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SYMMETRIC AND ANTISYMMETRIC PULSES IN PARALLEL
COUPLED NERVE FIBRES*

AMITABHA BOSET

Abstract. Travelling wave solutions for equations that model two parallel coupled nerve fibres
are found. The travelling wave here represents the action potential. It is shown that the introduction
of weak coupling between the fibres induces either symmetry or antisymmetry of the action potentials.
A symmetric pulse is a solution where both fibres fire simultaneously and the action potentials
propagate locked in phase at the same wave speed along the length of each fibre; an antisymmetric
pulse is a solution where one fibre fires, resulting in an action potential propagating along it, while
the other remains at rest. Geometric singular perturbation theory and the exchange lemma are used
to prove the existence of solutions. In addition, a technique which involves the use of differential
forms for detecting transversalities of small order is introduced.

Key words. travelling wave, action potential, homoclinic, heteroclinic, singular solution,
transversality, coupled fibres

AMS subject classifications. 34D15, 35K57

1. Introduction. Systems of singularly perturbed equations have long been
used to successfully model the behavior of nerve impulses. Among the most important
examples are the Hodgkin-Huxley equations [12]-[15] and a useful simplification of
these equations known as the FitzHugh-Nagumo equations [10], [27]. The FitzHugh-
Nagumo equations describe the shape and speed of a nerve impulse, or a so-called
action potential, which propagates along the length of a single nerve fibre. Of natural
interest is the propagation of action potentials along an array of coupled nerve fibres.
For instance, in highly sensitive areas of the body such as the fingertips or tongue,
the density of nerve fibres increases sharply.

Experiments of Katz and Schmitt [19]-[21] suggest that although an array of
fibres physically constitutes a two- or three-dimensional medium, action potentials
effectively propagate in well-defined one-dimensional paths. The preferred direction
of these pulses is axial, along the length of a particular fibre, rather than between
them. When adjacent fibres are simultaneously fired, the action potentials tend to
behave as they would for a single fibre; i.e., the coupling has the effect of ensuring
synchrony. Results of Sherman and Rinzel [30] suggest that under weak coupling,
this in-phase solution may not be persistent to perturbations. As a consequence,
perturbations may destroy the synchrony and lead to out-of-phase solutions.

Travelling waves represent the transport of information along one-dimensional
paths. In this paper, we will be interested in existence results for travelling wave
solutions of a system of equations that models voltage conduction along a pair of
weakly coupled parallel, identical nerve fibres. We address the case of an array of an
arbitrary, but finite, number of parallel nerve fibres in [3].

Appropriate stimulation of the nerve membrane creates an action potential which
propagates along the length of the fibre. The potential is characterized by a sequence
of transitions. First, when the fibre fires, the membrane depolarizes and a fast jump
from a resting potential to an excited potential, called a travelling wave front, occurs.
Next, a latent period ensues, following which a second fast jump occurs and the action
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potential returns to near the resting state. This transition is called a travelling wave
back. The mechanism which allows for the hyperpolarization is called membrane
recovery. Recovery has the added effect of causing a second latent period, after which
the nerve fibre returns to the resting state and becomes capable of supporting another
action potential. Singularly perturbed systems capture this behavior.

When two fibres are coupled together, a relevant question to consider is whether
an action potential on one fibre can induce the creation of an action potential on
the other. Other important questions are the following. What effect does an action
potential on one fibre have on the threshold of an adjacent fibre? How does the type
of coupling, either excitatory or inhibitory, affect the propagation of voltage pulses?
Does the coupling limit or increase the variety of action potentials that exist? Is the
stability of relevant solutions dependent on the type of coupling?

The propagation of action potentials along a pair of fibres has been addressed by
many authors. Arvanitaki[1] and Ramon and Moore [28] have conducted experimental
investigations where they actually allow the fibres to touch one another. They were
primarily interested in the possibility of ephaptic transmission of action potentials.
Motivated by the work of Katz and Schmitt, Markin [24], [25] developed analytic
models to study the problem of neighboring fibres. His results concern, among other
things, changes in excitability of an adjacent fibre as an action potential passes by on
another, the creation of so-called collective states, where pulses propagate individually
on each fibre at a common wave speed, and the relation of collective wave speeds to
uncoupled wave speeds. The specific model we use was studied by Keener [22]. In
that work, he assumes that, when uncoupled, the action potential on each fibre can
be described using the FitzHugh-Nagumo equations. The equations in question are

eur, = €2uy,, + f(ur) —v1 + d(uz — w1),
€U, = 62u2m + f(UQ) — V9 + d(u1 - U2),
V1, = (ur — ’YUl),
V2, = (U2 - ’sz),

(1.1)

where, for i = 1,2, the variables u; represent the voltage potential of each nerve fibre,
the variables v; are related to the recovery mechanism of the cell membrane, and f(u)
is the bistable cubic which for convenience we choose to be f(u) = u(1—u)(u—a), 0 <
a < 1/2. The parameter d is the coupling coefficient which is inversely proportional
to resistance between the fibres. When d > 0, the coupling is excitatory, and for d < 0
it is inhibitory. Here ¢ < 1 is the diffusion constant. Its smallness exaggerates the
latent period between voltage transitions and introduces two time scales. The fast
variables are u; and the slow are v;. By assumption, the coupling between adjacent
fibres is electronic. The resulting current flow between them is proportional to the
voltage difference between adjacent fibres. Note that when d = 0 or when u; = ug,
we recover two copies of the FitzHugh-Nagumo system; d = 0 gives two uncoupled
copies of the FitzHugh-Nagumo system, while u; = uy gives one copy twice over. We
are interested in the case where 7 is small enough so that v; = u;/y and v; = f(u;)
have only (0,0) as a common solution for ¢ = 1,2. These solutions are the unique rest
points of the d = 0 subsystems.

For the one-fibre problem there are numerous existence results. Carpenter [5],
Conley [7], Hastings [11], and Langer [23] have separately proved the existence of
travelling wave pulses for € < 1. Keener [22] showed existence results for the two-
fibre problem with a piecewise linear reaction term. Dockery [8] also has proved results
for the two-fibre problem with a cubic nonlinearity. Other related work on coupled
oscillators can be found in Somers and Kopell [31].
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A solution for (1.1) of the form (uy,ug,v1,v2) = (u1(€),u2(§),v1(£),v2(€)) is a
travelling wave where £ = m—t@ and 6 is the speed of the wave. As & — +oo, the
travelling wave solutions of interest tend to the rest state of (1.1). Introducing the
variable £, and recasting the resulting equations into a system of first-order equations
by setting v} = w; and u} = we, we obtain

u) = wy,
w] = 0wy — f(uy) + vy — d(uz — uy),
uh = wo,

(1.2) wh = Owy — f(uz) + va — d(uy — ug),

€
vy = g(ul - yv1),

v = ‘;‘(UQ — YUg).

The mathematical object which corresponds to the earlier described physical sit-
uation is a homoclinic orbit, which is a solution to (1.2) that tends to the origin as
& — Fo00. We will consider all possible homoclinics that exist for d = 0 and describe
which solutions persist for d sufficiently small. Note that the symmetric solution,
characterized by u; = usg, exists by the one-fibre results referred to above, since the
coupling drops out.

We use geometric singular perturbation theory to carry out much of the analy-
sis. At € = 0, singular heteroclinic solutions are shown to exist for certain reduced
problems. The heteroclinics connect rest points on different critical manifolds. These
singular solutions are pieced together with curves on certain critical manifolds and
constitute a so-called singular homoclinic orbit. A theorem of Jones and Kopell [17],
which is based on the exchange lemma, is then used to conclude the existence of ho-
moclinic solutions near the singular solutions for € sufficiently small. The exchange
lemma describes the behavior of tangent planes as they pass by a slow manifold. In
particular, certain information about transversality of submanifolds of the € = 0 re-
duced systems is exchanged during the passage near a slow manifold, and the exchange
lemma quantifies this.

