranking function based on the remaining travel time is

28

applied. The more the remaining travel time increases, the more impact the congestion

created for this vehicle, thus the more urgent this vehicle should be re-routed.

3.2.5 Implementation, Evaluation and Deployment

A prototype system can quickly be deployed by building a centralized service and

offering free iPhone and Android applications. The system is designed to work even

with few users, but the benefits become visible once enough users are in the system

to achieve a good view of the real-time traffic. To help bootstrap the system, traffic

data from infrastructure sources could be incorporated as well. As the system grows,

there will be a need to add more servers; care must be taken in this case to avoid

bottlenecks when the graph algorithms run over a potentially large distributed system.

A seamless partitioning of the network such as in [87] would help in this situation.

For a successful system, it is imperative to have good guidance from the beginning

to help with early adoption. Therefore, accurate simulations using real-life data must

be performed to compare the performance of different re-routing algorithms under

different sets of parameters. In this dissertation, the SUMO [11] simulator is used

with a real city map in which the traffic is generated according to the traffic flow of

the people living in the city.

A final question about deployment is who will provide and manage the servers

for this system in centralized or hybrid architecture. This system is expected to be of

interest to private companies, similar to the deployment of current navigation systems;

these companies can either sell the phone applications or offer them for free and make

money through location-based advertising.

3.2.6 Communication Overhead and Scalability

Thus far, a centralized version of the system has been presented. Naturally, one

might ask: does this system scale for a large city network and a large number of

29

vehicles, especially when considering the real-time constraints for pushing the guidance

to drivers? Many optimizations can be done in terms of data collection to reduce

the amount of data and implicitly of communication. Another one is to maintain

“normal traffic” parameters per segment at each phone and submit reports only when

significant variation is observed. Depending on how much data is maintained on

the phones, appropriate data management techniques and optimizations need to be

considered as well.

Despite all these optimization, it may still be difficult to scale a centralized

system. In consequence, decentralized and hybrid architectures are explored to improve

system scalability User privacy can also be benefited from those architectures.

The Ad hoc architecture exchange information using multi-hop ad hoc

communication among vehicles. It enables the best privacy protection and can quickly

detect signs of congestion in small regions. Yet, its decision algorithms must be

localized (e.g., consensus between vehicles in a certain region) which may result in

sub-optimal re-routing decisions.

The Peer-to-peer design [71,72] could achieve the same privacy benefits as

the ad hoc architecture and, at the same time, acquire a global view of the traffic.

Vehicles communicate with each other over the Internet and form peer-to-peer (P2P)

networks for data collection and sharing. However, if designed naively, the system

may not scale due to potentially large routing latencies in the P2P network.

Therefore, it is possible that a hybrid architecture, using both vehicle-to-vehicle

and vehicle-to-server communication, has the potential to reach the best balance

among the competing challenges mentioned before. There are several types of hybrid

architectures that could be developed, but they share a common idea: split the

computation between the server and the phones to improve system scalability and

protect users’ privacy.

30

Individual vehicle decisions: In this architecture, the centralized server

collects anonymous traffic reports from vehicles, maintains the real-time traffic view

(i.e., the graph), and distributes the graph to all vehicles or only to vehicles that

demand it. Privacy is improved because the server does not need to know the identity

and destination of vehicles. The vehicles have to make their own re-routing decisions

under this architecture, similar to the ad hoc architecture. The advantage is that they

have a global view of the traffic in this case. To avoid many vehicles going over the

same shortest path, and thus provoking congestion, the application on the phones

could use probabilistic methods to pick alternative routes (e.g., pick out of the k best

routes with certain probabilities) to achieve a degree of load balancing.

Collaborative vehicle decisions: Compared with the previous one, this

architecture adds ad hoc communication between vehicles. Collaborative ad hoc

algorithms are used to coordinate the choice of alternative routes among vehicles

located in the same region. Thus, more effective re-routing is achieved at a cost of a

slightly more complex system design.

In this dissertation, the collaborative vehicle decisions are made through knowledge

sharing by utilizing VANETs. Each vehicle equipped with 3/4G Internet connectivity

submits traffic updates to the central server. Once congestion is detected, the traffic

map is pushed to the selected vehicles. Each vehicle starts to disseminate their trip

data through VANETs. Once enough knowledge is collected, each vehicle runs the

re-routing algorithm locally. To further prevent location privacy leakage, each vehicle

only needs to report traffic data in high density roads based on a probabilistic formula.

Chapter 6 will describe the details of this hybrid system architecture.

3.3 Chapter Summary

The chapter has outlined the basic centralized framework for a dynamic re-routing

system, discussed several alternative system architectures (centralized, decentralized,

31

and hybrid), and identified system-centric (e.g., scalability, effective real-time guidance)

and human-centric (e.g., privacy, robustness to driver choices) challenges that have to

be overcome to make this vision reality.

CHAPTER 4

CENTRALIZED RE-ROUTING STRATEGIES

Recent research has proved that real-time traffic flow data and road travel time can

be determined based on data reported by vehicles or road-side sensors [38,61,90]. The

question is how to utilize this knowledge in an intelligent fashion to avoid congestion

and reduce the drivers’ travel times. This chapter presents five re-routing strategies,

categorized in two classes. The first class presented in Section 4.1 includes two

re-routing strategies that compute a single, alternative new path for each re-routed

vehicle. The strategies are based on the well-known Dijkstra algorithm and on the A∗

algorithm with a modified heuristic, respectively. Section 4.2 presents the second class

consisting of three re-routing strategies that compute multiple, alternative new paths

for each of the re-routed vehicles. Then, different heuristics are used to choose the best

alternative path to be assigned to a vehicle. Based on the five proposed strategies, this

thesis describe the main re-routing process executed by the traffic guidance system in

Section 4.3. Finally, Section 4.4 presents a Dynamic Traffic Assignment strategy [25]

that is used as a baseline to measure the effectiveness and efficiency of the proposed

strategies. The chapter concludes in Section 4.5.

4.1 Single Shortest Path Strategies

4.1.1 Dynamic Shortest Path (DSP)

DSP is a classical re-routing strategy that assigns the selected vehicles to the path

with lowest travel time. However, different from the existing systems, the system

described in this dissertation system takes a proactive approach. Specifically, each

time a road segment presents signs of congestion, the service obtains the set of cars

whose paths intersect this road segment and computes for each car a new shortest

path based on the current travel time in the road network. Therefore, the path of

32

33

each car can be periodically updated on an event-driven basis. The advantage of this

strategy lays in its simplicity and consequently reasonable computational cost, i.e.,

O(E + V log(V)) [23], where E is the number of road segments and V is the number

of intersections of the road network. This strategy is expected to provide good results

when the number of re-routed vehicles is low, since in this case the risk of switching

congestion from one spot to another is low. Hence, locally redirecting the traffic when

congestion happens should be sufficient in this case. On the other hand, when the

traffic density is higher, there is an increased risk of switching the congestion from one

road to another. Moreover, the re-routing frequency for a driver is likely to increase

in this case, which can be annoying to drivers.

4.1.2 A∗ Shortest Path with Repulsion (AR∗)

The DSP strategy only takes into account the current view of the traffic when

performing re-routing, without considering the impact the re-routing will have on

the future traffic. To address this limitation, AR∗ is proposed, which modifies the

A∗ search algorithm to include the prior re-routing decisions into the computation of

the current shortest path. A∗ [32] uses a best-first search and a heuristic function to

determine in which order to visit the network nodes (road intersections in this case).

Given a node x, a heuristic function F (x) is computed as the sum G(x) +H(x). G(x)

is the path-cost from the start node to x, which corresponds to the travel time in

this case, while H(x) is a heuristic estimation of the remaining travel time from x

to the destination node. In addition, H(x) has to be “admissible” (i.e., it must not

overestimate the remaining travel time to the destination) to produce the shortest

path between the source and the destination. Therefore, H(x) is computed as the

Euclidean distance divided by the maximum speed in the road network.

34

Algorithm 1 A Star Shortest Path with Repulsion Re-routing

1: procedure AstarRepulsion(start,end)
2: P[start]=empty {the reverse pointer of the path, which is used to re-construct the path}
3: closedset = set() {The set of nodes already evaluated}
4: openset = set()
5: openset.add(start) {The set of tentative nodes to be evaluated, initially containing the

start node}
6: Gscore[start] = 0.0 {Travel time cost from start along best known path}
7: Hscore[start] = Euclidean(start, end)/maxspeed
8: Rscore[start] = 0.0
9: Fscore[start] = 1.0

10: while openset is not empty do
11: sumF=SumFscore(openset)
12: sumR=SumRscore(openset)
13: for all node in openset do
14: Fscore[node]=(1-β)*Fscore[node]/SumF + β*Rscore[node]/SumR
15: end for
16: current=getleastFscore(openset)
17: if current==end then
18: return (Fscore[current],P)
19: end if
20: openset.remove(current)
21: closedset.add(current) {add current to closedset}
22: for all edge in current.outEdges do
23: node=edge.endnode
24: if node in closedset then
25: continue
26: end if
27: tentative g score=Gscore[current] + edge.actualtime
28: tentative r score=Rscore[current] + edge.weight footprints
29: if node not in openset then
30: openset.add(node)
31: Hscore[node]=Euclidean(node, end)/maxspeed
32: tentative is better=True
33: else
34: if tentative g score<Gscore[node] then
35: tentative is better=True
36: else
37: tentative is better=False
38: end if
39: end if
40: if tentative is better == True then
41: P[node]=edge
42: Gscore[node]=tentative g score
43: Rscore[node]=tentative r score
44: Fscore[node]=Gscore[node]+Hscore[node]
45: end if
46: end for
47: end while
48: return (0.0,{})
49: end procedure

35

Future congestion occurs if many drivers take the same road segment within the

same future time window. 1 As this model assumes that the drivers share their route

information with the service, it is possible to estimate the future footprint of each

driver in the road network.

Definition 2. A weighted footprint counter, fci, of a road segment i is defined as

follows: fci = ni×ωi, where ni is the total number of vehicles that are assigned to paths

that include segment i, and ωi is a weight associated with i. ωi = lenavg

leni×lanei ×
V favg
V fi

,

where lenavg is the average road segment length in the network, V favg is the average

free flow speed of the network, leni is the length of i, V fi is the free flow speed of i,

and lanei is number of lanes of i.

In the formula, ni represents the discretized future traffic flow on road i. The

weights were incorporated into the formula in order to count for different road

characteristics. For example, suppose there are two road segment ri, rj. Although

ni=nj, the segments should not be treated equally since ri has higher capacity (more

lanes or longer length), thus the possibility of causing congestion is lower. In other

words, the impact of the traffic flow ni on road ri is lower than nj on rj even though

ni=nj.

In AR∗, the heuristic function F (x) is modified to include the other vehicles

sharing the same path as a repulsive force. Specifically, the repulsive score R(x) of

a node x is defined as the sum of the weighted footprint counters (cf. Definition

2) from the starting node to the node x. Thus, the path-cost function becomes

F (x) = (1−β)× (G(x) +H(x)) +β×R(x), where G(x) and H(x) are computed same

as in the original algorithm. G(x) +H(x) measures the travel time factor, while R(x)

reflects the impact of other vehicle traces on the examined path. Since the travel time

and the repulsive force use different metrics, the values are normalized their values

are computed. F (x) as a linear combination of the two factors. Parameter β presents

1The time window size equals the period used by the system to evaluate congestion.

36

the weight of the repulsion. If β is too high, the resulting path will be diverted too

far away from the optimal. Similarly, if β is too low, it will be the same as the naive

shortest path(DSP) strategy. Therefore, the beta value was varied from 0.01 towards

0.5 and it was observed that the interval [0.05,0.2] results in better performance in

Section 5.2.8.

The complete algorithm is presented as pseudo code in Algorithm 1. Starting

from the initial node, the algorithm maintains a queue of nodes to be traversed,

denoted as the open set (lines 3-5). At each iteration, the node with the lowest Fscore

value is removed from the queue (lines 16-19), the values of its neighbors are updated

accordingly (lines 27-28), and these neighbors are added to the queue (line 30). The

algorithm continues until the end node has been reached or until the queue is empty.

The normalization of the travel time and the repulsive force factors is done at line 14.

A path is returned at line 18 if found, otherwise an empty path is returned in line 48.

Figure 4.1 illustrates a simple example of how AR∗ is used in re-routing. Given

the assumption that vehicles v1, v2, v3 having the same origin and destination, i.e., from

ab to ij, need to be re-routed and that urgency(v1) > urgency(v2) > urgency(v3). At

the beginning, since no vehicle has been assigned any path, AR∗ performs normal A∗

search and assigns the shortest path ab, bc, cd, di, ij to vehicle v1. When computing the

shortest path for vehicle v2, AR
∗ will find ab, bg, gh, hi, ij. Although v2 has the same

destination as v1, the path found by AR∗ is different since it considers the footprints

produced by v1 as a repulsion. Hence, AR∗ avoids the already assigned paths as

much as possible, while still keeping the new path as short as possible. Finally, the

procedure is repeated for vehicle v3 and the path ab, bc, cd, di, ij is obtained for the

same reasons.

Notice that AR∗ has to be employed by the re-routing system in an iterative

manner. Namely, after the selected vehicles to be re-routed have been ranked based

on their urgency, the system calculates sequentially each vehicle’s route starting from

37

Figure 4.1 AR∗ re-routing example. All road segments have
same weight and β = 0.5.

the most urgent one. Therefore, in the case of AR∗, the computation time increases

linearly with the number of re-routed vehicles. On the other hand, as explained in

the next sections, the rest of the proposed re-routing methods optimize this phase by

grouping the vehicles to be re-routed based on their origin-destination, which leads to

lower computational complexity.

4.2 Multiple Shortest Paths Strategies

The two strategies proposed above compute a single path for each re-routed vehicle.

However, the two methods have opposite behaviors. Firstly, DSP sacrifices effectiveness

(since it does not consider the impact of re-routing on the future traffic) to optimize

the computational cost (by grouping the re-routed vehicles on their origin-destination).

Secondly, AR∗ trades efficiency (since it computes an alternative path for each vehicle)

for effectiveness (by taking into account the future traffic configuration). In this section,

a new class of re-routing strategies designed to obtain the best trade-off between

efficiency and effectiveness are introduced. For these strategies, the re-routing process

is divided into two steps. First, k-shortest paths are computed for each selected vehicle

based on the travel time in the road network, where k is a predefined parameter.

Compared to DSP this approach involves a higher computation time, but it still

38

permits to group vehicles on their origin-destination. Therefore, the computation

time is expected to be lower than AR∗. Second, the vehicles are assigned to one of

their k-shortest paths in the order of their ranking. Among the k-shortest paths, the

algorithm selects the path the least employed by other vehicle traces. Hence, this

strategy is expected to have an effectiveness similar to AR∗. Three heuristics for the

selection of the best path among the k-shortest paths are proposed.

4.2.1 Random k Shortest Paths (RkSP)

RkSP assigns each selected vehicle to one of the k paths randomly. The goal is to

avoid switching congestion from one spot to another by balancing the re-routed traffic

among several paths. Compared to DSP, the price to pay is a higher computational

complexity, O(kV (E + V log(V))) [48], which increases linearly with k. Although a

larger k will allow better traffic balancing, it also increases the difference in the travel

time among the k paths. Therefore, to prevent an excessive increase of the travel time

for some drivers, RkSP limits the maximum allowed relative difference between the

fastest and the slowest path to 20%.

