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Abstract: 

 

Plant succession is the process by which plants die and their place is taken by other 

plants that grow in the same location. This process repeats over time causing, for 

example, the growth of forests from abandoned fields. The replacement of plants 

follows a mostly predictable sequence. This paper is about recent research into the 

possibility of modeling plant succession by the Markov process. It is part of a larger 

project the goal of which is exploring the possibility of manipulation in the successional 

process. In other words, whether by small changes the result of succession can be 

altered to achieve a more desirable state.  

Our research was focused on building the tools necessary for the larger experiment. We 

first explored the sources of stochasticity inherent in the use of the Markov process for 

modeling succession. Stochasticity comes from individual species when they are 

modeled instead of proportions of species. Another kind of stochasticity comes from the 

use of a set matrix to better approximate the uncertainty inherent in the Markov model. 

From this analysis we created a method for the determination of the appropriate 

number of plots to be used based on their size. Secondly, we explored methods to 

determine how many previous time steps should be used to determine the appropriate 

Markov matrix for predicting a certain time step and noted that this number will vary 

based on the homogeneity of the Markov process. Throughout, we use real world 

examples to demonstrate our theories and the usefulness of our tools. 

 

 

 

 

 

 



  Modeling Plant Succession with Markov Matrices | 3 
 

Table of Contents 
____________________________ 

 
 

Introduction ………………………………………………………………………………… 6 

Foundational Functions ………………...…….………………………………………… 11 

Number of Plots and Plot Size……………………………………………………………. 17 

Optimal Number of Previous Time Steps ………………………………………………. 19 

Homogeneity of Data ………………………………………………………………… 21 

Conclusion ………………………………………………………………………………… 23 

Further Research …………………………………………………………………………... 23 

References  ………………………………………………………………………………… 24 

 

 

 

 

 

 

 

 

 

 

 



  Modeling Plant Succession with Markov Matrices | 4 
 

List of Tables 
____________________________ 

 

Table 1.1: Transition Values ……………………………………………………….. 10 

Table 2.1: Type 2 Data  ……………………………………………………………….. 11 

Table 2.2: Type 3 Data ……………………………………………………………….. 11 

Table 2.3: Vector of Proportions ……………………………………………………….. 14 

Table 2.4: Vector of Individuals ……………………………………………………….. 14 

Table 2.5: Vector {1,1} ……………………………………………………………….. 14 

Table 2.6: Outcome ……………………………………………………………….. 14 

Table 2.7: Probabilities ……………………………………………………………….. 14 

Table 2.8: Vector {100,100} ……………………………………………………………….. 14 

Table 2.9: Probable Result ……………………………………………………………….. 14 

Table 2.10: Improbable Result ……………………………………………………….. 14 

Table 2.11: Bray Curtis Equation ……………………………………………………….. 17 

 

 

 

 

 

 

 

 



  Modeling Plant Succession with Markov Matrices | 5 
 

List of Figures 
____________________________ 

 

Figure 1.1: Plant Succession …………………………………………………………….. 6 

Figure 1.2: Markov Matrices: Multiplication and Prediction of Next Time Step ….. 8 

Figure 1.3: Representing and Measuring Plants in a Plot…………………………….. 9 

Figure 2.1: X and Y Data Input Matrices …………………………………………… 12 

Figure 2.2: Simple Matrices vs. Set Matrices ……………………………………….. 15 

Figure 2.3: Simulator: Options, Components and Results ………………………….. 16 

Figure 3.1: Graphs of Noise Based on Population Variation vs. Noise Based on Matrix  

 Variation …………………………………………………………….. 18 

Figure 4.1: Predictions: Using the Optimal Number of Previous Time Steps ……. 20 

Figure 5.1: Homogeneity Visualization by Stacked Bar Charts …………………… 21 

Figure 5.2: Plot of Changes in the Data Set with Optimal Previous Time Step(s)... 22 

 

 

 

 

 

 

 

 

 



  Modeling Plant Succession with Markov Matrices | 6 
 

Introduction 

 
Figure 1.1 

When warehouses are leveled, landfills are capped or fields are abandoned, a similar 

process occurs.  This process is called plant succession.  Originally small weeds and 

grasses grow.  Over time larger, stronger and longer lasting plants tend to take their 

place (Figure 1.1).  This process can be studied over time and with enough information 

the transitions might be able to be predicted with a degree of certainty.  This could be a 

very important step towards making these environments friendlier to native species or 

at least less hostile.  The goal of our research was to investigate the possibility of using 

mathematical systems and computer modeling to predict the transitions and to suggest 

possible small changes that could be made in the plot in order to reach a more desirable 

Plant succession is the replacement of plants over time steps. This process, for example, 
allows an abandoned field to become a forest. However, though this diagram shows the 
general plant groups that replace their predecessors as time progresses, the specific plant 
sequence or sequence options with their probabilities are highly variable from plot to plot 
depending on many external as well as innate properties. 