For d = 0, there exist three possible types of homoclinic solutions. The first is a
symmetric solution where both fibres fire simultaneously; i.e., the solution is phase-
locked such that u; = uy. The second is an antisymmetric solution where one fibre
fires while the other remains at rest. The third is an out-of-phase solution where
both fibres fire concurrently, but the crest of an action potential on one fibre trails
the crest of an action potential on the other fibre by a fixed distance. Within the
class of out-of-phase solutions, we also will call an asymmetric solution a wave that
is highly out-of-phase. The totality of all possible d = 0 homoclinic solutions forms a
two-dimensional family of solutions, which we denote Ag. For d small, we shall seek
only single-pulse solutions, i.e., solutions which enter a neighborhood of the origin
only when £ — +o0.

One of the central results of this paper is that the introduction of weak diffusive
coupling, for the most part, has the effect of forcing either symmetry or antisym-
metry. Weak coupling ensures that except for the possibility of two asymmetric
solutions, no other out-of-phase solutions exist in a neighborhood of Ay. We of-
fer the interpretation that solutions which leave a neighborhood of Ay are random
and are of relatively lesser importance than those which remain in a neighborhood
of A H-
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Physically this implies that essentially only two types of behavior are seen: either
both fibres simultaneously fire and the resulting action potentials propagate locked
in-phase, or one fibre fires while the other must remain at rest. In other words,
uncoupled pulses which initially exhibit phase differences, which may range in size
from arbitrarily small to quite large, are destroyed by the introduction of weak cou-
pling. Thus for identical fibres, this can be thought of as a mechanism for generating
synchrony. Markin [25] shows an analogous result where travelling waves of initially
different speeds, e.g., when f(u;) # f(uz2), synchronize in-phase at some common
wave speed. Our results differ from those of Markin in that, due to the diffusive
coupling, the wave speed for our symmetric solution coincides with the wave speeds
of the individual uncoupled pulses. For his model, he shows that the wave speed of
the collective pulse is slower than that of the individual pulses.

We also prove the nonexistence of certain possible multiple jump pulses that
contain more than two heteroclinic jumps in their singular limits. In particular, we
show that it is not possible for one fibre to remain in an excited state while the other
fibre excites. This does not rule out the possibility of an excited fibre and a resting
fibre switching orientations; i.e., the excited fibre returns to rest, while concurrently
the resting fibre becomes excited. In fact, Bose [2] has shown that for € = 0 in (1.2)
such situations arise.

The symmetric and antisymmetric solutions are found as transverse intersections
of relevant manifolds. Asymmetric solutions are found by a bifurcation argument. In
this paper, we do not actually prove the existence of asymmetric homoclinic solutions.
Instead, we prove only that two asymmetric travelling wave fronts exist. In [6] and
(26], it is shown that if there exists a heteroclinic orbit between points A and B and
also between B and C, then under certain conditions, a bifurcating heteroclinic from
A to C will also exist. Here, asymmetric travelling wave fronts are shown to exist as
bifurcations of pairs of antisymmetric front solutions. In particular, the asymmetric
solutions are not constructed as transverse intersections of manifolds.

This paper is organized as follows. In §2, we set up the geometry of the problem
and state our main existence and nonexistence theorems. We also begin the proof
of nonexistence of out-of-phase waves for the ¢ = 0 system. In §3, we complete the
nonexistence proof by proving that the singular symmetric front and back exist as
transverse intersections of relevant manifolds, thus guaranteeing their local unique-
ness. Moreover, their direction of transversality is an important aspect of the stability
analysis of the symmetric solution; see Bose and Jones [4]. The symmetric solution
exists as an O(d) transverse intersection of certain manifolds. In general, transversal-
ities of such a small order are difficult to analyze. We introduce a technique which
uses differential forms to greatly simplify the detection of such transversalities. In
84, we show that various antisymmetric singular fronts and backs exist as transverse
intersections of relevant manifolds. We also discuss the existence of asymmetric so-
lutions here. In §5, we construct solutions to the slow flow, which we piece together
with the heteroclinic solutions of §§3 and 4 to form singular homoclinic solutions.
We will then be in a position to use the aforementioned theorem of Jones and Kopell
to conclude the existence of real homoclinic solutions. We conclude §§4 and 5 with
discussions on the physical aspects of the problem.

2. Geometry and main theorems. In singularly perturbed systems, the small-
ness of a parameter, € in our case, serves to naturally demarcate two distinct regions
of interest. One of the regions is governed by a fast flow and the other by a slow flow.
The equations which govern the fast flow are obtained by analyzing (1.2) when ¢ =0
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and are given by

u) = wy,
(2 1) ’l.Ui =0w1—f(u1)+v1—d(uQ—u1),
' UIQ = Waq,

wh = Owg — f(uz) + va — d(u — uz).

Note that v; and v act as parameters in (2.1). Equations for the slow flow are also
obtained from (1.2) and are given by

(22) vll =€ (ul - '7’01)/99

where u; = u;(v1,v2) for i = 1,2 and is determined by solving (2.3) and (2.4) for u;
and ug. At € = 0, solutions to

(23) v = f(ul) + d(U2 - Ul),
(2.4) vz = f(uz) + d(u1 — u2)
define manifolds of critical points of the system (1.2). For d fixed sufficiently small,
solutions of (2.3) and (2.4) projected onto the u; — v; and ug — vy planes look like
cubics, each with two branches of negative slope. Let upmi, be such that f'(umin) =0

and f”(umin) > 0. Similarly, let upax be such that f'(umax) = 0 and f”(umax) < O.
Let o be a small positive real number independent of d. Define for i = 1,2

LB; = {(uy,u2,v1,v2) : (2.3) and (2.4) hold , u; < Umin — 0},
RB; = {(u1,us,v1,v2) : (2.3) and (2.4) hold , u; > umax + 0}.

Next, following Keener’s terminology, we define the critical manifolds as

manifold (0) = {(u1,usg,v1,v2) : u1 € LB1,us € LBy},
manifold (1) = {(u1,usg,v1,v2) : uy € LBy,us € RB3},
manifold (2) = {(u1,usg,v1,v2) : uy € RBy,uy € LBy},
manifold (3) = {(u1,u2,v1,v2) : u1 € RBy,us € RBs}.

This is a base 2 representation, where the left branch corresponds to a 0 and the
right branch corresponds to a 1. Physically, manifold (0) represents critical points for
which both fibres are at rest. Manifold (3) represents critical points for which both
fibres are excited. Manifolds (1) and (2) are cases for which one fibre is at rest and
the other is excited.

Heteroclinic solutions which connect rest points on different critical manifolds are
called solutions to the fast flow and are obtained by analyzing (2.1). Curves which
connect rest points on the same critical manifold are called solutions to the slow flow
and are obtained by analyzing (2.2).

We now define the singular homoclinic solutions which we will construct and
then use to create real homoclinic solutions. Let 6* be the wave speed at which a
heteroclinic connection from (0,0,0,0) to (1,0,1,0) exists for e = 0 and d = 0 in
(u1, w1, uz2, ws) space. Here 0* is the same value as the wave speed of the FitzHugh-
Nagumo front. Let v* = f(ugr) = f(ur). For the FitzHugh-Nagumo equations,
(ug,v*) and (ur, v*) are the points on the right and left branches of the cubic between
which the ¢ = 0 back travelling wave exists. The symmetric singular homoclinic
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orbit consists of two fast jumps between manifolds (0) and (3) interspersed with two
curves on each of these slow manifolds. Thus, we call it the symmetric 0-3-0 singular
homoclinic orbit. It consists of the union of the following four objects:

1) a front heteroclinic jump from (0,0,0,0, 0,0) on manifold (0) to (1,0,1,0,0,0)
on manifold (3) at the wave speed 6 = 6* in (u1,wy, ug, wa, V1, v2) space;

2) a solution of the slow flow on manifold (3) which connects (1,0, 1,0,0,0) to
the point (ug,0,ug, 0, v*,v*);

3) a back heteroclinic jump from (ug, 0, ug, 0, v*, v*) on manifold (3) to (ur,0,ur,
0,v*,v*) on manifold (0) at the wave speed 6 = 6* in (uy, w1, uz, ws, v1,v2)
space;

4) a solution of the slow flow on manifold (0) which connects (ur,0,ur, 0, v*,v*)
to the point (0,0,0,0,0,0).