4.2.2 Entropy Balanced k Shortest Paths (EBkSP)

While RkSP addresses the main potential shortcoming of DSP (i.e., moving congestion

to another spot), it has its own deficiencies. First, it increases the computational time,

which matters because the alternative paths must be computed and pushed to vehicles

before they pass the re-routing intersection. Second, it assigns paths randomly to

vehicles, which is far from optimal both from a driver point of view and from the global

traffic point of view. To address this second shortcoming of RkSP, the EBkSP strategy

is proposed. The idea is to perform a more intelligent path selection by considering

the impact that each selection has on the future density of the affected road segments.

The more intelligent path selection comes at the cost of a slightly increased complexity.

39

However, this optimization is expected to improve the traffic from a global point of

view. In addition, as in AR∗, EBkSP ranks the cars to be re-routed based on an

urgency function that quantifies the degree to which the congested road affects the

driver travel time. Thus, the more affected vehicles will have priority and be re-routed

first.

The entropy idea comes from Shannon information theory [78]. Several works [18,

92] have successfully applied it to compute the popularity of a visited area among

all the users. To avoid creating new congestions through re-routing, a “popularity”

measure is associated with road segments in EBkSP. Entropy is used to define the

popularity of a path as follows.

Definition 3. Let (p1, ..., pk) be the set of paths computed for the vehicle which will

be assigned next. Let (r1, ..., rn) be the union of all segments of (p1, ..., pk), and let

(fc1, ..., fcn) be the set of weighted footprint counters associated with these segments.

The popularity of pj is defined as Pop(pj) = eE(pj). E(pj) is the weighted entropy of

pj and is computed as E(pj) = −
∑n

i=1
fci
N

ln fci
N

, N =
∑n

i=1 ni.

The value of E(pj) measures the probability that a number of vehicles will be

on the path pj in a time window. According to the above definition, the value of

Pop(pj) is 0 ≤ Pop(pj) ≤ m, where m is the number of vehicles. Pop(pj) has the

maximum value m when every previously assigned vehicle traverses entirely pj (i.e.,

they take the same path). Pop(pj) has the minimum value when no one takes the

path pj. Intuitively: the higher the popularity of a path, the higher the probability

that more drivers will take this path.

After vehicle selection and ranking, the central server assigns each vehicle to

the least popular path among its k-shortest paths in order to avoid potential future

congestions. Specifically, the first vehicle is assigned the current best path without

considering others. Then, the road network footprints are updated based on the new

path. When assigning the second vehicle, the popularity score of its k-shortest paths

40

Figure 4.2 A EBkSP re-routing example. All segments have
same weight.

are calculated and the least popular path will be chosen. The process is then repeated

for the rest of the re-routed vehicles.

Figure 4.2 illustrates an example of EBkSP re-routing. It is assumed that

vehicles (v1, v2, v3) have been assigned to their paths before v4, and each road has

the same weight (i.e., ωi = 1). The footprints of (v1, v2, v3) in the next time

window are (fg, gh, hi, ij), (ab, bg, gh, hi, ij), and (ch, hk), respectively. For v4,

which travels from ab to ij, there are three alternative paths with similar travel

times: p1(ab, bg, gh, hi, ij), p2(ab, bc, ch, hi, ij), and p3(ab, bc, cd, di, ij). The union of

their segments is the set (ab, bg, gh, hi, ij, bc, ch, cd, di), and their weighted footprint

counters are (1,1,2,2,2,0,1,0,0). Consequently, N=11, EV (p1)=2.29, EV (p2)=1.67 and

EV (p3)=0.53. Hence, v4 will be assigned to p3 because it is the least popular.

41

Algorithm 2 Flow Balanced k Shortest Path Re-routing

1: procedure LocalOptAssign(allkPaths, sortedVehicles)
{generate initial solution}

2: for all vehicle in sortedVehicles do
3: {origin, dest}=getVehicleOD(vehicle)
4: newpath = pickPath leastfootprints(allkPaths, origin, dest)
5: reduction=getReduction()
6: vehicle.selectedpath=newpath
7: updateFootprint(vehicle)
8: end for
{locally optimize the initial solution}

9: iter=0
10: repeat
11: for all vehicle in sortedVehicles do
12: {origin, dest}=getVehicleOD(vehicle)
13: newpath=pickpath random(allkpath,orgin,dest)
14: newreduction=getReduction(newpath,vehicle.selectedpath)
15: if newReduction<reduction then
16: vehicle.selectedpath=newpath
17: updateFootprint(vehicle)
18: reduction=newReduction
19: end if
20: end for
21: iter=iter+1
22: until iter>MaxIteration{MaxIteration is a constant, set as 10 here.}
23: end procedure

4.2.3 Flow Balanced k Shortest Paths (FBkSP)

RkSP and EBkSP distribute the traffic load of the re-routed vehicles by randomly

choosing between alternative paths or by balancing the system entropy among multiple

paths. Since the key idea is load balancing, an alternative approach designed to directly

balance the traffic load, i.e., the weighted footprint counters, through local search

optimization [37]. The goal of the local “search” is to find the path assignment in which

the sum of the weighted footprint counters is minimal, i.e., to minimize
∑

siεS
fcsi in

a network region, where S is the set of all region segments. As described in Definition

2, weighted footprint counter fci indicates the impact of the traffic flow on road

segment ri (i.e., the possibility of generating future congestion on ri). Therefore, the

summation of the weighted footprints counters of all the road segments measures the

risk of congestion of the whole network. In another words, as a weighted footprint

42

counter indicates the future flow magnitude, minimizing the sum of the weighted

footprint counters means having balanced flows on all paths, and thus, reducing the

risk of producing congestion.

(a) The old assignment

(b) The new assignment

Figure 4.3 A FBkSP example.
ωfg = ωgh = ωhi = ωij = ωch = 1,
ωab = ωbc = ωcd = ωde = ωaf = ωbg = ωdi = ωej = 2.

Figure 4.3 illustrates how the path assignment affects the total number of

weighted footprint counters. Assume that initially the vehicles (v1, v2, v3) are assigned

to the paths (ab, bc, cd, di, ij), (fg, gh, hi, ij) and (ab, bc, ch), respectively, and that the

road segments have different weights (cf. Figure 4.3). Then, the sum of the weighted

footprint counters in this network region is 18 (cf. Figure 4.3(a)). However, if v1

43

switches to the path (ab, bg, gh, hi, ij), the sum of the weighted footprint counters is

reduced to 16 as shown in Figure 4.3(b). Therefore, the system will select the latter

assignment.

To implement the optimization of the total number of footprints in a road

network region, a random search strategy (cf. Algorithm 2) is implemented. The

system generates first a good path assignment solution for all selected vehicles by

assigning to each vehicle the path with the current least number of footprints (lines 2-8

in Algorithm 2). This initial assignment does not necessarily guarantee the minimum

sum of footprint counters of the considered network region, i.e., the union of all

segments of the k shortest paths of the re-routed vehicle. Therefore, the system

randomly modifies the initial assignment in order to improve it (lines 14-16). If the

new assignment reduces the total number of weighted footprint counters in the network

region, the new assignment is accepted (lines 18-19). Otherwise, the assignment is

rejected. This process runs iteratively until the limit number of iterations is attained

(line 26).

Disjointness of the k paths. The k-shortest paths (kSP) algorithm used

in this dissertation computes a set of k shortest-time paths that are loopless but

potentially overlapping. Using k disjoint shortest paths (or paths with a low degree of

similarity) does not necessarily improve the re-routing performance of these algorithms.

In order to compute k disjoint shortest paths, a typical algorithm computes first m

shortest paths (m>k), and then selects the k disjoint paths from the set of m paths.

Once the computation cost for determining the m paths is paid, EBkSP and FBkSP

will perform better over m paths than over a subset of k paths because the total number

of road segments that can be used for load balancing is larger.For example, vehicle A

needs to be rerouted from origin O to destination D. In order to calculate 3 disjoint

paths, paths set M are calculated, M={[O,A,B,C,E,F,G,H,D], [O,A,B,C,E1,F1,G,H,D],

[O,A,B,C,E2,F1,G1,H,D], [O,A1,B1,C,E,F,G,H,D], [O,A1,B1,C,E1,F1,G,H,D]}. By

44

removing the similar path, the 3-disjoint paths computed are set N . In this case,

N={[O,A,B,C,E,F,G,H,D], [O,A,B,C,E2,F1,G1,H,D], [O,A1,B1,C,E1,F1,G,H,D]}. The

effectiveness of load balancing globally across all vehicles on path set N must be less

than or equal to the effectiveness on set M since N ⊆M . Besides, computing disjoint

paths set N requires the same computation power as path set M , therefore, we can see,

in the sense, that pruning similar path can only reduce load balancing performance

and increase computation time. The experimental results presented in Section 5.2.6

confirm that increasing the k value improves significantly the effectiveness of the

re-routing.

4.3 Re-routing Process

In this section, the global re-routing process is presented, which was the basis for

the traffic guidance system described in this thesis. The process is presented in

Algorithm 3. The system periodically looks for signs of congestion in the road network

(line 4). If signs of congestion are detected, then the system selects the vehicles situated

near to the congested road segments (cf. Section 3.1.3) and ranks them based on the

urgency function (cf. Section 5.2.7). Finally, alternative routes are computed for the

selected vehicles by using one of the five proposed re-routing strategies. It is worth

noticing that except AR∗, all the other re-routing strategies optimize the alternative

path search by grouping the vehicles on their origin-destination (line 10). This can

lead to a significant reduction of the computational cost as showed in Section 5.2.

45

Algorithm 3 The Main Process

1: procedure main
2: while true do
3: updateEdgeWeights()
4: congestedRoads=detectCongestion(edgeWeights)
5: if #congestedRoads>0 then
6: for all road in congestionRoads do
7: selectedVehicles=selectedVehicles

⋃
selectVehicles(road)

8: end for
9: sortedVehicles=sortByUrgency(selectedVehicles)

10: allpaths=Emtpy
11: if not AR∗ then
12: odPairs=updateODPairs(selectedVehicles)
13: if DSP then
14: allPaths=Dijkstra(odPairs)
15: else
16: allPaths=compuate all kShortestPaths(odPairs)
17: end if
18: doReroute(allPaths, sortedVehicles)
19: else
20: for all vehicle in sortedVehicles do
21: {origin, dest}=getVehicleOD(vehicle)
22: newPath=AstarRepulsion(origin,dest)
23: if newPath is not empty then
24: setRoute(vehicle, newPath)
25: end if
26: end for
27: end if
28: end if
29: wait(period) {The process executes periodically.}
30: end while
31: end procedure

32: procedure doReroute(allPaths, sortedVehicles)
33: if FBkSP then
34: LocalOptAssign(allPaths, sortedVehicles)
35: else
36: for all vehicle in sortedVehicles do
37: {origin, dest}=getVehicleOD(vehicle)
38: if DSP then
39: newPath = allPaths[origin][dest][0]
40: end if
41: if RkSP then
42: newPath = pickPath random(allPaths[origin][dest])
43: end if
44: if EBkSP then
45: newPath = pickPath leastPopular(allPaths[origin][dest])
46: updateFootprint(vehicle, newPath)
47: end if
48: setRoute(vehicle, newPath)
49: end for
50: end if
51: end procedure

46

4.4 Dynamic Traffic Assignment

The work on DTA algorithms is essential for the problem considered in this dissertation,

i.e., improving the individual travel time through traffic re-routing and guidance.

Nevertheless, as explained in Chapter 2, DTA is not yet the most viable solution

for real-time traffic guidance, mainly because of the DTA’s very high computational

complexity coupled with the high dynamics of the traffic and the imperfections in

traffic knowledge. In spite of this, DTA can offer valuable information as, for example,

the level of improvement in the travel time that can be achieved in an ideal situation

(i.e., where computational cost is not an issue and the traffic information is perfect).

Therefore, DTA is employed to obtain a lower bound on the optimization of the travel

time for comparison with the results produced by the proposed strategies.

The DTA model used in this dissertation tries to achieve stochastic user

equilibrium (SUE) through an iterative simulation process and mathematical modeling

(see Chapter 2). Given the traffic demand, it chooses some initial routes assuming

zero traffic. Then, it calculates the network load and the travel times by simulation

and updates the route choices of the drivers. This process is repeated until the

travel times are stationary or a maximum number of iterations is reached. The

simulation-based DTA tool employed in this dissertation was proposed in [5, 25]. At

least three parameters have to be given as input: a road network, a set of trips, and

the maximum number of iterations. The higher the number of iterations is, the higher

is the probability to achieve a SUE traffic state. In these experiments, the maximum

number of iterations is defined to 50, since that was the value specified in [12]. The

DTA algorithm, as defined in [25], is summarized next:

Step 1: Initialize the route of each driver by the optimal route in the empty network.

Step 2: Calculate the time dependent costs of the road segments by simulation.

Step 3: Recalculate the optimal routes of a certain portion p of the drivers using the
time dependent costs from step 2.

47

Step 4: If routes have changed in step 3, go to step 2.

Note that the DTA algorithm involves not only shortest path graph computations

but also simulations. The purpose of the simulation is to help DTA acquire a relative

accurate estimation of the travel times given the assignment of the previous iteration.

Then, the estimated travel times are used to adjust the assignment in the next iteration.

However, this inevitably leads to increased computational burden. In comparison,

the approach in this dissertation approach proposes alternative routes to drivers during

their entire journey based on the dynamic conditions in the road network, and most of

the computation is spent on shortest path graph algorithms. Therefore, this approach

is expected to be more efficient than DTA.

4.5 Chapter Summary

This chapter presented two classes of vehicle routing algorithms, namely, Single

Shortest Path strategy (SSPS) and Multiple Shortest Paths Strategies (MSPS). These

algorithms leveraged real-time vehicular traffic information to compute individually

tailored optimal paths with high probability of lowering travel time and avoiding

congestion in the future. The SSPS strategy focused on integrating other vehicle’s

paths to compute the current vehicle’s path. Meanwhile, MSPS emphasized the

load balancing efficiency to avoid potential congestion in the future. This chapter

also reviewed a state of art DTA model that will be compared with the proposed

algorithms.

CHAPTER 5

EVALUATION OF CENTRALIZED SYSTEM

This chapter presents the evaluation through simulations of the five vehicle re-routing

strategies presented in Chapter 4 in the basic centralized design. The main objective

of this simulation-based evaluation is to study the performance of the five re-routing

strategies under various scenarios. Specifically, to address the following questions:

• Which strategy leads to the most benefits for drivers in terms of travel time and
number of re-routings?

• What is the trade-off between strategy effectiveness and their efficiency in terms
of computation time? How do the proposed strategies compare to a DTA-based
approach in terms of effectiveness and efficiency?

• Which strategies scale better with the number of cars?

• How do parameters (number of alternative paths, car selection level, etc.)
influence the performance?

• How robust is the system under various compliance rates (i.e., percentage of
drivers who follow the guidance) and penetration rates (i.e., percentage of
vehicles which have this software)?

The experimental settings are firstly introduced in Section 5.1. Afterwards, the

results are presented and analyzed in Section 5.2. The chapter concludes in Section 5.3.

5.1 Experimental Settings

Both SUMO 15.0 [11] and TraCI [86] were employed for these simulations. SUMO is

an open source, highly portable, microscopic road traffic simulation package designed

to handle large road networks. TraCI is a library providing extensive commands to

control the behavior of the simulation including vehicle state, road configuration, and

traffic lights. The re-routing strategies algorithms were implemented using TraCI.