Plant Succession 1 
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outcome.  From prior research, we hypothesize that the outcome of plant succession can 

be predicted with sufficient precision to enable identification of small interventions that 

will push the community towards a more desirable end state. A more desirable end 

state would be one in which the habitat would support more native species, improve 

the appearance of the area or become more easily manageable.  

Studying plant succession is not a new field. Historically, however, scientists have 

focused more on learning the general transitions that are likely to be made and tracking 

these transitions through laborious field work. In this experiment, no field work was 

engaged in although some of the data the methods were tested on was taken from 

actual field work. Other data was obtained from studies unrelated to ecology that 

exemplified transitions over time. Much of the data was taken from the PhD 

dissertation of an ecology student, Corey Samuels, from the University of Tennessee. 2  

Her data was from grasses in Kansas. They were grouped into annuals and perennials. 

In her paper, Samuels suggests that Markov set chains could be a good model for the 

process of plant succession. Her idea was the basis of this research.  

Markov matrices are a method of obtaining data about a time step from its predecessor. 

Given a matrix of probabilities (the Markov matrix) and a vector of numbers 

representing the population (either by percents or actual numbers), the vector of the 

population in the next time step can be found by the multiplication of the matrix and 

the vector.  In each case, only the population information from the last time step is 
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needed to generate the next step along with the transition matrix. Figure 1.2 shows an 

example of a vector of population percentiles being transformed.  

 

Figure 1.2 

If the matrix of transitions is viewed as a grid, for each of the squares, the value inside 

represents the percentage of the row population type that will be replaced by the 

column population type. When this is applied to plants, the same principles hold. Only 

A,B and C represent types of plants.  The process of replacement is a discrete process.  

 

 
 

Markov Matrices 
Multiplication and Prediction of Next Time Step 

A 
B 
C 

  A       B       C 
 
.80     .05    .15 
.05     .90    .05 
.10     .20    .70 
 

 
 
  0.5 
  0.3 
  0.2 
 

A 
B 
C 

= 
A 
B 
C 

 
 0.445 
 0.305 
 0.25 
 

● Time 
Step 

1 

Time 
Step 

2 

Given the population percentiles in Time Step 1 and the transition matrix, by multiplication, 
the population percentiles are generated for Time Step 2. 
Each of the values in the transition matrix represent the percent of the population type in the 
row that will change to the population type in the corresponding column. So 80% of A will 
stay A while 5% will be replaced by B and 15% will be replaced by C (see this from reading 
across the first row). 
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Figure 1.3 

Block G could be interpreted as a plot with four plants in it (A,B and C). Block 
H is a plot with a large number of plants in it. Since it is nearly impossible to 
keep track of every plant or make sure every plant is in one piece of the grid, it 
is more likely that Block G is a representation of Block H. Boxes h1 and h2 
represent what a data collector would observe in the field. He would estimate 
what percentage of plants are A, B or C and may represent this information by 
the grids in Block G.   
 
Both blocks show plant succession. Block G makes interpretation easier. From 
Block G we see that all plants of type B were succeeded by plants of type A 
while fifty percent of plants of type A were succeeded by plants of type C. 

A 

A A 

C B
A

A 

A
B 

B 

Representing and Measuring Plants in a Plot                 
           Timestep 1                   Timestep 2 

g1) g2) 

h1) 
h2) 

Block G 

Block H 
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The plot has some set of species. During one of the time steps, one or more of these 

species will be replaced by another. The state of the system at any point in time is a 

function of the state at some previous time step †. This process is encoded in the matrix 

of transition probabilities.  Figure 1.3 shows what the process looks like ecologically.  

Block G could be interpreted as having two plants of type B and two plants of type A in 

box g1, and three plants of type A and one plant of type C in box g2. These would be 

the numbers placed in the population vector. However Block G could be a 

generalization of Block H which would mean that the proper interpretation would be 

that box g1 was 50% B and 50% A while box g2 was 75% A and 25% C. The vector 

would now be made up of proportions and the data would be continuous. 