We next describe the 0-2-0 singular solution and observe that the 0-1-0 solu-
tion is analogous since (1.2) is invariant under the interchanging of u; and ug. For
d=0,ve =0, in (u1,ws,us,ws,v1) space, (1,0,0,0,0) is a fixed point on manifold
(2). Using the implicit function theorem, it can be shown that for each d suffi-
ciently small, there exists a unique nearby critical point on manifold (2) given by
(t1,(d),0,12,(d),0,0). Also in (u1,ws,us,ws,v1) space, there exist unique critical
points (uy,(d),0,uz,(d),0,v1(d)) and (u1,(d),0,uz, (d),0,v1(d)) which are close to
(ugr,0,0,0,v*) and (ur,0,0,0,v*) on manifolds (2) and (0) respectively. For d fixed
sufficiently small, the 0-2-0 singular homoclinic solution consists of the following four
pieces:

1) a front heteroclinic jump from (0, 0, 0, 0, 0) on manifold (0) to (&1, (d), 0, 2, (d),

0,0) on manifold (2) at the wave speed 6 = 6(d) in (uj, w1, ug, we,v1) space;

2) a solution of the slow flow on manifold (2) between (@ ,(d), 0, G2 (d),0,0) and
(ula (d)a 0, U2p (d)7 0,v1 (d))’

3) a back heteroclinic jump from (ui,(d),0,us2,(d),0,v1(d)) on manifold (2) to
(u1, (d),0,us, (d),0,v1(d)) on manifold (0) at the wave speed 6 = 6(d) in (u,,
w1, Uz, Wa, V1) SPace;

4) a solution of the slow flow on manifold (0) between (u1,(d), 0, uz, (d),0,v1(d))

and (0,0,0,0,0).

We will prove the following existence theorem.

THEOREM 1. a) If d is sufficiently small, then for each 0 < |d| < d, there ezists
an € > 0 sufficiently small such that there exists a locally unique symmetric homoclinic
solution To3p to (1.2), O(e) close to the 0-3-0 singular solution. Moreover the wave
speed at which the solution exists is within O(€) of 6*.

b) If d is sufficiently small, then for each 0 < |d| < d, there exists an € > 0
sufficiently small such that there exist two antisymmetric homoclinic solutions 1o
and Toag to (1.2), which are each locally unique, where To1o ( To20, respectively) is
O(e) close to the 0-1-0 (0-2-0, respectively) singular solution. Moreover, the wave
speeds at which these solutions exist are identical and are within O(e) of 6(d).

A consequence of Theorem 3, found in §5, is that I'g3p, ['o20, and I'p1o all exist
as the transverse intersection of relevant manifolds and are thus locally unique.

Recall Ay, the two-dimensional family of d = 0 homoclinic solutions. Let Ng
be a neighborhood of a subset of Ay such that it does not contain manifolds (1) or
(2). Also let N contain only 0-3-0 homoclinic solutions for d = 0 which are not
asymmetric; i.e., Ng does not contain 0-3-0 homoclinic solutions close to the 0-1,
0-2, 1-3, and 2-3 singular solutions for d = 0. The following theorem addresses the
nonexistence of out-of-phase pulses that are not asymmetric.
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F1G. 2.1. The totality of d = 0 front heteroclinics.

THEOREM 2. If d is sufficiently small, then N$ contains no homoclinic orbits
from the origin to itself when uy Z us.

The proof of Theorem 2 will follow from Lemmas 1 and 3 below. Note that The-
orem 1 does not address the question of multiple pulse/jump solutions, i.e., solutions
that either pass near the origin more than once or contain more than two heteroclinic
jumps in their singular limits. Dockery [8] has proved, using Lyapunov-Schmidt meth-
ods, that for each € > 0 sufficiently small, there exists a d sufficiently small such that
a 0-1-0-2-0 and 0-2-0-1-0 solution exists. We refer the interested reader to his results.

2.1. Nonpersistence of certain out-of-phase fronts. We begin the proof of
Theorem 1 by constructing solutions to the fast flow. Consider (2.1) with v; = ve =0
and with the equation #’ = 0 appended:

u) = w,

wy = 0wy — f(ur) — d(uz — uy),
(2.5) uh = Wa,

wh = Owg — f(ug) — d(ur — uz),

0" =0,

These are the equations for the front part of the singular solution. When d = 0, a
two-dimensional family of travelling wave fronts exists which connects (0,0,0,0) to
(1,0,1,0) at & = 6*. This family of waves is schematically depicted in Fig. 2.1. We
will show that when weak coupling is introduced, only the symmetric 0-3 solution
(which corresponds to the diagonal line in Fig. 2.1); the four antisymmetric 0-1, 0-2,
1-3, and 2-3 “edge” solutions; and for d > 0, two highly out-of-phase asymmetric 0-3
solutions persist. For d < 0, the asymmetric waves do not exist (see Figs. 2.2 and 2.3).

The critical point (0,0,0,0,8) for (2.5) has a three-dimensional center-unstable
manifold, W*(0). The critical point (1,0,1,0,6) has a three-dimensional center-
stable manifold, W< (3). For d = 0 and # = #*, the manifolds coincide, so dim(W§*(0)
NW§*(3)) = 2 where the subscript 0 refers to d = 0. Since the ambient space is five-
dimensional, the intersection is not transverse. Therefore when the vector field is
perturbed, we expect this highly delicate situation to change.
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F1G. 2.2. Front heteroclinic solutions for d > 0 sufficiently small.

0 2

FIG. 2.3. Front heteroclinic solutions for d < 0 sufficiently small.

Restricting to § = 6* and d = 0, we identify trajectories of the two-dimensional
unstable manifold, W*(0), by the parameter & = 1/2 — uy. Note that « € [-1/2,1/2]
and o < 0 (o > 0) above (below) the diagonal. Fix o7 > 0 sufficiently small. Define
K={a:-1/2+0; <a<1/2—-0,}. Let M a compact subset of R2. Consider a
three-dimensional cross section to the flow defined by

Y1 = {(u1, w1, ug,we) : ug =1/2,a € K, (w1, ws2) € M}.

Note that X1 is compact. For d = 0 and 6 = 6*, W*(0) N W*(3) # 0 and is
a two-dimensional manifold. Let TI'}; be the subset of trajectories of this solution
manifold which intersects ¥1; i.e., ['}; consists of the symmetric solution and out-of-
phase solutions that are not asymmetric. In the following lemma, we show that only
the diagonal trajectory of I'j5 persists for small d.
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0 2

) . . ) 2
FIG. 2.4. The nonshaded regions depict the trajectories of I'S.

LEMMA 1. There ezists a neighborhood N; of T'ls and a dy sufficiently small
such that if 0 < |d| < do and 6 is sufficiently close to 0*, then the only heteroclinic
orbit from (0) to (3) contained in N§; has uy = up and 6 = 6*. Moreover in R?,
We(0) transversely intersects W (3) at u; = uy and 6 = 6*.

Remark. The reason we need to exclude neighborhoods of the edges of the square
is that both the 0-2-3 pair and the 0-1-3 pair of heteroclinics, under certain conditions,
bifurcate to produce 0-3 connections. In fact, if d > 0, in §4.1, it is shown that two
asymmetric 0-3 wave fronts exist and each is locally unique. One is close to the 0-2-3,
d = 0 heteroclinic pair, and the other is close to the 0-1-3, d = 0 heteroclinic pair.

Proof of Lemma 1. The proof of Lemma 1 has two main steps. One step is to
prove that no solutions lie close to the symmetric front. This is achieved by proving
that the symmetric front solution exists as a transverse intersection of W¢*(0) and
We#(3) and is thus locally unique. The proof of this result is found in §3. Another
step is to show that away from both the symmetric solution and the edges of the box
in Fig. 2.1, there exist no out-of-phase solutions. This will be proved in Lemma 2
below, which will then conclude § 2.