Essentially, when SUMO is called with the option to use TraCI, SUMO starts up,

48

49

Table 5.1 Statistics of the Two Road Networks

Brooklyn Newark

Network area 75.85km2 24.82km2

Total number of road segments 551 578

Total length of road segments 155.55km 111.41km

Total number of intersections 192 195

loads the scenario, and then waits for a command. Thus, variables in the simulation

can be changed (e.g., new paths assigned to certain vehicles). Then, a new command

can be sent with how many seconds to run the simulation before stopping and waiting

for another command.

Two urban road maps were downloaded from OpenStreetMap [31] in osm format.

One is a section of Brooklyn, NY and the other is in Newark, NJ. The Netconvert

tool in SUMO was used to convert the maps into a SUMO usable format, and the

Trafficmodeler tool [65] to generate vehicle trips. Netconvert removes the pedestrian,

railroad, and bus routes, and sets up a static traffic light at each intersection to make

the simulations more realistic (as the maps do not have STOP signs). All roads have

the same speed limit (13.9 m/s); some roads have one lane in each direction, while

others have just one lane based on the specification in the OpenStreetMap osm file.

The statistics of the two networks are shown in Table 5.1. By default, the shortest

travel time paths are automatically calculated and assigned to each vehicle at the

beginning of simulation based on the speed limit. Figure 5.1 illustrates the simulation

process. Figures 5.2 (a) (b) show the traffic flow in both networks. Trafficmodeler was

used to generate a total of 1000 cars in the Brooklyn network from the left area to the

right area in an interval of 1000 seconds. The origins and the destinations are randomly

picked from the left area and the right area, respectively. In the Newark network,

908 cars were generated having the origins picked randomly from the peripheral road

segments and the destinations on the road segments inside the hot spot circle.

50

Figure 5.1 The simulation process.

In the simulations, the default settings in SUMO 15.0 were used for vehicle

length=5m, the minimal gap=2.5m, the car following model (Krauss [44]), and the

driver’s imperfection=0.5. For each scenario, the results are averaged over 20 runs.

Initially, an ideal scenario is assumed, in which all drivers have the system and accept

the route guidance. These assumptions are relaxed in the last part of the evaluation.

Table 5.2 defines the parameters used in this evaluation.

A DTA-based re-routing strategy (cf. Section 4.4) was also implemented by

using a DTA tool provided with the SUMO generator. Contrary to the proposed

approach, implemented in this dissertation, the DTA strategy computes the routes

leading to user equilibrium for all the vehicles in one shot, before any vehicle starts its

journey. Thus, the DTA tool produces a file containing the routes of all the simulated

vehicles, which is supplied to the SUMO simulator. Based on this route file, SUMO

Table 5.2 Parameters in Centralized Re-routing Algorithms

period The frequency of triggering the re-routing; by default period=450s

threshold δ
Congestion threshold; if Ki/Kjam > δ, the road segment is
considered congested; by default δ = 0.7

urgency Urgency policy: RCI or ACI

level L
Network depth to select vehicles for re-routing starting from the
congested segment and using BFS on the inverted network graph

paths k
The max number of alternative paths for each vehicle; by default
k = 4

repulsion weight
β

The weight of repulsion in AR∗; by default β = 0.05

51

(a) Brooklyn (b) Newark

Figure 5.2 Traffic flow in the road networks.

generates a single, continuous simulation, i.e., without any other route changes as

in the case of the proposed strategies. Hence, the CPU time measured in the next

section indicates, in the case of DTA, the time required to produce the route file,

whereas in the case of the proposed strategies, the cumulated time (i.e., over the whole

simulation) required to compute alternative paths for the re-routed vehicles.

5.2 Results and Analysis

5.2.1 Average Travel Time

Figure 5.3 presents the average travel time obtained with the five strategies and

with DTA on both networks. The “no-reroute” bars indicate the travel time in the

absence of any re-routing. The results show that all the proposed strategies improve

the travel time significantly. In most cases, the proposed strategies obtain travel

times at least two times lower than no-rerouting. For instance, with a selection level

of 3, compared to “no-reroute”, EBkSP reduces the travel time by 2.2 times and

4.5 times on Brooklyn and Newark, respectively. As expected, DTA has the best

average travel time since it can achieve user equilibrium. Based solely on the obtained

52

(a) Brooklyn

(b) Newark

Figure 5.3 Average travel time (L=(3,4), k=4, urgency=ACI,
period=450s, δ=0.7, β=0.05).

53

average travel time, the five strategies are ranked as follows: DTA>AR∗ >(EBkSP,

FBkSP)>RkSP>DSP>no-rerouting. The results confirm the hypotheses laid out in

Chapter 4 with statistical significance of 95% confidence interval. DSP can improve

the travel time, since it re-routes dynamically the vehicles by considering the traffic

conditions. However, in some cases, e.g., if many vehicles have similar current positions

and destinations, respectively, new congestions can be created by the re-routing process.

RkSP avoids this shortcoming since it balances the traffic flow over several paths.

Nevertheless, a randomly picked path is not necessarily the best one. EBkSP and

FBkSP offer even better performance by carefully selecting the path for each re-routed

vehicle. Finally, AR∗ has the best performance among the proposed strategies as it

considers all the other vehicles in the road network in the computation of a new route.

The experiments also demonstrated that setting the depth level to 3 or 4 is best

for selecting a relatively optimal number of vehicles for re-routing (the two values

lead to similar performance for Brooklyn, while level 3 is better for Newark). Lower

level values do not select enough cars, whereas higher values increase the number of

re-routings (see Figure 5.4). Therefore, the level parameter is set to 3 in the remaining

experiments.

5.2.2 Average Number of Re-routings

It is important that the re-routings frequency for a given vehicle during a trip stay

low. From the driver point of view, changing the path to the destination too often can

be distracting and annoying. From the system point of view, having a low number of

re-routings means decreasing the computational burden because the re-routing process

is costly. Figure 5.4 compares the number of re-routings across the five proposed

strategies. The statistical analysis shows that AR∗ <(EBkSP, FBkSP)<RkSP<DSP

in terms of average rerouting number with 95% confidence interval 1. For example,

1A t-test was performed for each pair of the strategies

54

(a) Brooklyn

(b) Newark

Figure 5.4 Average number of re-routings (L=(3,4), k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

55

compared to DSP, AR∗ reduces the average number of re-routings by up to 2.0 and

1.5 times, while compared to RkSP, AR∗ is better by 1.6 and 1.3 times on Brooklyn

and Newark, respectively. The reason is that by considering future path information

in the re-routing decision, EBkSP, FBkSP and AR∗ can not only mitigate the current

congestion, but also avoid creating new congestions; hence, the lower necessity for

recurrent re-routing.

(a) Brooklyn

(b) Newark

Figure 5.5 Number of congested road segments on the
Brooklyn network over time/iterations. (L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

56

To confirm this analysis, the number of congested segments was also measured in

each iteration for Brooklyn. Figure 5.5 shows the results. As traffic is generated during

the first 1000 seconds (i.e., iterations 1-3), the number of congested roads increases for

all strategies. Then, the number of congested roads decreases for two reasons. First, no

more traffic is generated, and this effect is observed in the “no-rerouting” curv. Second,

and more importantly for these strategies, re-routing helps to dramatically reduce

this number. As expected, EBkSP and FBkSP have comparable results and reduce

the number of congested roads faster than DSP and RkSP. It was also apparent that

although AR∗ did not have the best performance at the beginning of the simulation,

it was capable to alleviate congestion much faster than the other methods afterwards.

5.2.3 Distribution of Travel Time and Re-routing Frequency

The average travel time and the average number of re-routings measure the performance

of the system from a global point of view. Here, the performance from a driver point of

view (e.g., how many drivers end up with a shorter travel time?) is investigated. Two

new metrics are also introduced: (1) the relative travel time (RelT) is defined as the

ratio of the travel time with re-routing and the travel time with no re-routing; thus,

RelT measures the travel time gains or loses for individual drivers; (2) the re-routing

frequency (RRF) is defined as the number of re-routings per hour experienced by a

driver; thus, RRF measures the driver distraction due to re-routing.

Figure 5.6 presents the cumulative distribution of RelT and RRF for each

re-routing strategy for the Brooklyn network. The values are averages (per driver)

computed across 20 runs of simulations. Similar results were obtained for the Newark

network, which was omitted. AR∗ has the best results for both RelT and RRF,

followed closely by EBkSP and FBkSP. The system manages to improve the travel

time for a large majority of drivers. Similarly, a large majority of drivers experience no

57

(a) Relative travel time CDF

(b) Re-routing frequency CDF

Figure 5.6 CDF of relative travel time and re-routing
frequency per hour on Brooklyn network.(L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

58

more than 3 re-routings per hour, which is assumed to be acceptable in city scenarios

with heavy traffic.

However, there is a relatively small percentage of drivers (i.e., ranging from 10%

for AR∗ to 25% for DSP), that end up with increased travel time after re-routing.

The observed increase is limited to less than 50% for most of these drivers. Note

that this phenomenon is equally present in DTA, where around 15% of the drivers

have increased travel time. The main reason for these results is that the proposed

re-routing strategies have not been designed to achieve user-optimal equilibrium, and

thus cannot guarantee the best travel time for each user. More surprisingly, even DTA

which was designed to achieve user equilibrium cannot do it; reasonable conjecture

is that this is due to the difficulty to find an equilibrium under congestion [16]. It is

understood that a few bad experiences with the system could impact its adoption rate.

Therefore, future studies should aim to investigate strategies to lower the number of

drivers with increased travel time and to bound this increase to low values.

5.2.4 CPU Time

At this point, the results indicate that AR∗ produces the best average travel times

(near to the DTA times), followed closely by EBkSP, FBkSP, and in some cases, by

RkSP. An important question is what is the computational performance among all the

proposed five strategies. If the computational complexity of the algorithms that the

strategies are based on is considered, the complexities of the Dijkstra shortest path

(used by DSP), k loopless shortest paths (used by RkSP, EBkSP and FBkSP) and A∗

(used by AR∗) algorithms must be evaluated. Dijkstra shortest path and k loopless

shortest paths require O(E + V log(V)) and O(kV (E + V log(V))), respectively, while

A∗ was proven to be faster than Dijkstra [75]. However, this complexity analysis

is pertinent only when the selection of an alternative path for one single vehicle is

considered. From the system point of view, the global computational complexity also

59

(a) CPU time

(b) Number of OD pairs

Figure 5.7 CPU time for both the networks(L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

60

depends on the number of re-routings processed in a time window; this number is a

function of the number of congested road segments and the congestion severity (i.e.,

how many vehicles are selected for re-routing). Moreover, DSP, RkSP, FBkSP and

EBkSP compute shortest paths after grouping the vehicles on their origin-destination,

whereas AR∗ calculates a new path for each vehicle. Therefore, AR∗ could require a

larger computation time than the other methods.

Figure 7.3 (a) shows the global CPU time consumed for re-routing by the five

methods and by DTA. Note that the experiments were conducted on a 64 bit Ubuntu

machine with Intel Core i5-2467M CPU (1.6GHz) and 4GB of memory. The following

four observations were noted regarding the CPU time results:

• DSP requires the least CPU time for re-routing, mainly due to the low complexity
of the shortest path algorithm (compared to the k-shortest paths algorithm) and
to grouping the re-routed vehicles.

• AR∗ consumes significantly more CPU time. Specifically, it requires 2.0 and 2.3
times more CPU time than RkSP and EBkSP on Brooklyn. The main reason is
that AR∗ cannot group the re-routed vehicles like the other methods as stated
in Section 4.1.2.

• EBkSP, FBkSP and RkSP are situated in between the above mentioned methods
from the CPU time point of view. Interestingly, EBkSP and FBkSP require
less computation time than RkSP even though they execute more complex
path selection algorithms in addition to the k-shortest path computation. The
explanation is that EBkSP and FBkSP decrease the total number of re-routings
processed in a period. This decrease becomes apparent when the number of
origin-destination (OD) pairs involved in the computation was examined, as
indicated in Figure 7.3 (b). The total number of OD pairs is lower for EBkSP
and FBkSP than for RkSP. Figure 7.3 (b) also shows that the although DSP
leads to the largest number of OD pairs, it still has the lowest CPU time because
of the much lower computational complexity of Dijkstra algorithm compared to
the k-shortest path algorithm.

• DTA has the largest CPU time and scales poorly with an increasing number of
vehicles (in terms of CPU time) when compared to AR∗ or the other proposed
methods (as shown in Figure 5.8 (b)). Also, it is worth noticing that DTA
assumes all vehicles in the system known at the beginning (i.e., when it computes
its routes). However, in real life, vehicles may appear at any time, and DTA
would be required to perform its expensive computation over and over again.
Therefore, due to its very high computational cost in real life, DTA may be

61

impractical (i.e., it may not be able to compute alternative routes fast enough
in order to mitigate congestions).

In conclusion, if both the average travel time and the CPU time are considered,

EBkSP and FBkSP appear to be the best strategies since they offer the best trade-off

between re-routing effectiveness and computational efficiency. If computational cost is

not an issue, one can use the AR∗ strategy, while in the opposite case, DSP is the

most appropriate choice.

5.2.5 Traffic Density

The results presented up to here already offer a good idea about the capabilities of

the proposed re-routing strategies to alleviate traffic congestions. Yet there is an

important aspect that still needs to be explored, i.e., how the proposed methods scale

with the increase of the traffic volume. To respond to this question, another set of

experiments were conducted on the Brooklyn network, where the number of vehicles

were increased from 1000 to 2500. Figure 5.8 shows the obtained results both for the

average travel time and the CPU time for different traffic densities. AR∗ and DTA

present the best scalability from the average travel time point of view. However, these

methods are also the least scalable from the CPU time point of view. It was apparent

that DTA exhibits particularly poor scalability compared to the proposed strategies,

confirming the hypothesis that DTA is not yet a suitable approach for real-time traffic

management. Also, somewhat interestingly, AR∗ obtained better average travel times

than DTA (see Figure 5.8 (a)) when the number of vehicles was above 1500. This

is certainly due to the fact that the 50 iterations limit, set in the DTA tool is not

sufficient to achieve user equilibrium for higher traffic densities. Therefore, a higher

number of iteration is needed in this case, which will lead evidently to even higher

CPU times.

62

(a) Average travel time

(b) CPU time

Figure 5.8 The average travel time and CPU time for
Brooklyn network for different traffic densities (L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

63

(a) Average travel time

(b) CPU time

Figure 5.9 Average travel time, CPU time for RkSP, EBkSP
and FBkSP as function of k for the Brooklyn network (L=3,
k=(2, 3, 4, 5, 6), urgency=ACI, period=450s, δ=0.7).

64

5.2.6 Number of Alternative Paths

k is a determinant parameter for the performance of RkSP, FBkSP and EBkSP,

which require k-shortest paths computation. A larger k value allows for better

traffic balancing but introduces higher computational complexity. Furthermore, the

maximum allowed difference between the slowest path and the fastest path is 20%

in the setting. Therefore, large k values may not be necessary because they would

lead to computing many useless paths. Figure 5.9 compares the performance of RkSP,

EBkSP and FBkSP with different k values on the Brooklyn network. The k value is

irrelevant for DSP and AR∗.

It was observed that RkSP does not exhibit any performance improvement for

k > 2, while both EBkSP and FBkSP consistently produce lower travel times with

higher k values. From Figure 5.9 (b), it is apparent that the computational cost

increases linearly with k for all the kSP methods. However, EBkSP and FBkSP are

more scalable than RkSP especially for larger k values (e.g., EBkSP requires 32% less

CPU time than RkSP when k equals 6). The efficiency of EBkSP and FBkSP is due

to the reduction of the number of OD pairs.

In conclusion, EBkSP and FBkSP have a much more robust and efficient

performance than RkSP with respect to different k values. Choosing the k value is

a matter of trade-off between improving the average travel time and increasing the

computational cost.

5.2.7 Urgency Function

Among the five proposed algorithms, EBkSP, FBkSP and AR∗ use an urgency function

to sort the list of vehicles selected for re-routing (cf. Section 5.2.7). To measure the

performance difference between the two proposed ranking policies – RCI and ACI (cf.

Definition 1), the ANOVA statistics test was conducted over the average travel time

from 30 simulations with EBkSP and FBkSP. The results show that ACI produces

65

lower average travel times than RCI (p < 0.01) in a 95% confidence interval. The

result confirmed the previous analysis in Section . Thus, since using the absolute

congestion impact on the travel time as priority measure for vehicle re-routing leads

to a better global performance, ACI is used as the default urgency function in all the

following experiments.

Figure 5.10 Average travel time as function of β for both
networks. (L=3, k=4, urgency=ACI, period=450s, δ=0.7,
β ∈[0.01,0.5]).

5.2.8 The Weight of Repulsion in AR∗

The β parameters directly impact the effectiveness of the AR∗ algorithm. Recall that

in the original AR* algorithm, F(x)=(1-β)(G(x)+H(x))+β*R(x). If beta is too high,

the resulting path will diverted too far away from the optimal. Similarly, if beta is

too low, it will be too closer to the naive shortest path (DSP) strategy. Therefore, to

determine a good β, beta value was varied from 0.01 towards 0.5 and measured the

travel time. Figure 5.10 shows the results for both networks. An observation shows

that value in [0.05, 0.2] leads to the lowest travel time on both networks. For all the

experiments in the text, 0.05 was used as the beta value.

66

(a) Brooklyn

(b) Newark

Figure 5.11 Average travel time as function of the re-routing
period for the Brooklyn network (L=3, k=4, urgency=ACI,
period=(150s,300s,450s,600s,750s), δ=0.7).

67

5.2.9 Re-routing Period

Within the traffic guidance system, the re-routing process is triggered periodically at

a pre-defined time interval. A shorter re-routing period leads to higher reactivity of

the system, and thus to better travel times. However, the price to pay is increased

computation cost, communication overhead, and potentially re-routings. At extreme

cases, it might not even be possible to compute the alternative routes fast enough to

push them to vehicles before they reach the re-routing intersections.

Figure 5.11 shows the average travel time for different re-routing periods.

Generally, the lower the period is, the lower the average travel time is. The difference

between all algorithms tends to be smaller when the re-routing period is low since the

system is more reactive to congestions. As the period increases, the system’s reactivity

decreases, which translates into increased travel times. In particular, DSP and AR∗

were more sensitive to the variations of the re-routing period parameter especially

in the Brooklyn experiments, while the KSP methods were generally more robust to

such variations. To obtain a good balance between the average travel time on the one

side and the computation cost, communication overhead, and number of re-routings

on the other side, a period of 450 seconds was used on the experiments.

5.2.10 Congestion Threshold

Another key element determining the system reactivity is the congestion threshold (i.e.,

the vehicle density value on a road segment above which the system considers it as sign

of congestion). Choosing a low density threshold may trigger unnecessary re-routing,

which in turn leads to increased computational burden and number of re-routings.

On the other hand, if the threshold is too large, congestion may be detected too late

and the re-routing could be less effective. Figure 5.12 (a) confirms these hypotheses.

When the threshold value is δ = 0.9, the travel time increases dramatically because

the congestion relief mechanism is triggered too late.

68

(a) Threshold

(b) OD pairs

Figure 5.12 Average travel time as function of the congestion
threshold for the Brooklyn network (L=3, k=4, urgency=ACI,
period=450s, δ=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9)).

69

When the threshold value is too small, the number of re-routings increases as well

as the computational burden. Figure 5.12 (b) shows the total number of origin and

destination pairs that have to be computed in a simulation depending on the congestion

threshold. The results show that the number of OD pairs is reduced by 58% when δ

varies from 0.4 to 0.8. Therefore, δ = 0.7, 0.8 are the preferred congestion threshold

values since they offer smaller average travel times at reasonable computational cost.

(a) Low compliance rate

(b) All compliance rates

Figure 5.13 Average travel time as a function of the
compliance rate on Brooklyn network. (L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

70

5.2.11 Compliance Rate

It is unrealistic to assume that every driver follows the re-routing guidance. The

drivers’ compliance rate (i.e., the possibility for the driver to accept the guidance) is

an important factor for the re-routing strategy design. Therefore, the average travel

time was measured, while varying the compliance rate for the five proposed strategies

and for DTA. Specifically, for the strategies, given a compliance rate of x%, at each

re-routing period, each of the selected vehicles change their routes with x% possibility.

As for DTA, x% of the vehicles are randomly selected to follow the DTA assigned

route, while the rest of the vehicles follow the shortest time route.

Figure 5.13 (a) indicates that the average travel time can be significantly improved

by all five strategies even under low compliance rates. This is due to the fact that

even under low compliance rates, the drivers who comply with the guidance can still

receive more rapid routes, which in turn can improve the travel time for the rest of the

drivers. Figure 5.13 (b) shows the average travel time for a wide range of compliance

rates.

In particular, when the compliance rate is low, RkSP, EBkSP, FBkSP and AR∗

show significantly better travel times than DTA. The reason is that when compliance

is low, the drivers who comply benefit much more from this guidance than from the

DTA guidance. In the DTA approach, the route computation is done once before any

vehicle enters the network. If the compliance rate is low, the DTA computed routes

are far from a user equilibrium, inclusively for the compliant drivers. Differently,

these strategies can adjust the vehicles’ routes periodically based on the current traffic

information. Therefore, although the non-compliant drivers create congestion in the

network, the compliant ones can still receive fairly good paths, which implicitly reduces

the congestion level in the network.

71

(a) Sensors: Vehicles Only

(b) Sensors: Vehicles & Road-Side

Figure 5.14 Average travel time as a function of the
penetration rate on Brooklyn network (L=3, k=4,
urgency=ACI, period=450s, δ=0.7, β=0.05).

72

5.2.12 Penetration Rate

To understand how easy is to deploy this solution in real life, the effect of the

penetration rate on the average travel time was studied. Specifically, before the system

starts, each vehicle was predefined with x% possibility of owning the system(e.g.

providing position information and receiving guidance). Once the system starts, only

those the x% vehicle will have the chance to be rerouted. The penetration rate is a

parameter of major importance for two reasons. First, since only the vehicles which

have the system provide position and route information to the server, the accuracy of

congestion detection and road travel time estimation depend directly on this parameter

(i.e., the lower the penetration rate is, the lower the accuracy is and vice-versa). Second,

similar to the compliance rate, the effectiveness of the load balancing mechanism

implemented by the re-routing strategies increases with the percentage of the vehicles

that use the system.

Figure 5.14 (a) shows the average travel time for various penetration rates, when

traffic data are collected only from vehicles (i.e., no support from road-side sensors).

When the penetration rate is low, the performance of the proposed methods is the

same as “no-reroute”. In this case, the service does not have enough data to accurately

detect signs of congestion. Once the penetration rate is greater than 0.4, the system is

able to improve the travel time. For penetration rates above 0.6, EBkSP, FBkSP and

AR∗ start to perform better than DSP and RkSP, since a larger number of vehicles

are re-routed, which requires a more advanced load balancing mechanism. Compared

to these methods, DTA performs better under low penetration rates since the DTA

re-routing is not triggered by the congestion detection as in this approach.

To boost the adoption of the system, it is possible that data from road-side

sensors (in conjunction with data from vehicles) can be leveraged to detect congestion

more accurately in case of low penetration rates. When road sensors are present,

the road traffic density can be measured, the congestion can be detected and the

73

Table 5.3 Comparison between Compliance and Penetration Rate

Road
traffic
density

Congestion
detection

Re-routing Load balancing

Compliance
rate

Accurate Accurate

All vehicles
provide positioning
information. At
each re-routing,
only x% of vehicles
follow the guidance

Considers all
vehicles (except
DSP)

Penetration
rate
without
sensors

Inaccurate Inaccurate

Predefined x%
of vehicles that
provide positioning
information receive
guidance and
comply with the
guidance

Considers only
the x% of vehicles
(except DSP)

Penetration
rate with
sensors

Accurate Accurate

Predefined x%
of vehicles that
receive guidance
and comply with
the guidance. The
system obtains
accurate traffic
data from sensors
and vehicles

Considers only
the x% of vehicles
(except DSP)

travel time can be estimated more accurately. Figure 5.14 (b) demonstrates that

these methods can significantly improve the travel time even under low penetration

rates if road-side sensor information is available. Moreover, EBkSP, FBkSP and AR∗

perform better than DTA in this case. When penetration rate is low (x%), DTA

distributes evenly the x% vehicles without considering the rest, which can still create

congestion. Therefore, the alternative routes proposed by DTA are not as effective

in alleviating congestion. By comparison, these strategies can take advantage of the

sensor information to divert the x% of the drivers and to reduce congestion.

To make it clear, the Table 5.3 lists the difference of these methodologies among

compliance rate, penetration rate with sensor and no sensor.

74

5.3 Chapter Summary

In this chapter, an extensive evaluation of the proposed re-routing strategies was

conducted. The objectives of the experiments are threefold. First, the effectiveness

of the proposed methods to alleviate congestion and to improve the driver’s travel

time was measured. Then, the computational efficiency and the scalability of these

re-routing methods was evaluated. To have a more precise idea of the performance

level offered by the proposed methods, a state-of-the-art dynamic traffic assignment

tool was used as a baseline in these experiments. The experimental results show that

these methods are very effective in fighting congestion, being capable of improving the

travel time as much as a DTA approach. In addition, these methods are much more

computational efficient and scalable than DTA, which makes them more appropriate

for use in real-life applications. Moreover, the palette of proposed methods offers a

wide range of choices having different trade-offs between effectiveness and efficiency,

which responds to a large variety of real-life scenarios.

Second, a more in-depth set of experiments was conducted to understand how

the parameters used by these methods influence their performance. The experimental

results give a good indication as to which are the most suitable values for some

of these parameters (i.e., urgency function, re-routing period, congestion threshold)

in conjunction with the employed method. For other parameters (i.e., number of

alternative paths k) and algorithms (i.e., EBkSP and FBkSP), it is still a matter of

choice between effectiveness and efficiency, opening the possibility to even finer system

tuning.

Third, a more realistic scenario was considered and assessed the robustness

of this system under compliance and penetration rates below 100%. The results

indicate that this system can still improve significantly the travel time even under low

compliance rates and that this approach is more robust than DTA. Besides, if accurate

75

traffic data (e.g., collected by road side sensors) can be provided to the system, then

the system exhibits good robustness with various penetration rates.

Table 5.4 Comparison of all the Five Centralized Strategies

Effectiveness AR∗ >(EBkSP, FBkSP)>RkSP>DSP

Efficiency DSP>(EBkSP, FBkSP)>RkSP>AR∗

Re-routing frequency AR∗ >(EBkSP, FBkSP)>RkSP>DSP

Robustness (AR∗, EBkSP, FBkSP)>RkSP>DSP

To summarize the performance of the proposed strategies, they are ranked

according to four criteria in Table 5.4, where A > B means that strategy A is better

than strategy B. While each method has its own advantages and shortcomings, the

experimental results made us conclude that the entropy method (EBkSP) and the

local optimization method (FBkSP), which led to very similar results, should be

the preferred strategies, as they offer the best trade-off between performance and

computation cost.

CHAPTER 6

HYBRID RE-ROUTING SYSTEM

Previously, the progress based on the centralized architecture was discussed, where

several re-routing strategies were implemented to assign a new route to each re-routed

vehicle, based on actual travel time in the road network. The re-routing strategies use

load balancing heuristics to compute the optimal path for a given vehicle, to mitigate

the potential congestion and to reduce the average travel time for all vehicles.

Despite these benefits, centralized solutions suffer from two intrinsic problems.

Firstly, the central server has to perform intensive computation (to re-assign vehicles

to new paths) and communication with the vehicles (to send the paths and to receive

location updates) in real-time. This can make the centralized system infeasible

because it may not be able to scale to large regions with many vehicles. Second, in

the centralized system, the server requires the real-time locations as well as the origins

and destinations of the vehicles to estimate the traffic conditions and provide effective

individual re-routing guidance. This leads to major privacy concerns for the drivers

and may prevent the adoption of such solutions. Increasing the computation and

communication power of the server can only solve the first problem(at a significant

monetary cost). As long as vehicles’ traces are fully disclosed, user’s identity can be

easily inferred even if pseudonyms are used to communicate with the server [30]. This

is due to the fact that location can contain identity information [68]. For example, if

there is only one location update coming from a private property, then most likely it

is sent by the owner of the property. Moreover, a sequence of location samples will

eventually reveal the vehicle’s identity [92]. Therefore, it is important to make the

system work without disclosing the users’ origin-destination (OD) pairs and with the

least number of location updates along a user trip.

76

77

These requirements suggest a distributed system architecture. However, a

fully decentralized architecture is not suitable for a proactive re-routing system. By

creating ad hoc networks such as in [20,62], the vehicles can exchange information using

multi-hop ad hoc communication. Therefore, vehicles can detect signs of congestion

in small regions while preserving their privacy. However, ad hoc networks do not

permit vehicles to get an accurate global traffic view in the road network, resulting in

sub-optimal re-routing decisions. A Peer-to-Peer design [72] has the benefits of the ad

hoc architecture and at the same time can acquire a global view of the traffic. Vehicles

communicate with each other over the Internet and form peer-to-peer (P2P) networks

for data collection and sharing. However, if designed naively, the system may not

scale due to potentially large routing latencies in the P2P network. Besides, in a fully

distributed architecture, due to the lack of a coordinator, the vehicles cannot take

synchronized actions at the same time, which makes it difficult to make a collaborative

decision.

To tackle all these problems, in this chapter a hybrid vehicular re-routing system

is proposed for congestion avoidance. This is a hybrid system because it still uses

a server to determine an accurate global view of the traffic. The centralized server

acts as a coordinator that collects location reports, detects traffic congestion and

distributes re-routing notifications (i.e., updated travel times in the road network) to

the vehicles. However, the system off-loads, a large part of the re-routing computation

at the vehicles and thus the re-routing process becomes practical in real-time. To make

collaborative re-routing decisions, the vehicles situated in the same region exchange

messages over VANETs. Also, the hybrid system implements a privacy enhancement

protocol to protect the users’ privacy, where each vehicle detects the road density

locally using VANETs and anonymously reports data with a certain probability only

from high traffic density roads. When signs of congestion are detected, the server

sends the traffic map only to the vehicles that sent the latest updates. Subsequently,

78

those vehicles need to disseminate the traffic data received from the server in their

region. User privacy is greatly improved, since this protocol dramatically reduces the

number of vehicle location updates to the server, and therefore, the driver exposure

and identification risks. Moreover, in the hybrid architecture, the server does not

know the OD pairs of the users.