Consider a compact subset K,, of K defined as follows. Fix o2 sufficiently small
and let K,, ={a:a € K, |a| > o2}. Now let

22 = {(u17w17u2»w2) LU = 1/2ya S KUz’ (’UJl,le) € M}

For d = 0, let T'2; be the set of trajectories which satisfy W§*(0) N W§*(3) N o # 0.
The nonshaded regions of Fig. 2.4 depict the set I'2;. We prove that none of these
trajectories persist under perturbation.

LEMMA 2. There ezists a neighborhood Nis of T35 and a d; sufficiently small such
that if 0 < |d| < d; and 8 is sufficiently close to 8*, then W*(0)NW*(3)NL,NNE& = 0.

Proof of Lemma 2. Assume, without loss of generality, for solutions of the un-
perturbed system of (2.5) that u; > ug; the treatment of u; < us is identical. Let
g € W§*(0)NW§*(3)NX, such that, at g, £ = 0. In a neighborhood of ¢, the perturbed
manifolds are C"—close to the unperturbed ones and are given by the graphs of appro-
priate functions. Denote anything associated with W¢*(0) by the superscript + and
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with We(3) by —. In a neighborhood of q, let W¢*(0) and W<*(3) be the graphs of
(ul,g+(u17 Uz, 07 d), uz, h+(u17 Uz, 97 d), 9) and (ulvg_(ula U2, 07 d)a U2, h~ (uh Uz, 0) d)7
0), respectively. Call

(Ag(ulvu%ea d) = g+(’LL1,’LL2,0, d) - g_(ul,uz,g,d)),
(Ah(uy,uz,0,d) = ht(u1,uz,0,d) — h~(uy,uz, 0,d)).

Consider the function F': R® — R? defined in a neighborhood of ¢ and given by

Flus, 6, d) = (ﬁi)‘

Since q is a point of intersection of the unperturbed manifolds, F(q) = 0. We will

show that

0Ag(q) O0Ah(q) OAR(q) 0Ag(q) £0
00 od 00 ad '

The quantity det Dy qF (q) measures how We*(0) and W (3) split when d is perturbed
from 0.

For each ¢ € W§*(0) N W§*(3) N Xz, there corresponds a unique value of a, 6,
and d. In particular, 8 = 6*, d = 0, and we will call @ = a* for some chosen gq.
Assume (2.6) for a moment. Then by the implicit function theorem there exists a us
neighborhood, U, of a* and a (6, d) neighborhood, V, of (*,0) such that o* € U,
(6*,0) € V, and for each up € U there exists a unique (6,d) € V such that F = 0,
where 0 denotes a two vector. Since for each ug near o*, (6, d) = (*,0) implies F' = 0,
this must be the unique value of # and d prescribed by the implicit function theorem.
In other words, there are no other values of § and d in V for which 0-3 heteroclinic
connections exist.

We can extend this argument to all of the set ¥3. For each oo € K,, there
exist both uy and (#,d) neighborhoods. Let us call these neighborhoods {U;} and
{Vi}. Recall that K,, is compact. Choose a finite number of sets Uy, Us,..., U,
that cover K,,. We obtain associated neighborhoods Vi, Va,..., V,,. Each of these
V' neighborhoods has a radius for, in particular, the d component which we call
dryydryy..., dy, . Now choose df = min{d,,,dy,,..., d,,}. Thus for all 0 < |d| < dy
the result of Lemma 2 holds.

We now show that (2.6) is true. Append d’ = 0 to (2.5) and use the equation of
variations:

(2.6) det Dg,dF(q) =

u) = wy,
wy = 0wy — f(u1) — d(uz — w1),
uh = wy
2.7 2 ’
@7 wy = Gwz — f(uz) — d(u1 — u2),
6 =0,
d=
The equation of variations associated with (2.7) is
bu) = bw,
671)/1 = 0671)1 -+ w169 — g—gl—éul - d((5UQ — 6U1) — (U2 — Ul)éd,
1
Sub, = dwo,
(2.8) 2 2 of,
Swh = 06wy + web6 — 5u——5uz —d(buy — bug) — (u1 — uz)bd,
2
66’ =0,

6d' = 0.
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We consider solutions to (2.8) that satisfy initial conditions associated with the
center-stable and center-unstable manifolds. Note that the vector field of (2.7) is a
tangent vector to both We* and W€, so it solves (2.8). Let

X1(8) = (w1, w), wa, wh,0,0),
XE(€) = (buiy, swi, sud,, 6w, 1,0),
Xét(é) = (6uf3,6wﬁ3,6u§3,6w2i3,0, 1)

be solutions to (2.8) which satisfy the following initial conditions

Xl(O) = (w1,6*w1 — f(ul),wg,e*wg — f(’LLQ),O, 0),
0 0
Xg:(o) = ( ) gég:t(q)a 07 %hi(Q)a 170>7

0 0
X3(0) = (0, 5000, rdh*(,0.1).

Each of the coordinates du, duo, etc. can be viewed as 1-forms. A differential
form is a skew-symmetric linear functional on the cotangent bundle of a manifold.
Thus 1-forms act on tangent vectors and take values in R. Similarly, n-forms act on
n-dimensional tangent spaces and take values in R. We will be interested in 2-forms.
The value of a 2-form acting on a plane will be given, up to normalization, by the
area of the projection of that plane onto the plane of coordinates which constitute
the 2-form.

The value of a 2-form is assigned as follows. The 2-form PU’c =1iAj(X;, Xi) equals
the 2 x 2 subdeterminant formed by the ¢th and jth components of the solutions X;
and Xj. For example, ijwl = fwiy - w1 — duie - wi. These 2-forms are elements of
the second exterior power of RS, /\2 RS. There are 15 linearly independent such 2-
forms. Evolution equations for each are obtained using the product rule. For example,

P} ., = 6uj A dwy + duy A Sw). However, in order to establish (2.6), we need only
study Py w, and P,,,, since
+ 0 4 + 0 4
P'ul.lzwl (0) =W+ %g (q)’ Pisz (0) =ws2 - %h (q)a
13% . _3_ + 13% _ . ﬁ +
Pu1w1 (0) w1 6dg (Q), Pu2w2 (O) = W2 6dh (Q),
which implies
AP12 9 12 2
Puiw (0) = w1 5589(q), AP, (0) = w2 - 55A(g),
(2.9)
0 0
AP, (0) =wi - 558g(a), AP, (0) = wa - 55 A(q).

Note that w; and we are strictly greater then zero along the front of both d = 0
subsystems, so in order to find the sign of the various right-hand sides in (2.9), we
need only find the sign of the left-hand sides.

The equations of interest are

(210) P;lwl = 9P’u,1w1 + wlPulg + dPU2u1 - (’U,Q — ul)Pulda
(211) P1,sz2 = 0Pu2w2 + w2Pu29 — dPu2u1 — (u1 - Ug)Puzd.
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We first find 2 Ag(q). If we evaluate the relevant 2-forms at X;(¢) and X2(§), we
ot

obtain P}% = w; and Pllzj =0. At d =0, 6 = 6*, (2.10) becomes

U u

P2, =¢*P2, +wl

Ui w1 Ui w1

12 _ 12 _ 2 12%
Now, whenever P;7, =0, we have P,?, = w{ > 0. Moreover as £ — Foo, P;2, —

0 since they contain no vectors in the 6 direction. This can also be seen by noting
that the vector field equals 0 at co. This implies P12, > 0 and P2, . <0forall &

This then implies AP!2, (£) > 0. Finally, it follows that

U1 Wi

1 0
— - AP}? = —A .

Using P,2,,, the calculation for % Ah(g) > 0 is identical to the above.

Ugwso?

Now evaluate the 2-forms at X;(¢) and X3(&):

13% _ 13% _
P’u,19 :0, Puzo :0,
13+ _ 13% _

Puld = W, Pugd = W2

At d=0, 8 =6*, (2.10) and (2.11) become

(2.12) ij’:ul = O*ijwl —wy(ug —u1),
(2.13) P2, =0"PL, —wy(ur — up).
Whenever PL3, =0, we have that P13, = —w;(ug—u;) > 0, since u; (£) > up(€) for

all ¢, by assumption, for the uncoupled systenil. Also whienever P, =0,P13 =
—wo(u1 —u2) < 0. Noting, as before, that P2 and P2  tend to 0 as £ — Foo we

U1 Wy U2W2
obtain PL%, <0, P13 >0, P13, >0and P8 <0 for all £ This implies
1 , o
RN (0) = -6—Ah(q) <0
wWo U2W2 8d ’

Substituting into the right-hand side of (2.6), we obtain det Dy 4F(g) # 0, which
proves Lemma 2. O

3. Transversality of symmetric solutions. We now turn our attention to
proving that no solutions lie close to the symmetric front solution. This will be
achieved by proving that the symmetric solution can be constructed as the transverse
intersection of W<*(0) and W¢(3) when d # 0, but small. The transversality will be
in terms of 6 and is an O(d) transversality. In particular, when d = 0, while W<%(0)
and W (3) continue to intersect, they no longer do so transversely.

In what follows, fix d # 0 but sufficiently small. Choose ¢ € W<“(0) N W¢5(3),
and without loss of generality take ¢ to be the point along the solution where ¢ = 0.
T,W<*(0), the tangent space of W¢(0) at g, is three-dimensional. Along the solution,
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at 0 = 0%, u; = ug, £ =0, the following three vectors span T,W°*(0).

o . o,
(0. g o gt 1),

o . o .
<1y a—ulg (q)v 07 “—h (q)70)7

(9u1
o . o .,
(0. pest@ 1 pht(@.0),

Similarly the vectors
o _ 0, _
(0. mo@ 0 g 1),
o _ 0 ., _
(1» Bu; (@), 0, 8—u1h (Q)70),

o _ o  _
(0> I (q), 1, a—uzh (9), 0>

span T,W°(3). Denote by R the 6 x 5 matrix formed by placing the above vectors
as rows of R, i.e.,

Weu(0) will intersect We*(3) transversely if T,W<*(0) & T,W<(3) = R5. Thus
We(0) will intersect We#(3) transversely if the rank of R is equal to 5. Now consider
the 5 x 5 matrix formed by dropping the last row from R. Call this new matrix Tx.
To show that the rank of R is 5, it suffices to show the determinant of T is different
from zero. After some elementary row operations, we obtain

AR, . 8Ag

B dAg, . DAh
(3.1) det Tr(d) = 57 (a) - 5o

50 (q)- Bu ().

(@) -

For the uncoupled wave, det Tr(0) = 0, since the tangent vectors along the solution
from the stable and unstable manifolds are identical. Thus %Ag(q) = %Ah(q) =0.
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We are interested in the case of d small. Since W¢*(0) and W°*(3) depend smoothly
on d, we can expand det Tr in a Taylor series about d = 0 to obtain

9 det Tr(0) - d + O(d?).

(3.2) det Tr(d) = det Tr (0) + 5

Therefore if

33) 8 {OAh 8Ag Mg, . OAh

53 |50 320 - @ Go@)] # 0
then det Tr # 0. Suppress the dependence on g to obtain
0 [0Ah O0Ag  O0Ag OAR| 9 OAh ~0Ag n OAh (0 0Ag
od| 00 Ou 00 Ou; | 0Od 00 Ouy 00 \ od Ouy

_ (00Ag 8Ah  9Ag (@ dAh
dd 90  ou, = 00 \ddou; ))

(3.4)

As mentioned above, at the point q, aiulAg = aiulAh = 0. Thus the first and third

terms of (3.4) are equal to zero. Also by symmetry it is obvious that E%Ag = %Ah.
In §2, these terms were shown to be greater than zero. Thus

aAg[a 9

0

5d (Ag — Ah)] .

Use smoothness of the manifolds to switch the order of differentiation to obtain
0 0 g 0

——(Ag—Ah) = Ag — Ah
5d Buy 09 T AN = Gy 5a (B9 AR
Differentiate both sides of the last two equations of (2.9) with respect to u; to obtain
9 9 0Ag(q)
) —APB =w
(3 6) aul ’u,l'wl( ) wl aul ad y
0 0 0Ah(q)
' —~ A 13 — X
(3 7) a 1 P’u,g’wg( ) w2 6U1 8d
Next differentiate (2.12) and (2.13) with respect to u; and switch the order of differ-
entiation to obtain the following evolution equations for 32-P3, and 2-Pj3, :

1o} 1o}
(oerPite) =0 (g it ) o0

) /0
(;‘Eping) - 0 (a—mp,ll':w2> — wWa.

Note that z2-Pi3, = 0 implies (z2-P2%, )’ = wy > 0 and z2-P)3,, = 0 implies

U3 W1 UlW1 uU2wW2

(2 P13 )’—w2<0. Furthermore, -2- P13, — 0 as & — Foo for i = 1,2. This

Ouy u2w2 Y Bug T UL W,

implies 52-Pi3F (€) > 0, 52-Pi30 (€) < 0, 32=Pi3F (€) < 0, and 22-P;37 (€) > 0

U1wy
for all . Thus z2-AP}?, (0) >0, and z2-AP!3, (0) <0.
Along the symmetrlc solution, u; = ug, which implies w; = wsy. Therefore by

subtracting (3.6) and (3.7) and by factoring a w; term, we obtain

o0 [0 0

Bur 6d(Ag Ah)(q)| = AP —— AP} )(0) > 0.

8U1 ( U1 w1 uU2wW2
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Last, by (3.5), it follows that a%det T(0) > 0, which implies det Tr(d) # O for d
sufficiently small. Therefore the rank of the matrix R is 5, which implies that W<*(0)
transversely intersects W°*(3).

Denote by d. the size of d for which the O(d) term is dominant in the above
Taylor expansion. Choose dy = min{dy,d.}. Now for all 0 < |d| < dp the result of
Lemma 1 holds. This concludes the proof of Lemma, 1. ]

Remark. In both Lemmas 1 and 2, we have not required that d be positive.
Indeed the results established hold for d both positive and negative. However, since
det Tr(d) = Bd + O(d?) where 8 > 0, it is important to note that a change in the
sign of the coupling implies a change in the sign of det Tx. This has an important
consequence for the stability of the symmetric solution. For further details see Bose
and Jones [4].

3.1. Back travelling waves. We now state the analogous transversality and
nonpersistence results for back travelling waves. Such waves are heteroclinic orbits
which start at —co on manifold (3) and end up on manifold (0) at +0o. Theorem
3, which is used to create € # 0 homoclinics, requires that the singular homoclinic
solution contain heteroclinic jumps which all occur at the same wave speed. We have
established that the wave speed of the symmetric front is § = 6*. To achieve the same
speed for the back, it is necessary that the jump corresponding to the back occurs at
appropriate values of v; and v, along manifolds (3) and (0). In the one-fibre problem,
this occurs at v = v*. In the present situation, because of the diffusive coupling, i.e.,
because u; = uy renders two copies of the one-fibre problem, in order to have 8 = 6*,
it is also necessary that v, = vy = v*.

The equations for the back restricted to 8 = 0* and v = v; = vy are

u'l = Wi,

wy = 60wy — f(u1) + v —d(ug —uq),
(3.9) uh = wo,

wh = 0*we — f(ug) + v — d(u1 — uz),

v =0.

The critical point (ug, 0, ug, 0, v*) has a three-dimensional W<*(3), and the critical
point (ur, 0, ur, 0, v*) has a three-dimensional W¢(0). As before, for d = 0,
dim (W§¥(3) N W¢(0)) = 2, which in R® is not a transverse intersection. Analogous
to X1, let X3 be a three-dimensional cross section to this solution manifold. Also let
I'}, be the subset of trajectories which intersects ¥3. The counterpart to Lemma 1
appropriate for the back is the following lemma.