The remainder of the chapter is organized as below: Section 6.1 states the

challenges of building a hybrid re-routing system. Section 6.2 presents the overview

of the hybrid system followed by the privacy-aware traffic reporting in Section 6.3

and distributed re-routing strategies in Section 6.4. Afterwards, four optimization

methods are described in Section 6.5 to reduce the VANETs communication overhead

and improve network throughput. The chapter concludes in Section 6.6.

6.1 Challenges of the Hybrid System

The first challenge in the hybrid design is how to make the distributed strategies

achieve similar effectiveness compared to the centralized version. Due to network

issues such as contention and packet collisions, obstacles, disconnections, and limited

throughput of longer multi-hop paths, each vehicle can only obtain a limited view of

the other vehicles. However, the more information each vehicle can gather, the more

accurate and optimal paths each vehicle can find. Therefore, the question is how to

optimize the communication efficiency, to maximize the amount of information each

vehicle can receive based on the current network condition. Several techniques are

investigated in Section 6.5.

The traffic guidance system belongs to real-time continuous location based

services, where location privacy protection is always the paramount challenge since

the services require frequent location updates. One solution is to ensure each reported

location is a cloaking box containing at least k users. However, this method does not

provide a user k-anonymity protection, since a time-series sequence of cloaking boxes

79

forms a trajectory, which may reveal the real identity of the user if it links to the

user’s personal locations such as the home or office. Associating each cloaking box

with a different pseudonym can not help in this case either: since successive locations

are highly correlative, they could be re-linked based on a common trajectory without

the need to know any identifiers [91]. Besides, existing methods use a proxy which

must be trusted. Such an assumption should be avoided since any central entity could

either become computation bottleneck or been comprised by adversaries. Therefore,

new privacy methods are required by our system. These methods must protect user

privacy, while at the same time, should not render the system ineffective.

There is a need to define a formal privacy measure to compare the privacy

leakage between the centralized and the hybrid version of the system. The privacy

measurement should consider the importance of each location update. Basically, each

location update should be associated with a weight since some locations are more

sensitive. For example, if there is only one location update in a private area, then the

vehicle’s identify is revealed. The more popular the location is, the more difficult it is

for an adversary to single out the driver identity. Such index can be used to evaluate

the degree of privacy leakage of existing and forthcoming location anonymization

techniques, in terms of the trade-off between privacy and system performance. In this

dissertation, Chapter 6.3 presents our privacy solution and metric.

6.2 System Overview

This section provides an overview of the proposed hybrid system. The design principles

are described initially, and then the system architecture is presented.

6.2.1 Design Principles

The proposed system is built around two design principles corresponding to the two

major requirements. First, the re-routing path computation should be off-loaded

80

from the central server to the vehicles to reduce the computation and communication

burden on the server and achieve better scalability. Therefore, the alternative routes

should be compute by vehicles themselves when there are signs of congestion in the

road network. At the same time, the re-routing computation should be collaborative

in order to achieve a better effectiveness of the re-routing process, as close as possible

to the centralized re-routing effectiveness. To this end, the vehicles could exchange

messages over VANETs and implement a distributed re-routing process. Second, the

system should be designed to respect the privacy of the users from its conception,

i.e., a privacy-by-design system, which can be essential for the wide acceptance of the

system. Implicitly, by offloading the path computation to the vehicles, the drivers’

exposure is reduced significantly, since very sensitive information (i.e., the OD pair of

the vehicles) is not sent to the server anymore. Nevertheless, protecting only the OD

of a vehicle is not sufficient. The vehicles still have to send traffic reports that are

used by the server to obtain an accurate view of the traffic in the network. Frequent

location updates may reveal the vehicle’s identity [92]. Hence, a mechanism is also

needed that protects the identity of vehicles while reporting data. The work in [35]

provides a method for privacy-aware traffic reporting, based on virtual trip lines, and

an associated cloaking technique. However, in [35] the vehicles only provide location

updates from pre-defined geographical markers. On contrary, the system in this

dissertation requires vehicles’ location updates from any point in the network that is

close to congestion spots in order to notify the concerned vehicles. Besides, the system

proposed in [35] assumes a trusted proxy, which could become a communication

bottleneck. Hence, a new solution is required.

6.2.2 System Architecture

Given the above described design principles, a hybrid architecture is proposed to

implement the re-routing service as illustrated in Figure 6.1. The architecture is

81

Figure 6.1 The hybrid system.

composed of a central server and a software stack running on an on-board device

(e.g., a smartphone) in each vehicle that participates to the system. The system

uses two types of communications. The vehicles communicate with the server over

a 3/4G network to report local traffic density data and to receive the global traffic

density in the road network (i.e., the green lines in Figure 6.1). The vehicles report

data according to a privacy-aware algorithm that is detailed in Section 6.3. Also,

the vehicles that are closely located communicate with each other over VANETs to

determine the local traffic density, to disseminate the traffic data received from the

server and to implement a collaborative and distributed re-routing strategy (i.e., the

red lines in Figure 6.1) as detailed in Section 6.4.

The server uses the vehicle traffic reports to build an accurate and global view

of the road network traffic. Each time new road segments exhibit congestion signs,

82

the server sends the weighted graph to the cars that reported recently, and are close

to the congestion segments (see Section 6.3).

These vehicles disseminate the information (i.e., traffic graph and vehicle route)

in their regions with a limited number of hops, to avoid excessive flooding. The

dissemination also has a timeout (e.g, 0.2s), which is a constant parameter in the

proposed system. When the time is up, based on the traffic graph and route information

shared by other vehicles, each vehicle, whose current path traverses the congestion

spot, locally computes a new route to its destination. This re-routing process is

presented in Section 6.4.

6.3 Privacy-aware Traffic Reporting

The hybrid system described above distributes the re-routing computation to the

vehicles. Consequently, the system does not require the OD pair of the vehicles. Yet,

the system still requires each vehicle to periodically report their location to the central

server, to compute the traffic density and estimate the travel time in the road network.

The periodical location reporting, even anonymously, could lead to identity disclosure

as proven in several papers [30, 68]. Therefore, to increase the vehicles’ location

privacy and hence protect the driver identity, this section introduces a privacy-aware

communication protocol between the vehicles and the server. Firstly the privacy

metric is described and then the density-based traffic reporting and the travel time

computation by the server is presented.

6.3.1 Privacy Metric

In order to measure how much location privacy is lost with each location update, each

location report is associated with a weight. Similar to [92], the weight of a location

report depends on the popularity of the location road segment. That is, the more

popular a spatial region is, the more difficult it is for an adversary to single out the

83

report sender. However, the number of vehicles along the segment is not sufficient to

quantify its popularity, because some vehicles may have a dominant presence in that

space. Instead, a metric is applied that is based on the entropy of the road segment.

Definition 4 - Road segment popularity. Let rs be a road segment and S(rs) =

{v1, v2, ..., vm} be the set of vehicles that send location updates in rs. Let ni (1 ≤ i ≤ m)

be the number of location updates that user ui sent from rs and N =
∑m

i=1 ni. Then

the entropy of the road segment rs is E(rs) = −
∑m

i=1
ni

N
log ni

N
and the popularity of

rs is P (rs) = 2E(rs).

Definition 5 - Privacy leakage. Given the above defined popularity measure of a

location, the global privacy leakage for vehicle vi is defined as:

pleakvi =
∑

all updates

updatei
P (location of updatei)

. (6.1)

Definition 6 - Average privacy leakage. The average privacy leakage for all the

vehicles is:

pleakavg =

∑
all vehicles pleakvi

total number of vehicles
(6.2)

6.3.2 Density Reporting

Privacy-aware reporting is based on the observations that in dense areas, vehicles

naturally experience a higher degree of anonymity similar to a person walking through

an inner-city crowd. Hence, sending location reports from high density areas decreases

the risk of vehicles being identified by the untrusted server. At the same time, the

server has to compute the road network travel time and send it back to the vehicles.

The re-routing effectiveness is highly dependent on the accuracy of the travel time

84

estimation in the network, as indicated in Chapter 4. Most importantly, the system has

to be capable to detect the congestion signs to be effective. Therefore, a density-based

traffic reporting mechanism is proposed wherein vehicles report to the server only if

the road density is higher than a predefined threshold. This is beneficial for both the

re-routing effectiveness and the vehicle privacy, since the server can still accurately

detect the congestion signs at the cost of lower user privacy exposure.

A second important observation is that vehicles use VANETs to locally exchange

messages. Therefore, each vehicle can obtain information about its neighbor vehicles

by the periodic exchange of small presence messages called beacons. Based on the

beacons, the density of the current situated road segment can be estimated locally

by each vehicle [9]. The idea is to employ this mechanism to minimize the number

of vehicle reports, i.e., only a fraction of the vehicles situated on a road segment will

send traffic reports. Specifically, density reports are sent to the server conform to the

following rules: (1) cars submit reports only when they perceive that the density on

the road segments is above a threshold that would signal a chance of congestion, (2)

cars decide probabilistically when to submit data as function of the density - i.e., the

more cars there are, the fewer reports each car submits as the reports are distributed

among the cars on the segment, (3) they send their messages through anonymizers

(e.g., Tor [19]) to protect their identities.

Each vehicle periodically checks the number of vehicles Ni on the current road

ri. If Ni ≥ θ ∗Nmax, where Nmax is the maximal allowed vehicles on road ri, then the

vehicle will report the current detected density to the central server with probability

p = 1/Ni, where θ is a system parameter threshold (e.g., 0.5). The server computes

the traffic density on ri as di = Ni/Li, where Li is the length of ri. If every vehicle

applies the same reporting procedure, then the probability for the server to receive x

location reports from ri is
(
n
k

)
(1− p)N−xpx. The expected number of updates on this

road ri is nui =
∑N

x=0 x
(
n
k

)
(1− p)N−xpx.

85

6.3.3 Report Collection and Travel Time Computation

The server receives reports from vehicles indicating the number of vehicles on a road

segment and computes the traffic density on the roads. Every time the server receives

a report concerning a road ri, it will smooth the computed density value di using the

following formula: dcurrenti = α ∗ doldi + (1−α) ∗ dnewi . The value of α is experimentally

chosen to be 0.05. The server then estimates the travel time of each road segment by

considering the following three cases.

Case 1:
For the road segments without any traffic reports, the server estimates the travel
time to be the free flow travel time. Note that this travel time is an approximate
value for some roads, as vehicles only report when the vehicle density is above
the threshold density.

Case 2:
For the road segments with a non-zero traffic density but for which the last
report time is older than a predefined time interval, the server does an expiration
operation. Specifically, if the difference between the last update time and the
current time is greater than τ times the free flow travel time of the road, then
the road density is reset to zero. The value for τ is also based on empirical
results and is chosen to be equal to 4 in this system.

Case 3:
For the road segments that do not fit in Cases 1 and 2, the server uses the
Greenshield model 3.1 presented in Section 3.1.2 to estimate the travel time.

Note that, because of the density-based reporting policy, the traffic density

may not be fully accurate. However, the higher the traffic density of a road is, the

more accurately the traffic density will be estimated. This is important since the

re-routing effectiveness mainly depends on the traffic accuracy of the dense traffic

roads. Chapter 7 shows that the loss of accuracy in the traffic view has only a marginal

effect on the re-routing effectiveness, but greatly improves the privacy protection of

the users.

86

6.4 Distributed Re-routing Strategies

If the server detects signs of congestion in the road network, it will alert the vehicles

by sending the new computed travel times in the road network for all the roads that

have a travel time different from the free flow travel time. The server sends messages

only to the vehicles that reported most recently and that are located near a congestion

spot, i.e., no further than three road segments from the congested segment. The server

notification triggers the re-routing process that consists in a dissemination phase and

a route computation phase. Besides, the dissemination phase has two sub-phases as

presented in Algorithm 4. When a vehicle receives such a notification message either

directly from the server or from the surrounding vehicles, it executes the procedure

described in Algorithm 4. The first part of the procedure (lines 2-4 in Algorithm 4)

consists in disseminating to other vehicles the updated travel times in the network. In

the second part of the dissemination phase, the vehicles that received the notification

broadcast personal route information to the other vehicles. The route information

depends on the re-routing strategy employed by the system, i.e., either the k-shortest

paths or the OD pair of the vehicle (lines 6-10 and 11-15 in Algorithm 4).

Algorithm 4 When Vehicle Receives a Congestion Notification

1: procedure onCongestionNotification(updatedMap)
2: updateTravelTime(updatedMap) {update the travel time of the map}
3: T←computeBroadcastTime(this.rank) {compute when to start the broadcast based on

this vehicle’s rank}
4: broadcastUpdatedMap(T) {broadcast the updated travel time map}
5: if this.currentPath intersects congestionSpots then
6: if dEBkSP then
7: computekShortestPaths(this,k) {compute the k shortest path for itself}
8: wait(TmapBroadcast) {wait until the map broadcast phase finishes}
9: broadcastkShortestPaths(T) {broadcast the k shortest paths at time T}

10: end if
11: if dAR∗ then
12: getODPair(this) {get the OD pair for itself}
13: wait(TmapBroadcast) {wait until the map broadcast phase finishes}
14: broadcastODPair(T) {broadcast OD pair at time T}
15: end if
16: end if

87

On receiving a route information message, the vehicles store the received data

as indicated in Algorithm 5. The received data will be used in the route computation

phase to compute a new best path for the current vehicle. Note that only the vehicles

whose current paths traverse a congestion spot participate in the route dissemination

and computation phases (line 5 in Algorithm 4). In the remainder of this section

two distributed re-routing strategies are presented allowing the vehicles to compute

alternative paths in a collaborative manner when congestion happens.

Algorithm 5 When Vehicle Receives the Broadcast

1: procedure onReceived(vehiclemsg)
2: v=unpack(vehiclemsg) {unpack the message and extract the vehicle data, e.g., rank, k

paths or OD pair}
3: receiveddata.push(v) {put the vehicle data into the priority queue based on the rank}

In particular, two strategies have proven to be the most effective in alleviating

congestion: AR* and EBkSP. Thus, we implement their distributed versions.

EBkSP and AR∗ greatly improve the vehicles’ travel time. However, these

strategies are designed for a centralized architecture in which all the re-routing

computation is done at the server side. The objective in this section is twofold.

First, re-routing strategies are provided. they are based on the same ideas as the

effective centralized strategies, yet can run in the proposed hybrid architecture. This is

challenging, since the whole computation can only be done by the vehicles in order to

comply with the system design principles (see Section 6.2.1). Second, the distributed

re-routing should ideally have similar effectiveness as the centralized re-routing. In

this section two distributed re-routing algorithms are introduced that are call dEBkSP

(distributed EBkSP) and dAR∗ (distributed AR∗). Subsequently several techniques

in Section 6.5 are presented to optimize these strategies.

Both dEBkSP and dAR∗ require the re-routed vehicles to be ranked. In the

centralized version, the rank of each vehicle is assigned by the server. Here, each

vehicle picks a rank value that is randomly selected based on the estimated total

88

number of re-routed vehicles. A vehicle of a certain rank computes a new route by

considering the higher ranked vehicle paths. Specifically, in the dEBkSP strategy each

vehicle affected by congestion calculates k loop-less shortest paths based on its current

origin and destination and the updated travel times in the road network. Then, the

vehicles disseminate their rank and k shortest paths in their region for a predefined

time interval (see Section 6.5). At the end of the route dissemination phase, each

vehicle receives the k shortest paths of a certain number of vehicles in the region.