LEMMA 3. There exists a neighborhood N3y of T3y and a dy sufficiently small
such that if 0 < |d| < dy and v is sufficiently close to v*, then the only heteroclinic
orbit from (3) to (0) contained in N3jy has u; = uy and v = v*. Moreover in RS,
Wen(3) transversely intersects We(0) at u; = ug and v = v*.

We omit the proof of Lemma 3 since it is similar to that of Lemma 1. We do note
that the transversality of the front with respect to the parameter 6 has been exchanged
for transversality of the back with respect to the parameter v. We also remark that
analogous to det Tx(d), there corresponds det T(d) which is a function associated
with the transversality of W<*(3) and W°*(0). In particular, for d sufficiently small,
det Ts(d) = vd + O(d?), where v > 0. For more details see [2].

Imbed N§; and Nj, in R® and call the resulting neighborhoods N§; and N$,
respectively. In Theorem 2, the neighborhood N¢ can now be taken as the union of
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N§, N$,, manifold (0), and manifold (3). Together, Lemmas 1 and 3 prove Theorem
2, thus proving the nonexistence of out-of-phase pulses that are not asymmetric.

4. Antisymmetric and asymmetric heteroclinics. In §§2 and 3, we showed
that, excluding neighborhoods of the edges of Fig. 2.1, the only 0-3, d = 0 heteroclinic
solution which persists for small d is the symmetric one. We next show that the eight
antisymmetric 0-1, 0-2, 1-3, 2-3, 1-0, 2-0, 3-1, and 3-2 heteroclinics persist under
perturbation. Recall that antisymmetric solutions represent the situation where one
fibre fires while the other remains at rest. Concurrently, we will show that near the
edges of the box, for d > 0 sufficiently small, there exist exactly two 0-3 asymmetric
fronts. One of these solutions lies O(d) close to the 0-1-3, d = 0 heteroclinic pair,
and the other lies O(d) close to the 0-2-3, d = 0 heteroclinic pair. The asymmetric
solutions will be obtained by using the theory of Chow, Deng, and Terman [6], which is
applicable to situations such as ours. It should be noted that McCord and Mischaikow
[26] also address situations such as ours. The analysis will show that the wave speeds
of the antisymmetric and asymmetric solutions differ not only from one another but
also from the symmetric solution. Thus it will be possible to piece together only
certain singular homoclinic solutions for use in Theorem 3.

Specifically, we next construct the 0-2 and 2-0 heteroclinic jumps. It is of im-
portance that we can construct both solutions, using the same values of 6 and d, as
transverse intersections of appropriate manifolds. By symmetry considerations, re-
sults for the 0-1 and 1-0 solutions will also follow. The system of equations under
consideration is

u] = wy,
wi = 0wy — f(ur) +v1 — d(ug — uq),
uh = wy
4.1 2 ’
1) wh = 0wy — f(uz) — d(us — uz),
v] =0,
9 =0.

We first prove the transversality of the 0-2 heteroclinic at d = 0. The calculations are
quite similar to earlier ones, so we omit most of the details.

LEMMA 4. In (uy,w,us,ws,0) space, for d = 0, W<(0,0,0,0,68) transversely
intersects W¢(1,0,0,0,0) at § = 6*.

Proof of Lemma 4. Consider (4.1) with v; = 0 and no v; = 0 equation. When
d = 0, the subsystems uncouple. In effect, there are no dynamics in the uy, — wo
subsystem. The saddle structure at (0,0) of this subsystem gets carried by the flow
and persists for d small. Let ¢ € W<*(0) N W*(2). In a neighborhood of ¢ let
We*(0) be given by the graph of (u1,m*(u1,0),us, nt(uz,0),6). Also let We(2) be
the graph of (ui,m™(uy,0),uz,n" (ug,6),60). T,W(0) is spanned by the following
three vectors:



1666 AMITABHA BOSE

Similarly T,W*°*(2) is spanned by

o _

<1a —a”l;:m (q),oa 03 0>,
0 _

(0, %m (¢), 0, 0, 1),

(0, 0, L As, 0),

where A\, = g + %\/02 +4a, A\ = % - %\/62 + 4a correspond to the unstable and
stable eigenvalues on manifold (0) for the uy — wy subsystem.

Form the 6 x 5 matrix by using the above vectors as rows. Drop the first row and
call the resulting matrix Tg. Then after some easy manipulations

(4.2) detTg = 2Am- (A = As)-

00
Since A, # As and %Am > 0, det Ty # 0, which implies that W<°*(0) intersects
Wes(2) transversely. O

Remarks. (1) This is an example of an O(1) transversality. Note that it differs
fundamentally from the transversality of the symmetric solutions.

(2) By symmetry, the above proof can be used to prove the existence of 0-1, 2-3,
and 1-3 heteroclinics.

Let I'go denote the 0-2 heteroclinic at d = 0. A direct consequence of Lemma 4
is the following corollary.

COROLLARY 1. There ezists a neighborhood N, of T'og such that if d is sufficiently
small and 6 is sufficiently close to 08*, then there exists a unique heteroclinic solution
in N§, which connects the rest point (0,0,0,0) to (@ ,(d),0,dz2,(d),0). Moreover in
RS, W<(0,0,0,0,0) transversely intersects W (i1 ,(d), 0, iz, (d),0,6) at 8 = 6(d).

The same procedure can be applied to find heteroclinics along the back of each
individual subsystem. Recall that v* = f(ur) = f(ug) is the value at which the 2-0
heteroclinic exists for d = 0.

LEMMA 5. In (uy,ws, us, we,v1) space, ford =0, W (ug,0,0,0,v;) transversely
intersects W¢(ur,0,0,0,v1) at v; = v*.

The proof of Lemma 4 carries through for this case with the parameter v; replacing
6. Also note that here A, = 6/2+ 4/0%2 — 4 (ur), \s = 0/2 — 5/62 — 4f'(ur). As
in the remarks following Lemma 4, this proof can be used to show the existence of
1-0, 3-2, and 3-1 heteroclinics.

Let I'yg denote the 2-0 heteroclinic at d = 0. A direct consequence of Lemma 5
is the following corollary.

COROLLARY 2. There exzists a neighborhood N4, of T'sg such that if d is suf-
ficiently small and v1(d) is sufficiently close to v*, then there exists a unique hete-
roclinic solution in N§, which connects the rest point (u1,(d),0,uzy(d),0,v1(d)) to
(u1,(d),0,uz, (d),0,v1(d)). Moreover, W (u1,(d),0,uz,(d),0,v1) transversely in-
tersects W (uy, (d),0,uz, (d),0,v1) in R® at v; = v1(d).

We next show that the 0-2 front and the 2-0 back can be constructed at the
same wave speed. We know that We*(0) M W<*(2) at d = 0. This transversality is
with respect to the parameter 6. Also at d =0, W(2) AW (0) with respect to v;.
Essentially we want to solve for § and v; simultaneously as functions of d. We use the



SYMMETRIC AND ANTISYMMETRIC PULSES IN NERVE FIBRES 1667

implicit function theorem and the transversality results of Lemmas 4 and 5 restated
in the context of distance functions to achieve this.

We first form the distance function for the 0-2 connection along the front using the
notation of [6]. At d =0, W*(0) is two-dimensional, as is W*(2). Note that both W*
and W* depend smoothly on d and 6. Choose a three-dimensional cross section to the
flow as ¥4 = {u1 = 1/2}. Therefore dim (W*NX4) =1 and dim (W*N4) = 1. Let
M*(0,d) and M*(6, d) be connected components of W*NX, and W*NX,, respectively,
satisfying that they vary continuously in § and d and M*(6*,0)NM*(6*,0) = [y;NT4.
Let doz = do2 (6, d) be the distance between M* (9, d) and M*(0,d) defined by

d02(0,d) = inf IZl — 22,,21 € MY, zo € M°.

Now do2(6*,0) = 0. The transversality result of Lemma 4 implies that -2 55 02(60*,0) #
0. A similar procedure is applied to the 2-0 back heteroclinic. Define dzo(vl, d) such
that dao(v*,0) = 0. The transversality result of Lemma 5 implies that Bor d20(’U ,0) #
0. Next define

do2(6, d) )
43 R(6,v,,d) = .
(43) .0, = ( o)
From above, R(6*,v*,0) = 0. Also
8 * *
—6_0(102(0 , U ) 0
(4.4) Dy, R(6*,v*,0) = 5
0 a—vldz()(e X% )

This implies det Dy ,, R(6*,v*,0) = 81} dao (6%, v*) - & do2(0*,v*) # 0 by the above
transversality conditions. Therefore for each d sufﬁmently small, there exist unique
values of 6 and v; such that R(6(d), v:i(d),d) = 0 with (6(0), vl(O)) = (6*,v*). Thus
for each d sufficiently small, we can choose a unique wave speed 6 and back param-
eter v; to obtain both a 0-2 and a 2-0 heteroclinic connection, what we call a 0-2-0
heteroclinic pair. We can carry out similar constructions to obtain 0-1-0, 2-3-2, and
1-3-1 heteroclinic pairs for d sufficiently small.

4.1. Asymmetric solutions. We have now determined the fate of all of the
trajectories of Fig. 2.1, except for those that lie close to the edges of the box. We
now discuss such trajectories and simultaneously answer a question about the possible
existence of certain multiple-jump solutions. As mentioned earlier, in order to create
€ # 0 homoclinic solutions using the techniques of this paper, it is essential that
the heteroclinic jumps, which in part constitute the singular homoclinic solution, all
occur at the same wave speed. Thus it is of interest to see whether a 0-1-3 or 0-2-3
connection exists at a given value of # and d. Such connections represent the situation
where one fibre is stimulated, reaches an excited state, and is then followed by the
excitation of the second fibre. A 0-2-3 connection will exist if the implicit functions
fo2(d) and a3(d) locally coincide in (6, d) parameter space. Here Oo2(d) and 6s3(d)
are the respective wave speeds at which the 0-2 and 2-3 heteroclinic solutions exist for
d small. We next show that these curves intersect transversely, and as a result it will
be impossible to create a 0-1-3 or 0-2-3 connection at any local value of (6, d) other
than (6*,0). Moreover, it follows from [6] since the two curves intersect transversely in
(6, d), parameter space that there exists a third curve of wave speeds, 644 (d), for which
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a locally unique bifurcating 0-3 asymmetric front exists. For each d > 0 sufficiently
small, this front solution lies O(d) close to the 0-2-3, d = 0 heteroclinic pair. Since
the equations are invariant under interchanging of u; and wg, there also exists an
asymmetric solution O(d) close to the 0-1-3, d = 0 heteroclinic pair.

To show that 6y2(d) transversely intersects f33(d), we calculate 6f,(0) and 6455(0),
where ’ denotes the derivative with respect to the coupling coefficient d. In particular,
it is shown that 6(,(0) < 0 while 653(0) > 0 (see Fig. 4.1). First, consider pz(d).
Define J(8,d,us) = Am(,d, uz) which measures the distance between W°*(0) and
Wes(2) in the cross section {u; = 1/2}, where Am is the same as before. Since
we are interested in the case of d = 0 and in calculating the change in 6p2(d) as
d varies, we suppress the dependence of J on uz. From above, J(6*,0) = 0 and
%J (6*,0) = E%Am(é’*,O) > 0. This result, using the implicit function theorem,
locally establishes 8y = 6p2(d). Moreover, it also follows from the implicit function
theorem that ‘

—1
(4.5) 0,(0) = — {%Am(e*, o)] : %Am(&*,o).

As in §2, using differential forms and the equation of variations, w; - %Am(@*,O)

= AP;3, (0) evaluated at d = 0, up = 0, and 6 = 6*. The evolution equation for
ij’w , was calculated in §2 and is given by
(4.6) PR, =0P2, +w Pl —dP}°, — (uz —u1)Py°,.

At 6 =0* d=0, uy =0, (4.6) becomes

(47) P&f‘;}l = O*P'zlfwl + wiuy.

Since wy > 0 along the front, it follows from the decay properties of these 2-forms
that AP, (0) > 0, from which 2 Am(6*,0) > 0. Substituting into (4.5), we obtain
65,(0) < 0.

Working similarly with quantities associated with the 2-3 heteroclinic solution,
we obtain 655(0) > 0.

Therefore the signs of the derivatives at d = 0 of the implicit functions verify that
the curves p2(d) and 6a3(d) do intersect transversely at § = 6*, d = 0 as shown in
Fig. 4.1. The wave speeds 6g2(d) and 023(d) do not locally coincide, which proves that
0-1-3 and 0-2-3 connections do not exist for parameter values close to 8 = 6* and d = 0.
It now follows from [6] that a bifurcating family of 0-3 heteroclinic solutions exists at
some wave speed 04;(d). Furthermore, a consequence of the theory of [6] and [32] is
that the 0-3 asymmetric front exists only when 093(d) exceeds 6g2(d). From Fig. 4.1,
O23(d) > 6Op2(d) when d > 0. We do not attempt to construct asymmetric back or
asymmetric homoclinic solutions at this time. In theory, it appears entirely likely that
a 3-0 asymmetric back should exist. Whether a 0-3-0 asymmetric homoclinic solution
exists requires further investigation of the slow flow.

To conclude, we have now determined the fate of all trajectories of Fig. 2.1.

4.2. Physical consequences of asymmetric fronts. Bifurcating asymmetric
solutions exist only for stimulatory coupling between the fibres. Physically, this ob-
servation implies that under weak coupling, one fibre fires causing a transition from
the rest state to begin. As the front approaches the excited voltage threshold, the
second fibre has either been sufficiently depolarized or its threshold for excitability
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d=0

F1G. 4.1. The transverse intersection of the wave speed curves in parameter space.

has been lowered, or both, such that it too fires and also begins a transition to an
excited state. The second fibre then tends to have the effect of forcing the first fibre
to remain at an excited state. A different interpretation of this situation is that the
action potential on the first fibre is sufficiently translated along the length of the fibre
so as to not affect the stimulation of the second fibre. Another interesting physical
aspect is that the coupling has an opposite effect on both of the fibres. The wave
speed 6g2(d) is locally a decreasing function of d. Thus stimulatory coupling has the
effect of slowing down the wave speed. In this case, the fibre at rest acts as a current
sink and causes this reduction in speed. However, the wave speed 023(d) is locally an
increasing function of d. So for stimulatory coupling, the excited fibre, which remains
inactive, acts as a current source and tends to increase the wave speed.

5. Homoclinic solutions. Having completed a detailed study of reduced solu-
tions, we are now in a position to determine what type of homoclinic orbits exist.
There aretwo distinct types of homoclinic solutions that we consider. The first rep-
resents the situation where one fibre fires and then returns to rest while the other
fibre remains entirely silent. The second represents the situation where both fibres
fire simultaneously.

In particular, we will establish the existence of three homoclinic orbits which are
close to the 0-1-0, 0-2-0, and 0-3-0 singular solutions, respectively. The idea behind
their construction will be to apply the theorem of Jones and Kopell to the singular
solutions that were shown to exist in §§2-4. We state their theorem in its given
general form [17] and note that the work of §§2-4 place the present problem within
the context of the hypothesis of the theorem.

THEOREM 3 (Jones, Kopell). Consider

' = f(z,y,0,¢),
(5.1) y = eg(z,y,0,¢),
0 =0,

where * € R¥™ y € R™. Assume that for each 0 and € # 0, there is a locally
unique hyperbolic equilibrium point P(0) with k unstable directions and I +n stable
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directions; of the eigenvalues associated to the latter, n tend to zero with €. Let
{S'}, i =1,..., N denote a family of slow manifolds for the e = 0 equation (with the
equilibrium point for € # 0 in S°) and assume that for each i, S* is normally hyperbolic
with splitting k stable, | unstable. Assume further that there is a singular homoclinic
orbit, with finitely many jumps, each from S* to S**! for some i (where the {S*} are
not necessarily disjoint, so the singular orbit may visit the same slow manifold more
that once). Finally, assume that the following transversality conditions hold for the
€ = 0 system: Let W*(S?) and W*(S*) denote the stable and unstable manifolds of
the S* as above and [P(6), 0] the graph as 6 is varied of the € = 0 limit of the e #0
equilibrium point. We require that

W“(SO)|[P(0)70] transversely intersects W*(S') in (z,y, 8) space,
Wu(Sz)|sing. orbit transversely intersects W*(S*t1) in (z,y,0)space.