However, given the nature of the dissemination process, the information gathered by

a vehicle can be incomplete and different from one vehicle to another. In the final

route computation phase, each vehicle iterates through the local sorted list of vehicles.

It selects the (potentially) best path based on original EBkSP algorithm for each

received vehicle with a higher rank and eventually selects the best path for itself (i.e.,

the least popular path among its k shortest paths).

Similarly, in the case of dAR∗ algorithm, the notified vehicle chooses a random

rank but it does not compute the k shortest path. Instead, the notified vehicles only

broadcast their OD pair. In the event of a broadcast timeout, for each received OD

pair in the buffer, the vehicle applies the original AR∗ algorithm to compute a fake

path. The current vehicle assumes that the vehicle with that OD pair will take that

path. By the end of the process, the current vehicle computes a best shortest path for

itself based on other vehicles’ paths.

Algorithm 6 describes how dEBkSP and dAR* are executed when the information

dissemination phase ends (i.e., timeout).

89

Algorithm 6 Distributed EBkSP and AR∗

1: procedure onBroadcastTimeOut()
2: receiveddata {all the received data}
3: Q = empty {a queue that stores the vehicle objects that have already been processed}
4: while vi!=this do
5: vi=receiveddata.pop()
6: if dEBkSP then
7: getkShortestPath(vi) {get the k shortest path for this vehicle}
8: doEBkSP(vi, Q) {pick a path from the k paths for vehicle vi based on vehicles’

paths with higher rank}
9: Q.push(vi){label the vehicle vi as a processed vehicle}

10: end if
11: if dAR∗ then
12: getODpair(vi) {get the OD pair for this vehicle}
13: doAR(vi, Q) {Compute a A star shortest path with repulsion for this vehicle based

on vehicles’ paths with higher rank }
14: Q.push(vi){label the vehicle vi as a processed vehicle}
15: end if
16: end while
17: if dEBkSP then
18: getkShortestPath(this) {get the k shortest path for itself}
19: doEBkSP(this, Q) {pick a path from the k paths for itself based on vehicles’ paths

with higher rank}
20: end if
21: if dAR∗ then
22: getODpair(this) {get the OD pair for itself}
23: doAR(this, Q) {Compute a A star shortest path with repulsion for itself based on

vehicles’ paths with higher rank }
24: end if

The key difference between dEBkSP and dAR∗ is the communication overhead

and computation time. dEBkSP makes all the vehicles get involved in the computation

process (k shortest paths). In the final timeout session, each vehicle only needs to pick

a path. However, depending on the k value and path length, the packet is much larger

than dAR∗ which only requires to broadcast its OD pair. Therefore, dAR∗ requires

less communication overhead. In terms of computation time, dEBkSP gets all the

vehicles involved in the path computation but dAR∗ requires the calculation of a path

for each individual vehicle. Therefore, dEBkSP requires less computation time.

90

6.5 VANET Optimizations for Re-routing Information Sharing

The effectiveness of the distributed re-routing strategies presented in Section 6.4

mainly depends on the amplitude of the re-routing information dissemination among

vehicles. The re-routing information dissemination has two dimensions that are

related. The first dimension is represented by the total number of vehicles that

receive re-routing information in a congested region. The second dimension regards

the average volume of information received by the vehicles. Clearly, the higher the

number of receiving vehicles and the higher the amount of information are, the more

effective the re-routing process is. Ideally, each vehicle affected by congestion should

receive re-routing information about all the vehicles in their region. In this case,

the re-routing process can have a similar effectiveness with a centralized re-routing.

However, achieving this level of dissemination in VANETs is challenging for two main

reasons. First, the data dissemination has to be done in real-time and therefore the

dissemination time interval is short. Typically, the data dissemination phase is limited

0.2 seconds in the system. Second, regular data dissemination in VANETs exhibits

poor performance in congested areas because of contention (i.e., many vehicles try to

communicate at the same time) [63]. In this section four optimization techniques are

presented and implemented in the system to improve the data dissemination efficiency.

These techniques are i) the prioritized broadcast, ii) the k-shortest paths compression,

iii)the packet XOR for loss recovery and iv) the distance-based timer.

6.5.1 Prioritized Dissemination

The proposed system uses a prioritized dissemination to avoid that all the notified

vehicles in a region start to broadcast at the same time, and thus reduce the network

contention. When receiving a congestion notification, vehicle vi waits Ti seconds before

broadcasting its OD pair or its k-shortest paths. The waiting time is determined

based on the rank of the vehicle defined in Section 6.4. The rationale is that in the

91

Figure 6.2 The ranking function.

proposed re-routing strategies the higher rank vehicle information is more important

since each vehicle computes its own path based on the higher ranked vehicle paths.

Therefore, the waiting time function in Formula 6.3 gives the higher ranked vehicles

more time to disseminate their route data:

ti = α ∗ rankγi + Tmax, α = −Tmax/rankγmax (6.3)

Tmax is the total dissemination time introduced in Section 6.2.2, i.e., the time

after which everyone stops disseminating and starts computing the new route. ranki

is the rank of vehicle vi and rankmax is the maximum rank of all vehicles. rankmax is

estimated by each vehicle from the road network density data received at the beginning

of the re-routing process. γ is a predefined system parameter that is set to be 1.5 in

the system settings. The waiting function has the following properties: i) the waiting

time ti for each vehicle is a value in the interval [0, Tmax]; ii) the higher ranked vehicles

92

wait less time than the lower ranked vehicles. Specifically, the vehicle with maximum

rank transmits without waiting, while the vehicle with lowest rank waits Tmax time.

Figure 6.2 illustrates curve of the ranking function when Tmax is 0.3s and rankmax

is 300. As shown, if the vehicle has higher rank such as 300, it waits zero time and

starts broadcast immediately. Conversely, if the vehicle’s rank is low, it it waits a long

time before broadcasting.

6.5.2 K Path Compression

Another option to optimize the information dissemination between vehicles is data

compression. On the one hand, a large packet size increases the communication

overhead and decreases the dissemination effectiveness. On the other hand, as indicated

in [62], the MAC Layer protocol (e.g., 801.11b protocol) limits the payload of a packet

that can be sent on the communication channel (e.g., the maximum packet size is 2312

bytes in 802.11b protocol). The dAR∗ re-routing strategy is very efficient from the

communication point of view since vehicles only disseminate their OD pair. However,

this is not the case of dEBkSP algorithm that requires vehicles to transmit their

k-shortest paths. Hence, depending on the k value and the distance between the origin

and destination, the size of the messages can be large. Since the k-shortest paths

generally present a high degree of overlapping, a compression algorithm is proposed

to exploit this feature of the k-shortest paths.

Figure 6.3(a) shows a simple example of the potential space saving that could be

obtained for three paths between the roads A and J. If all the three paths are naively

broadcasted, 15 spaces are needed in total. However, the three paths only cover 9

distinct roads and therefore optimally need 9 spaces to be transmitted. Therefore,

the question is how to obtain a compact representation of the k paths without any

loss of information. The idea is to represent only the differences between the k paths.

Specifically, if considering the first (shortest) path, for the next path only the edges

93

that are different from the previous path are needed to be indicated. Furthermore, a

bit vector is used to represent the position of the edges. As depicted in Figure 6.3(b),

the three paths can be represented either in form (a) or form (b). The ’1’ in the bit

vector of each row indicates that the edge in that position is a different edge compared

to the previous path. Obviously, form (a) is better than form (b), since form (a)

uses one space less. Then, the problem comes down to finding the sequence of the k

(a)

(b)

Figure 6.3 K path compression.

94

paths resulting in the best compression. However, this problem is reducible to the

Hamilton Path problem and therefore it is NP complete. Hence, a “greedy” algorithm

is described to iteratively compress the k path, based on the number of overlapping

edges as show in Algorithm 7.

Algorithm 7 K Path Compression

1: procedure compresskpath()
2: k=KPahths.size() {the number of k}
3: P= KPaths[0] {the shortest path}
4: while k>0 do
5: Pk=FindMostOverlappingPath(P)
6: P=Compress(P,Pk)
7: k=k-1
8: end while

6.5.3 XOR Coding for Packet Loss Recovery

Data dissemination in VANETs can be significantly affected by packet losses. To allow

vehicles to recover lost packets, a supplementary XOR coding field is appended to

each transmitted packet similar to the work in [41]. Specifically, before a packet is

forwarded by a vehicle, the vehicle searches possible XOR codings among the received

messages in its buffer and appends the result to the packet. When receiving a packet,

a vehicle may recover one of the lost packets from the XOR field. This technique helps

reducing the number of message transmissions and also improves vehicles’ knowledge

coverage.

Figure 6.4 illustrates this concept wherein four vehicles v1, v2, v3, v4 are

presented on road A and B. At T0 packet p3 arrives at v1. Because of packet loss,

the packets that vehicle has are: v1: p0, p1, p2, v2: p1, p2, v3: p0, p1, and v4:

p0, p2. At time T1, v1 broadcasts the latest received packet p3 with an appended

field p0⊕p1⊕p2. Hence, both v2 and v3 can recover their missing packet p0 and p2

respectively from p3. Without a XOR coding field, two messages would be required to

recover p0 in v2 and p2 in v3. Similarly, at T2, v2 broadcasts p3 with the coding field

95

p0⊕p1, so that v4 can recover p1 as well. The question is how to figure out which

packets should be coded together? For example, if v1 appends coding field p0⊕p1

instead of p0⊕p1⊕p2, then only v2 can recover packet p0, but v3 can not recover

p2. Therefore, to find the most efficient coding, each vehicle needs to be aware of the

other vehicle’s packets.

(a)

(b)

(c)

Figure 6.4 Message forwarding with network coding field.

96

Since wireless networks are based on broadcast, from channel eavesdropping,

vehicles can obtains a certain amount of knowledge of the neighborhood. To further

improve this knowledge, a Bloom filter is used here for a compact representation of

the knowledge of each vehicle. Each time a packet is sent, the forwarding vehicle

attaches a Bloom filter encoding the set of vehicles’ identifiers it has received so far.

This is similar to the distributed caching solution in [15]. When a vehicle A receives a

packet from a neighbor vehicle B, it obtains the current knowledge of vehicle B from

the Bloom filter. In this way, each vehicle can build up a neighbor table containing

the knowledge of its neighbors. This table is essential in finding the best coding

according to COPE [41], and it is employed as described in Algorithm 8. Specifically,

to determine the best XOR coding field, each vehicle uses its neighbor table to check

if a neighbor can decode P
⊕

Q (line 6), where P and Q are two vehicle identifiers in

the received data buffer.

Algorithm 8 Append Coding Field

1: procedure setcodingfield()
2: receiveddata {all the received data}
3: P = receiveddata.pop()
4: For each neighbor i in neighbor table
5: repeat
6: while Q=receiveddata.pop() do
7: if neighour i candecode (P xor Q) then
8: P=P xor Q
9: end if

10: end while
11: i=i+1
12: until i=neighourtable.end
13: End for

6.5.4 Distance-based Timer for Message Broadcast

In the system, a distance-based timer approach is proposed similarly to [64] to reduce

excessive broadcasting when multiple vehicles are within communication range. After

receiving a broadcast message, the vehicle waits for a certain time period until

re-broadcasting the message. The waiting time period is inversely proportional to the

97

distance between the receiving vehicle and the source vehicle. Therefore, a vehicle that

is further from the message source should re-broadcast the message earlier. During

the waiting period, if the current vehicle receives copies of the message, it means that

some other vehicle has already forwarded the message. Thus, the current vehicle drops

the message from its own buffer.

6.6 Chapter Summary

In this chapter, a hybrid re-routing system is detailed to provide better scalability

and privacy. This system is hybrid since it utilizes both Internet and VANET

communication, and a central server is still involved to estimate the global traffic view.

Vehicles send privacy-aware traffic reports to the central server and path computation

is off-loaded to VANETs. The privacy-aware traffic reporting is a function of road

density. While distributed re-routing algorithms run on individual vehicles, four

optimization approaches are exploited to improve the efficiency of the re-routing

information dissemination in VANETs.

CHAPTER 7

EVALUATION OF HYBRID SYSTEM

The main objective of the simulation-based evaluation is to study the performance of

the distributed re-routing strategies in the hybrid system. Specifically, the evaluation

has four goals:

• Assess the effectiveness and efficiency of the proposed hybrid system compared
to the centralized one.

• Investigate the performance difference between the hybrid system with and
without privacy-aware traffic reporting.

• Quantify the strength of the privacy protection mechanism.

• Understand which VANET optimizations provide the most benefits.

The remainder of the chapter is organized as below: Section 7.1 describes the

simulation settings. Section 7.2 presents the experiment results, analysis and discussion.

The chapter concludes in Section 7.3.

7.1 Experimental Settings

The simulator veins [6] is used to implement the experiments. Veins is an open source

Inter-Vehicular Communication simulation framework composed of an event-based

network simulator Omnet++ [7] and a road traffic micro-simulation model SUMO [11].

It provides perfect interfaces for both communication among vehicles through VANETs

and vehicles to SUMO [86]. Road traffic simulation is performed by SUMO 16.0,

which is well-established in the domain of traffic engineering. Network simulation is

performed by Omnet++ along with the physical layer modeling toolkit MiXiM [88].

The Brooklyn road network described in Chapter 5 is used for these experiments

in this case. The traffic flow and network graph is the same as in the centralized

98

99

experiments. Table 7.1 and 7.2 shows the parameters used in the distributed re-routing

algorithm and in the Omnet++ simulator, respectively.

7.2 Results and Analysis

7.2.1 Average Travel Time

Figure 7.1 shows the average travel time for the hybrid system compared to the

centralized system. The hybrid scheme achieves similar travel time as the centralized

version for both dEBkSP and dAR∗ strategies, and both distributed strategies improve

the travel time by more than 200% compared to the no re-routing case. Specifically,

Table 7.1 Parameters in Distributed Re-routing Algorithms

period The frequency of triggering the re-routing; by default period=450s

threshold δ
Congestion threshold; if Ki/Kjam > δ, the road segment is
considered congested; by default δ = 0.7

level L
Network depth to select vehicles for re-routing starting from the
congested segment; by default L = 3

paths k
The max number of alternative paths for each vehicle; by default
k = 8

repulsion weight
β

The weight of repulsion in dAR∗; by default β = 0.05

broadcast
timeout Tmax

The maximum duration of the broadcast of the trip data, by
default Tmax = 0.2s

privacy
threshold θ

The privacy threshold; if Ki/Kjam > θ, the vehicle starts to
report the road density in the privacy enhancement component;
by default θ = 0.5

Table 7.2 Simulation Parameters

Channel frequency 5.890e9 Hz

Propagation model Two ray

Fading model Jakes’ model rayleigh fading

Shadowing model LogNormal

Antenna model Omnidirectional

Transmission power 20mW

Propagation distance 500m

Maximum hop 10

PHY model 802.11p

MAC model EDCA

100

Figure 7.1 Average travel time (Tmax=0.2s, k=8).

the travel time for dEBkSP without privacy-aware traffic reporting is only 1.4% less

than the time for EBkSP. When privacy-aware reporting is used, the performance

decrease is 6.6%. Similar results are obtained for dAR∗, with performance decrease of

0.9% without privacy and 10.2% with privacy, respectively.

Three lessons are learned from the results: (1) Each vehicle only needs to know the

trip information of its neighboring vehicles to make re-routing work effectively. Global

information about all the vehicle routes brings minimal benefits. (2) The re-routing

with privacy-aware reporting is less effective because the server may misestimate the

travel time on certain road segments. However, the benefits of providing higher privacy

overcome this small performance loss. (3) dAR∗ achieves better performance than

dEBkSP. This is due to the tiny packet size (OD pairs) of the dAR∗, which leads to

less contention and thus fewer packet losses. Hence, more re-routing information is

successfully shared among vehicles.

7.2.2 Distribution of Travel Time

The average travel time measures the performance of the system from a global point

of view. Here, the performance from a driver point of view is investigated. Relative

101

Figure 7.2 CDF of relative travel time (Tmax=0.2s, k=8).

travel time (RelT) is defined as the actual travel time divided by the travel time

without re-routing. It measures the travel time gains or losses for individual drivers.

Figure 7.5 presents the CDF of RelT. It is observed that the system manages to

improve the travel time for a large majority of drivers. However, there are a few

drivers who experience increased travel time. This increase is limited to less than

50% for most of these drivers. From the figure, it is noticed that dAR∗ produces

better results than dEBkSP (both include privacy-aware reporting). Compared to the

centralized versions, both have just slightly worse results.

The explanation for the increase is that a system-wide optimization (i.e., reduce

the average travel time) is focused in this dissertation, not user equilibrium which

is known to be computationally expensive and difficult to achieve in the presence of

congestion. From a practical point of view, a few bad experiences could impact the

adoption rate. Therefore, investigating methods to bound this increase to low values

is planned as future work.

102

Figure 7.3 Privacy leakage in dEBkSP and dAR∗.

7.2.3 Average Privacy Leakage

The formula described in Section 6.3.1 to quantify the privacy leakage as shown in

Figure 7.3. In particular, the server can collect the location reports and output the

trace data based on which the popularity of each road segment can be computed.

From there, the importance of each vehicle report can be calculated. The sum of all

the reports for one single vehicle is its privacy leakage as shown in equation 6.1. The

average privacy leakage is defined in equation 6.2. These results demonstrate one of

the major advantages of the hybrid system: it reduces the privacy leakage by up to

92% for both dEBkSP and dAR∗. This is due to the fact that privacy-aware reporting

avoids submitting location reports from highly sensitive low density roads and submits

reports with low per-vehicle frequency in high density roads. Therefore, drivers are

less prone to be identified by the un-trusted server and their location reports are

difficult to be linked to each other; thus, driver location privacy is protected. On

average, dAR∗ has less privacy leakage than dEBkSP because it has lower travel time:

in dAR∗, each vehicle finishes the journey faster, and thus there are fewer location

reports.

103

7.2.4 Average Number of Re-routings

Figure 7.4 Average number of re-routing (Tmax=0.2s, k=8).

From the system point of view, having a low number of re-routings means

decreasing user distraction. Figure 7.4 shows the number of average re-routings

compared to the centralized counterparts is dEBkSP > EBkSP(privacy)> EBkSP

> dAR∗ > dAR∗(privacy) > AR∗. Intuitively, the centralized EBkSP and AR∗

have the least number of re-routings due to the global knowledge of the all vehicles’

paths. Without privacy enhancement, dEBkSP and dAR∗ produce 34% and 22%

more re-routings than the centralized ones. However, the good news is that privacy

enhancement only results in 4.5% and 0.4% more re-routings. The reason is that, with

privacy-aware reporting, one vehicle on each selected road segments is responsible for

relaying the road map data to other vehicles. Certain vehicles may not be able to

receive the map data due to the the network conditions such as packet losses. Thus,

they are not re-routed.

104

Figure 7.5 Re-routing frequency.

7.2.5 Distribution of Re-routing Frequency

As illustrated in figure 7.5, dAR∗ has less user distraction than dEBkSP. A large

majority of drivers experience no more than 3 re-routings per hour, which is believed

to be acceptable in city scenarios with heavy traffic.

Additionally, the strategies with privacy have fewer re-routings per hour than

the ones without privacy. Specifically, for dEBkSP and dAR∗, on average, the

privacy-aware strategies produces 14% and 18% fewer number of re-routings. The

reason is that not all the vehicles can receive re-routing notifications due to the network

conditions. In the case of re-routings, this could be beneficial since it creates less

distraction for each driver.

7.2.6 Computation Cost

In the hybrid system, the bottleneck of computing all the alternative paths is removed

at the server. If computation time is high in the centralized system, the drivers would

be informed too late about alternative paths, thus defeating the purpose of the system.

In the hybrid system, each car performs its own path computation using information

105

received from neighboring vehicles. Therefore, this system is expected to have higher

scalability. To prove this hypothesis, experiments are performed on a smart phone

(which would be used as computing platform in the vehicles) and the obtained results

are plugged into analytical formulas for the two distributed strategies.

The total time consumed for dAR∗ is the sum of the communication time among

vehicles to collect information and the actual local computation time at a vehicle.

Since the number of received trip data is a function of Tmax, the communication time,

the total time consumed for dAR∗ is T totaldAR∗ = Tmax+f(Tmax)∗C(AR∗), where f(Tmax)

is the number of received re-routing data items and C(AR∗) is the cost of computation

to perform AR∗ on one (origin, destination) pair.

For dEBkSP, T totaldEBkSP = C(k − paths) + Tmax + f(Tmax) ∗ C(EBkSP)), where

C(k − path) is the computation cost for k loopless shortest paths for one (origin,

destination) pair and C(EBkSP) is the cost to select one path from k paths based

on the EBkSP algorithm. The complexity of EBkSP algorithm only depends on k and

the average path length which can be considered as negligible. Therefore, dEBkSP

has higher computational efficiency than dAR∗ since the computation time of dAR∗

is influenced heavily by the number of received re-routing data items whereas the

computation time of dEBkSP is basically only C(k − path).

In order to evaluate the time taken by these strategies on existing mobile

platforms, a C++ Android application is developed on Samsung Galaxy SGH-T959V

using Android NDK. The average computation time is measured on the initial (origin,

destination) pairs for the 1000 vehicles in these experiments. Table 7.3 shows the

computation cost of a single (origin, destination) pair for each algorithm. The

maximum number of received trip data items when Tmax=0.2s for dAR∗ is about

Table 7.3 Average Computation Time for One Pair of Origin and Destination

dijkstra k shortest paths k=8 AR∗

0.244s 0.386s 0.14s

106

82. Thus, the estimated computation time in worst case for dEBkSP and dAR∗ is

0.2+82*0.14=12s. The estimated computation time for dEBkSP is 0.386+0.2=0.6s.

While both numbers demonstrate that the hybrid solution works well in practice

for this scenario, it is clear that dEBkSP scales better. In larger regions with many

vehicles, dAR∗ may not be able to meet the real time constraints.

7.2.7 Impact of K Path Compression

Figure 7.6 The average travel time with and without
compression.

During the implementation and testing phase, it was noticed that the prioritized

broadcast and the distance-based timer approach are essential in the proposed system

because without them very little re-routing information is exchanged among the vehicles

due to contention in congested regions. Among the remaining two optimizations,

i.e., K path compression and XOR coding, the path compression brings the most

benefits. Since, it is established that dEBkSP has higher scalability, figure 7.6 shows

the benefits of compression on this strategy.

It is observed that compression improves the average travel time by 12% for k=4.

This is due to the fact that compression reduces the packet size and improves the

number of re-routing data items each vehicle can gather in VANET. When k increases,

107

dEBkSP continues to lowers the travel time. Due to the compression, when k turns

from 4 to 8, the addition to the packet size remains small. Therefore, dEBkSP is able

to achieve very similar performance as the centralized version.

It is noticed that only dEBkSP can take advantage of larger k values. The

centralized version cannot: a larger k allows for better traffic balancing but introduces

higher computational complexity since the centralized server needs to compute k paths

for all the selected vehicles. This is not a problem for dEBkSP which distributes the

path computation to individual vehicles. Therefore, dEBkSP can result in higher

performance than EBkSP when higher k values are used.

7.2.8 Effectiveness of XOR Coding

Figure 7.7 The average travel time with and without XOR
coding.

The evaluation of XOR coding is illustrated in figure 7.7. With XOR coding, the

average time is slightly decreased by 1.7% and 0.6%. This is due to the fact that XOR

coding can improve the network throughput so that each vehicle is able to receive

more routing information from the nearby vehicles. The more knowledge each vehicle

can receive, the better decisions this vehicle can make. This analysis is confirmed

108

Figure 7.8 The average number of route information received
from other vehicles.

by figure 7.8, which demonstrates that XOR coding increases the average number

of received route information by 41% and 57% for dEBkSP and dAR∗. Meanwhile,

XOR coding improves the more throughput on dAR∗ than dEBkSP. This is because

dEBkSP has much larger packet size and XOR coding creates much more burden for

dEBkSP than dAR∗ due to the extra appended field.

7.2.9 Impact of Packet Size on Network Throughput

Figure 7.9 shows the impact of packet size on network throughput. dAR∗ has the

smallest size of packet and dEBkSP packet size increases with k increases. Therefore,

EBkSP (k=8) received the least trip data from surrounding vehicles. XOR coding

approach improves network throughput by approximately 40%.

It is noticed that, although k increase for dEBkSP, the decrease of the received

trip data is not as significant. It’s due to the k-path compression algorithm applied

in this scheme. Since k path compression only stores the the difference between the

current path and previous path, even k increases, the packet size does not increase

dramatically.

109

Figure 7.9 Average number of trip data gathered in the first
re-routing period.

7.2.10 Impact of Broadcast Timeout Parameter

The parameter for broadcast timeout Tmax is evaluated by varying the value from

0.2s to 1.8s as seen in figure 7.10 (a) and (b). The number of received re-routing

data items from the surrounding vehicles increases as Tmax increases. This is due to

the prioritized broadcast: the larger Tmax is, the larger the broadcast time interval is

among all the vehicles. For example, if vehicle A broadcasts at T0 while vehicle B

starts at T1, then the interval is T1-T0. The larger the interval, the smaller chance of

contention and collision, thus the fewer packet losses.

The second observation is that when Tmax is large enough (e.g., 1.4s), the XOR

technique starts to show less efficiency in dEBkSP. Yet, for dAR∗, the XOR still

constantly performs better. It is due to the size difference of the packets in dEBkSP

and dAR∗. For dEBkSP, the packet size is already large. Adding the extra XOR

field doubles the packet size and is not worthwhile to make up the packet loss. With

regards to dAR∗, due to the tiny packet size (e.g., OD pair), even if the size is doubled,

the packet is still small. Therefore, the extra burden can be considered as negligible.

110

(a) dEBkSP

(b) dAR∗

Figure 7.10 Number of received re-routing data items.

111

Table 7.4 Comparison of all the Distributed Re-routing Strategies

Effectiveness dAR∗ > dAR∗(privacy) > dEBkSP > dEBkSP (privacy)

Rerouting frequency dAR∗(privacy)>dAR∗ >dEBkSP(privacy)>dEBkSP

Computational cost dEBkSP>dAR∗; dEBkSP(privacy)>dAR∗(privacy)

7.3 Chapter Summary

In this chapter, an extensive evaluation of the proposed distributed re-routing strategies

is performed. The objectives of the experiments are threefold. First, the effectiveness of

the proposed methods is measured. The experimental results indicate that the hybrid

system can achieve similar performance as the centralized counterpart in terms of

average travel time and average number of re-routings. Additionally, the computation

is off-loaded to VANETs, which makes the hybrid system more appropriate for use in

real-life applications. Moreover, with privacy-aware reporting, the privacy leakage is

reduced up to 90%.

To summarize the performance of the distributed re-routing strategies, they are

ranked according to three criteria in Table 7.4, where A > B means that strategy A is

better than strategy B. While each method has its own advantages and shortcomings,

the experimental results made us conclude that the entropy method (EBkSP) should

be the preferred strategy, as it offers the best trade-off between performance and

computation cost.

CHAPTER 8

CONCLUSION

Heartened by the ubiquitousness of mobile devices such as smart phones or vehicle

on-board units, this dissertation envisions a novel approach to tackle the ever more

stringent problem of traffic congestion. This approach is based on a traffic guidance

system that monitors traffic and proactively pushes individually-tailored re-routing

guidance to vehicles when there are signs of congestion. The system is responsible

for several functions such as traffic data representation, congestion prediction, and

selection of the vehicles to be re-routed. Five re-routing algorithms are proposed

to compute alternative routes for the re-routed vehicles. Then, an extensive set

of simulation-based experiments are conducted to validate these approaches. The

results show that the proposed re-routing algorithms are very effective in mitigating

congestion and adapt well to the dynamic nature of the traffic, being also more efficient

and scalable than existing approaches. In addition, the proposed traffic guidance

system remains useful even with low compliance rate and moderate penetration rate.

The experiments also demonstrate how the performance can be tuned by varying

parameters such as re-routing method, re-routing period, number of alternative paths,

and density threshold.

To improve scalability and privacy, a hybrid system is proposed which takes

advantage of both 3/4G network (Internet communication) and VANET communication.

Each vehicle reports privacy-aware location data to a central server through the 3/4G

network. Once congestion is detected, the server pushes the global traffic view to

vehicles who have reported recently and are close enough to the congestion spots.

Then, individually tailored paths are computed distributively in VANET. The central

server acts as the a coordinator and is responsible for constructing the global view

112

113

of the travel time. Each vehicle utilizes VANETs to exchange and share re-routing

decisions to make best re-routing choices. Extensive experiments show that the

hybrid distributed solutions can provide similar effective travel time compared to the

centralized counterparts. Meanwhile, since the computation is off-loaded to VANETs,

the system is much more scalable.

The results of this dissertation demonstrate that a practical, cost-effective, and

effective traffic re-routing system can be implemented and deployed in real-life settings.

Such a system will improve the daily life of all of us by mitigating the effects of traffic

congestions.

BIBLIOGRAPHY

[1] http://www.google.com/mobile/. [Online; accessed on 14-Dec-2013].

[2] http://www.tomtom.com/en_gb/products/your-drive/smartphone-navigation/

iphone/navigation-app-iphone-ipad/. [Online; accessed on 14-Dec-2013].

[3] http://www.inrix.com. [Online; accessed on 14-Dec-2013].

[4] http://www.autobahn.nrw.de. [Online; accessed on 14-Dec-2013].

[5] http://sumo.sourceforge.net/doc/current/docs/userdoc/Tools/Assign.html.
[Online; accessed on 14-Dec-2013].

[6] http://veins.car2x.org/. [Online; accessed on 14-Dec-2013].

[7] http://www.omnetpp.org/. [Online; accessed on 14-Dec-2013].

[8] Car-to-car communication. http://www.bmw.com/com/en/insights/technology/

technology_guide/articles/cartocar_communication.html, 2012.
[Online; accessed on 14-Dec-2013].

[9] M. Artimy. Local density estimation and dynamic transmission-range assignment in
vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation
Systems, 8(3):400–412, 2007.

[10] J.H. Banks. Introduction to transportation engineering. McGraw-Hill: New York,
2002.

[11] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. Sumo - simulation of urban
mobility: An overview. In Proceedings of the 3rd International Conference on
Advances in System Simulation (SIMUL 2011), Barcelona, Spain, 2011.