Then for € sufficiently small, there is a locally unique homoclinic solution to (5.1)
near the singular solution.

In particular, the solution obtained exists as the transverse intersection of mani-
folds.

5.1. The structure of the slow flow. In order to apply Theorem 3, we need
to establish the following two facts. First, for each singular solution, there must be a
curve on the appropriate slow manifold which connects the point at which the singular
orbit enters the slow manifold to the point at which the singular solution leaves this
manifold. This is the point on each of the slow manifolds at which a back jump
exists at the same wave speed as the reduced front jump. Similarly, for each of the
singular solutions, there must exist a connecting curve on manifold (0) between the
point at which the back enters (0) and the origin. Second, we need to verify that the
transversality results of §§ 3 and 4 do in fact imply the transversality requirements of
Theorem 3.

Consider first the 0-3-0 symmetric solution. For d fixed and small, the reduced
0-3 heteroclinic jump, which occurs at # = 6*, lands on manifold (3) at the critical
point (1,0,1,0,0,0). In §3, a 3-0 jump was shown to occur at § = 6* when v; and
vy were restricted to v*. This 3-0 jump leaves manifold (3) from the critical point
(ur,0,uR,0,v*,v*). We need to verify that for the slow flow, an orbit connecting
(0,0) to (v*,v*) exists.

The equations which govern the slow flow on manifold (3) are given by

P =€ (v1,v2) — 'U)/07
(5.2) 0 = ¢ (un(vn, ) — 70 6.

Here u; and up are functions of v; and vy which satisfy (2.3) and (2.4). For the
symmetric solution, we restrict to u; = ug and, as a result, v; = vs. Thus (5.2)
becomes

v, =€ (’ul(’Ul) — YU )/9’
(5.3) vh = ¢ (ug(vy) — vv;)/&

where v; = f(u;) for i = 1,2. Recall that v is chosen small enough so that u; = yv;
and v; = f(u;) have only the (0,0) solution in common for ¢ = 1,2. As a result,
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FI1G. 5.1. Evolution of the symmetric slow flow on manifold (3).

there will be a flow on the slow manifold. Moreover, on manifold (3), u, > ~yv;,
which implies v] > 0 for ¢ = 1,2, since ¢ > 0. Finally, v{ = v} > 0 implies the
flow on the slow manifold (3) will cross (v*,v*) as is depicted by the solid line in
Fig. 5.1.

We next verify that there exists a trajectory on manifold (0) which connects
(v1,v2) to (0,0). Excluding a neighborhood of unyiy,, the left branch of each cubic can
be approximated by the linear function v; = —nu;, where n > 0. Substituting into
(5.3), we obtain

(5.4) vp =€ (=1/n—1/7)v1 /6,

vy = € (—1/n — 1/7)v2 /6.
The above approximation allows us to easily linearize about the rest point (0,0). Since
the eigenvalues of the resulting linearization matrix both equal (—1/n—1/v) < 0, the
point (0,0) is attracting for the slow flow. Since v] = vy < 0, we have verified that
on manifold (0), there exists an orbit which connects (v*,v*) to (0, 0).

We next check that the transversality requirements of Theorem 3 are satisfied.
We define certain objects associated with the e = 0 flow. Let Sgr, be a compact
portion of manifold (3) which contains —6 < v; < v* + 6 and =6 < vy < v* + 6.
Let Is = [0* — 6,6* + §]. Let W*(S3 x Is) and W$(S3 x Is) be the five-dimensional
unions of stable and unstable manifolds of S3 x Is for ¢ = 0. Let W"“(A3) be the
three-dimensional restriction of W*(S3 x I5) to the singular orbit and 6 = 6*. Note
that As is a subset of the slow manifold (3), where v; = vo = v and v* —§ < v <
v* + 6. Also W¥(As) contains W< (ug,0,ug,0,v) of §3. Analogously to W*(S3 x
Is), define W*(Sy x Is) to be the five-dimensional union of stable manifolds over
6 < v <v*+6, =6 < v <v*+46, 0 € I, associated with the critical points
on manifold (0) at ¢ = 0. To apply Theorem 3 to the 0-3-0 symmetric solution,
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we need

1) W<%(0,0,0,0,0,0,8) B W=(Ss x Is) in (u1, w1, ug, wa,v1, v2,8) space at 6 = 6*.

2) W (A3)BWe(Sy x Is) in (u1,ws, ug, wa,v1,vs,0) space.
Lemma 1 proves that W¢*(0,0,0,0,0) HW<(1,0,1,0,60) in (u1,w;,us, ws,d) space.
It is not hard to establish that W<*(0,0,0,0,0,0,6) in fact transversely intersects
W (S5 x Is) in (u1, w1, ug, we, v1,ve, ) space, thus verifying 1). Lemma 3 proves that
W*(A3) transversely intersects We(uz,0,ur,0,v) in R® at v = v*. Again, it is easy
to establish that W*(A3) and W (S, x I5) transversely intersect in (u1, w1, ug, wa, vy,
v2,0) space as needed, thus proving the existence of the € # 0 0-3-0 homoclinic
solution. Note that in Theorem 1a), d = min(do,d;) where dy, d; are defined in
Lemmas 1 and 3, respectively.

Verification that Theorem 3 can be applied to the 0-2-0 and 0-1-0 antisymmetric
solutions is qualitatively similar to the one just presented, so we omit the details.
Note that for these solutions, d is chosen so that Corollaries 1 and 2 hold.

5.2. Physical conclusions. The introduction of weak coupling between paral-
lel fibres has been shown to have a pronounced organizational effect. It forces either
symmetry or antisymmetry, thus severely limiting allowable types of behavior. It has
also been shown that uncoupled action potentials which were initially slightly out-of-
phase are destroyed by the introduction of weak coupling. Here the coupling can be
thought of as a synchronizing agent. Except for the case of the symmetric solution
and for the possibility of two asymmetric solutions, weak coupling ensures that only
one fibre at a time can be excited. In this case, the coupling forces the second fibre to
remain inactive at rest until the first fibre returns to a resting potential. In our nota-
tion, this proves that homoclinic orbits whose singular limit is 0-1-3-1-0 or 0-2-3-2-0
can not exist. In particular, homoclinics whose singular limits visit both manifolds
(3) and either (2) and/or (1) cannot exist. This suggests that under appropriate
types of stimulation, pathways of propagation are isolated from one another. Accord-
ing to Keener, this observation may help to explain the onset of fibrillation, where
precisely this type of isolating behavior is observed. For the symmetric solution, the
fibres effectively decouple. However, for the antisymmetric solutions, the weak cou-
pling has a strong locking effect, thereby excluding the creation of most out-of-phase
solutions.

At the level of this investigation, the type of coupling, either excitatory or in-
hibitory, was seen to be of relevance only for the creation of asymmetric fronts, which
were shown to exist only for excitatory coupling. Symmetric and antisymmetric solu-
tions exist for both types of coupling. It turns out, however, that the type of coupling
is the determining factor in the stability of the symmetric solution. The symmetric
pulse is stable for excitatory coupling, and unstable for inhibitory coupling. See [4]
for the exact details.

We have not ruled out the possibility of a solution near to a 0-1-2-0 or 0-2-1-0
singular orbit. Further study in this direction is merited, as Bose [2] has shown that
1-2 and 2-1 heteroclinics exist for e = 0. Thus it is possible for one fibre to depolarize
while the other is simultaneously hyperpolarizing. Mathematically it remains to be
seen whether a mimicking singular orbit can be constructed and then used to create
an actual € # 0 homoclinic orbit.
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