[12] M. Behrisch, D. Krajzewicz, and Y.P. Wang. Comparing performance and quality
of traffic assignment techniques for microscopic road traffic simulations. In
Proceedings of international symposium on dynamic traffic assignment (DTA
2008), Leuven, Belgium, 2008.

[13] S. Biswas, R. Tatchikou, and F. Dion. Vehicle-to-vehicle wireless communication
protocols for enhancing highway traffic safety. IEEE Communications Magazine,
44(1):74–82, 2006.

[14] D. Boston, S. Mardenfeld, J.S. Pan, Q. Jones, A. Iamnitchi, and C. Borcea. Leveraging
bluetooth co-location traces in group discovery algorithms. Pervasive and
Mobile Computing, 2012.

[15] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2004.

114

115

[16] Y.C. Chiu, J. Bottom, M. Mahut, A. Paz, R. Balakrishna, T. Waller, and J. Hicks.
Dynamic traffic assignment: A primer. Transportation Research E-Circular,
(E-C153), 2011.

[17] B.A. Coifman and R. Mallika. Distributed surveillance on freeways emphasizing
incident detection and verification. Transportation Research Part A: Policy
and Practice, 41(8):750–767, 2007.

[18] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Sadeh. Bridging the gap between
physical location and online social networks. In Proceedings of the 12th ACM
international conference on Ubiquitous computing, pages 119–128, 2010.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC, 2004.

[20] S. Dornbush and A. Joshi. Streetsmart traffic: Discovering and disseminating
automobile congestion using vanets. In Vehicular Technology Conference,
IEEE 65th, pages 11–15, 2007.

[21] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The
pothole patrol: using a mobile sensor network for road surface monitoring. In
Proceedings of the 6th international conference on Mobile systems, applications,
and services (MobiSys 2008), pages 29–39. ACM, 2008.

[22] C. Fragouli, J. Le Boudec, and J. Widmer. Network coding: an instant primer. ACM
SIGCOMM Computer Communication Review, 36(1):63–68, 2006.

[23] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615, July 1987.

[24] T.L. Friesz, D. Bernstein, T.E. Smith, R.L. Tobin, and BW Wie. A variational
inequality formulation of the dynamic network user equilibrium problem.
Operations Research, pages 179–191, 1993.

[25] C. Gawron. Simulation-based traffic assignment–computing user equilibria in large
street networks. PhD thesis, University of Cologne, Germany, 1999.

[26] B. Gedik and L. Liu. Protecting location privacy with personalized k-anonymity:
Architecture and algorithms. IEEE Transactions on Mobile Computing, 7(1):1–
18, 2008.

[27] B. George, S. Kim, and S. Shekhar. Spatio-temporal network databases and routing
algorithms: A summary of results. Advances in Spatial and Temporal Databases,
pages 460–477, 2007.

[28] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea, and L. Iftode. Adaptive traffic
lights using car-to-car communication. In Vehicular Technology Conference,
IEEE 65th, pages 21–25, 2007.

116

[29] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through
spatial and temporal cloaking. In Proceedings of the 1st international conference
on mobile systems, applications and services, pages 31–42. ACM, 2003.

[30] M. Gruteser and B. Hoh. On the anonymity of periodic location samples. In Security
in Pervasive Computing, pages 179–192. Springer, 2005.

[31] M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE Pervasive
Computing, 7(4):12–18, 2008.

[32] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[33] J.C. Herrera, D.B. Work, R. Herring, X.J. Ban, Q. Jacobson, and A.M. Bayen.
Evaluation of traffic data obtained via gps-enabled mobile phones: The
mobile century field experiment. Transportation Research Part C: Emerging
Technologies, 18(4):568–583, 2010.

[34] B. Hoh and M. Gruteser. Protecting location privacy through path confusion. In
1st International Conference on Security and Privacy for Emerging Areas in
Communications Networks (SecureComm 2005), pages 194–205. IEEE, 2005.

[35] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.C. Herrera, A.M. Bayen,
M. Annavaram, and Q. Jacobson. Virtual trip lines for distributed privacy-
preserving traffic monitoring. In Proceedings of the 6th international conference
on Mobile systems, applications, and services, pages 15–28. ACM, 2008.

[36] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Preserving privacy in gps traces via
uncertainty-aware path cloaking. In Proceedings of the 14th ACM conference
on Computer and communications security, pages 161–171, 2007.

[37] H.H. Hoos and T. Stützle. Stochastic local search: Foundations and applications.
Access Online via Elsevier, 2005.

[38] E. Horvitz, J. Apacible, R. Sarin, and L. Liao. Prediction, expectation, and surprise:
Methods, designs, and study of a deployed traffic forecasting service. In
Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence,
pages 244–257, 2005.

[39] T. Hunter, R. Herring, P. Abbeel, and A. Bayen. Path and travel time inference from
gps probe vehicle data. NIPS Workshop on Analyzing Networks and Learning
with Graphs, 2009.

[40] D. Jiang and L. Delgrossi. Ieee 802.11 p: Towards an international standard for wireless
access in vehicular environments. In IEEE Vehicular Technology Conference,
pages 2036–2040, 2008.

117

[41] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. Xors in the air:
practical wireless network coding. 36(4):243–254, 2006.

[42] B.S. Kerner. Optimum principle for a vehicular traffic network: minimum probability
of congestion. Journal of Physics A: Mathematical and Theoretical, 44:092001,
2011.

[43] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India: Delhi, 2006.

[44] S. Krauss, P. Wagner, and C. Gawron. Metastable states in a microscopic model of
traffic flow. Physical Review E, 55(5):5597, 1997.

[45] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus. Carspeak: a
content-centric network for autonomous driving. In Proceedings of the ACM
conference on Applications, technologies, architectures, and protocols for
computer communication (SIGCOMM 2012), pages 259–270, 2012.

[46] Wei L. and Jie W. On reducing broadcast redundancy in ad hoc wireless networks.
IEEE Transactions on Mobile Computing, 1(2):111–122, 2002.

[47] S. Lämmer and D. Helbing. Self-stabilizing decentralized signal control of realistic,
saturated network traffic. Technical report, Santa Fe Institute, Santa Fe, NM,
2010.

[48] E.L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science,
pages 401–405, 1972.

[49] S. Lim. Congestion-aware traffic routing for large-scale mobile agent systems. PhD
thesis, Massachusetts Institute of Technology, 2012.

[50] C. Lochert, B. Scheuermann, C. Wewetzer, A. Luebke, and M. Mauve. Data
aggregation and roadside unit placement for a VANET traffic information
system. In Proceedings of the fifth ACM international workshop on VehiculAr
Inter-NETworking, pages 58–65, 2008.

[51] S. Maerivoet. Modelling Traffic on Motorways: State-of-the-Art, Numerical Data
Analysis, and Dynamic Traffic Assignment. PhD thesis, Katholieke Universiteit
Leuven, 2006.

[52] H.S. Mahmassani, T-Y. Hu, and R. Jayakrishnan. Dynamic traffic assignment and
simulation for advanced network informatics (dynasmart). In Proceedings of
the 2nd International CAPRI Seminar on Urban Traffic Networks, Capri, Italy,
1992.

[53] N. Malviya, S. Madden, and A. Bhattacharya. A continuous query system for dynamic
route planning. In Proceedings of 27th IEEE International Conference on Data
Engineering (ICDE 2011), pages 792–803, 2011.

118

[54] H.C. Manual. Highway capacity manual. Washington, DC, 2000.

[55] J. Manweiler, R. Scudellari, and L.P. Cox. Smile: Encounter-based trust for mobile
social services. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 246–255, 2009.

[56] E.Q.V. Martins and M.M.B. Pascoal. A new implementation of yen’s ranking loopless
paths algorithm. 4OR: A Quarterly Journal of Operations Research, 1(2):121–
133, 2003.

[57] D.K. Merchant and G.L. Nemhauser. A model and an algorithm for the dynamic
traffic assignment problems. Transportation Science, 12(3):183–199, 1978.

[58] D.K. Merchant and G.L. Nemhauser. Optimality conditions for a dynamic traffic
assignment model. Transportation Science, 12(3):200–207, 1978.

[59] J. Meyerowitz and R. Roy Choudhury. Hiding stars with fireworks: location privacy
through camouflage. In Proceedings of the 15th annual international conference
on Mobile computing and networking, pages 345–356. ACM, 2009.

[60] P. Mittal and N. Borisov. Information leaks in structured peer-to-peer anonymous
communication systems. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 267–278, 2008.

[61] P. Mohan, V.N. Padmanabhan, and R. Ramjee. Nericell: rich monitoring of road and
traffic conditions using mobile smartphones. In Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 323–336, 2008.

[62] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode. Trafficview: traffic data
dissemination using car-to-car communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 8(3):6–19, 2004.

[63] S.Y. Ni, Y.C. Tseng, Y.S. Chen, and J.P. Sheu. The broadcast storm problem
in a mobile ad hoc network. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pages 151–162,
1999.

[64] J. Nzouonta, N. Rajgure, G. Wang, and C. Borcea. VANET routing on city roads
using real-time vehicular traffic information. Vehicular Technology, IEEE
Transactions on, 58(7):3609–3626, 2009.

[65] L.G. Papaleondiou and M.D. Dikaiakos. Trafficmodeler: A graphical tool for
programming microscopic traffic simulators through high-level abstractions. In
Vehicular Technology Conference, IEEE 69th, pages 1–5, 2009.

[66] S. Peeta and A.K. Ziliaskopoulos. Foundations of dynamic traffic assignment: The
past, the present and the future. Networks and Spatial Economics, 1(3):233–265,
2001.

119

[67] A. Perko. Implementation of algorithms for k shortest loopless paths. Networks,
16(2):149–160, 1986.

[68] R.A. Popa, A.J. Blumberg, H. Balakrishnan, and F.H. Li. Privacy and accountability
for location-based aggregate statistics. In Proceedings of the 18th ACM
conference on Computer and communications security, pages 653–666, 2011.

[69] H. Prothmann, H. Schmeck, S. Tomforde, J. Lyda, J. Hahner, C. Muller-Schloer,
and J. Branke. Decentralized route guidance in organic traffic control. In
Proceedings of the 5th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2011), pages 219–220, 2011.

[70] O. Riva, T. Nadeem, C. Borcea, and L. Iftode. Context-aware migratory services in
ad hoc networks. IEEE Transactions on Mobile Computing, 6(12):1313–1328,
2007.

[71] J. Rybicki, B. Scheuermann, W. Kiess, C. Lochert, P. Fallahi, and M. Mauve. Challenge:
peers on wheels-a road to new traffic information systems. In Proceedings of the
13th annual ACM international conference on Mobile computing and networking,
pages 215–221, 2007.

[72] J. Rybicki, B. Scheuermann, M. Koegel, and M. Mauve. Peertis: a peer-to-peer traffic
information system. In Proceedings of the sixth ACM international workshop
on VehiculAr InterNETworking, pages 23–32, 2009.

[73] M. Santo. Toyota, audi promise driverless car demos
at ces 2013. http://www.examiner.com/article/

toyota-audi-promise-driverless-car-demos-at-ces-2013, 2013.
[Online; accessed on 14-Dec-2013].

[74] D. Schrank, T. Lomax, and S. Turner. TTI’s Urban Mobility Report. Texas
Transportation Institute, Texas A & M University, 2011.

[75] D. Schultes. Route planning in road networks. Karlsruhe: Universität Karlsruhe (TH).
Fakultät für Informatik. Institut für Theoretische Informatik, Algorithmik II,
2008.

[76] S. Senge and H. Wedde. Bee inspired online vehicle routing in large traffic systems. In
Proceedings of the 2nd International Conference on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE 2010), pages 78–83, 2010.

[77] P. Shankar, V. Ganapathy, and L. Iftode. Privately querying location-based services
with sybilquery. In Proceedings of the 11th international conference on
Ubiquitous computing, pages 31–40. ACM, 2009.

[78] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55, 2001.

120

[79] K. Suriyapaibonwattana and C. Pomavalai. An effective safety alert broadcast
algorithm for VANET. In Proceedings of International Symposium on
Communications and Information Technologies, pages 247–250. IEEE, 2008.

[80] B. Tatomir, S. Fitrianie, M. Paltanea, and L. Rothkrantz. Dynamic routing in traffic
networks and manets using ant based algorithms. In Proceedings of the 7th
International Conference on Artificial Evolution, Lille, France, October 2005.

[81] N.B Taylor. CONTRAM 5, an enhanced traffic assignment model. TRRL research
report. Transport and Road Research Laboratory, Crowthorne, United
Kingdom, 1990.

[82] M. Torrent-Moreno, J. Mittag, P. Santi, and H. Hartenstein. Vehicle-to-vehicle
communication: fair transmit power control for safety-critical information.
IEEE Transactions on Vehicular Technology, 58(7):3684–3703, 2009.

[83] V. Vijayenthiran. Ford powers ahead with development of car-to-car communication
technology. http://www.motorauthority.com/news, 2012. [Online; accessed
on 14-Dec-2013].

[84] V. Vijayenthiran. GM participating in U.S. car to car communications trial. http:

//www.motorauthority.com/news, 2012. [Online; accessed on 14-Dec-2013].

[85] J.G. Wardrop. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers, Part II, 1(36):252–378, 1952.

[86] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J.P. Hubaux. Traci:
an interface for coupling road traffic and network simulators. In Proceedings of
the 11th communications and networking simulation symposium, pages 155–163.
ACM, 2008.

[87] Y. Wen. Scalability of dynamic traffic assignment. PhD thesis, Massachusetts Institute
of Technology, 2008.

[88] K. Wessel, M. Swigulski, A. Köpke, and D. Willkomm. Mixim: the physical layer an
architecture overview. In Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, page 78. Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, 2009.

[89] N.P. Wisitpongphan, OK Tonguz, JS Parikh, P. Mudalige, F. Bai, and V. Sadekar.
Broadcast storm mitigation techniques in vehicular ad hoc networks. Wireless
Communications, IEEE, 14(6):84–94, 2007.

[90] D.B. Work, O.P. Tossavainen, S. Blandin, A.M. Bayen, T. Iwuchukwu, and K. Tracton.
An ensemble kalman filtering approach to highway traffic estimation using
gps enabled mobile devices. In Proceedings of the 47th IEEE Conference on
Decision and Control, pages 5062–5068, 2008.

121

[91] T. Xu and Y. Cai. Exploring historical location data for anonymity preservation in
location-based services. In The 27th Conference on Computer Communications
(INFOCOM 2008), pages 547–555. IEEE, 2008.

[92] T. Xu and Y. Cai. Feeling-based location privacy protection for location-based services.
In Proceedings of the 16th ACM conference on Computer and communications
security, pages 348–357, 2009.

[93] S. Yu, F. Ye, H. Wang, S. Mabu, K. Shimada, S. Yu, and K. Hirasawa. A global routing
strategy in dynamic traffic environments with a combination of q value-based
dynamic programming and boltzmann distribution. In International conference
on Instrumentation, Control, Information Technology and System Integration,
pages 623–627. IEEE, 2008.

[94] P. Zhou, T. Nadeem, P. Kang, C. Borcea, and L. Iftode. Ezcab: A cab
booking application using short-range wireless communication. In Third
IEEE International Conference on pervasive Computing and Communications
(PerCom 2005), pages 27–38. IEEE, 2005.