 Given only one time step to gather the data from, the transition values appear to be: 

A→ A: 50%   A→ B: 0%    A→ C: 50%  (Table 1.1) 

B→ A: 100%   B→ B: 0%    B→ C: 0% 

There is not enough information to determine the transitions from C since no transition 

from C is shown in the data. Further data might reveal slightly different patterns of 

transition but if all the values were based on the first transition (between Time step 1 

and Time step 2) the values would be those in Table 1.1.  

_____________________________________________________________________________ 

† Most often the time step used is the previous time step. However, as explained on page 21, 

more than one time step or a time step that not immediately preceding the one to be predicted 

can be used under certain circumstances. 
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Foundational Functions 

The first step in using Markov Matrices to model plant succession is developing 

functions that calculate these matrices.  First a method of least squares fitting was 

applied to the data. The input for least squares is a set of two matrices.  With the data in 

table 2.2 (one of Samuels data sets) the matrices in Figure 2.1a are formed. 

 {1994, 0.692, 0.308}, 

 {1995, 0.315, 0.685}, 

 {1996, 0.226, 0.774}, 

 {1997, 0.075, 0.925}, (Table 2.1) 

 {1998, 0.020, 0.980}, 

 {1999, 0.070, 0.930} 
These data are in the form {date, type1,  type2}. Some data are also in the form 

 {1994, 0.692, 0.082, 0.226}, 

 {1995, 0.315, 0.194, 0.492},  

 {1996, 0.226, 0.318, 0.456},  (Table 2.2) 

 {1997, 0.075, 0.453, 0.472},  

 {1998, 0.020, 0.244, 0.735},  

 {1999, 0.070, 0.358, 0.572} 

where the third column in the data of table 2.2 are broken into two groups. Essentially, 

the plot was differentiated into two types of plants in Table 2.2 and the second of these 

types was further differentiated in table 2.3 to form three types. This becomes clear 

when the last two rows in table 2.3 are summed because they equal the last row in table 

2.2. Ecologically, the plot is made up, for example, of shrubs and grasses. This 

characterization is useful on one level. However, on another level, the grass can be split 



  Modeling Plant Succession with Markov Matrices | 12 
 

up into two types such as Kentucky Bluegrass and Annual Bluegrass. The groups that 

are placed in the matrix can have many different degrees of specificity which could be 

useful if there are different degrees of certainty associated with the degrees of 

specificity.  

 

Figure 2.1 

Using the least squares method , it was possible to generate negative values for the 

probabilities which are nonsensical. Instead, a method of quadratic programming, 

which is built into Mathematica, as it is in many other programs, was employed. This 

method takes the same input and does not generate any negative values (constraint: 0 ≤ 

n ≤ 1). It is a mathematical optimization technique for several variables subject to linear 

The two matrices in (a) for two plant types and( b) for three plant types are examples of the 
matrices necessary for input for both the least squares and quadratic programming methods. 

X and Y Data Input Matrices 
 (a) data with two plant types      (b) data with three plant 

x = x = 

y  = y  = 
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constraints. This code now became the foundation of this research because it generates 

the Markov matrix. 

A second useful tool is a simulator which is a piece of code that produces matrices 

based on inputs and in some cases random generators.  These matrices can then be fed 

to a Markov matrix simulator which generates a sequence of proportions (the Markov 

matrix).  This tool is very useful when data are needed to test a new program but is not 

available. It is also helpful in testing different kinds of variability, starting vectors and 

starting matrices. In this simulator there are four different options for stochasticity that 

can be used (see Figure 2.3   ). One of the options is no stochasticity (deterministic); the 

other three options involve different forms of stochasticity.  

In the deterministic option, a vector of proportions and a matrix are given. The 

simulator runs the Markov process and since the proportions and matrix are fixed, the 

process will converge to a vector of proportions. Using the Eigen vector these final 

proportions can be determined.  

The first option for stochasticity comes in the form of a set matrix and a fixed vector of 

proportions. In a set matrix there are not single values but sets of values. These are an 

attempt to better represent the uncertainty inherent in the system and are generated by 

the High Low Method, a method developed in Samuels’ dissertation which solves the 

problem generated by a set matrix- the rows do not sum to one. The simulator 

randomly picks a value in the range of each of the sets. Figure 2.2 contains further 

explanation and examples of the set matrix.  
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The second option for stochasticity uses a fixed matrix as in the deterministic option but 

does not use a vector of proportions but a vector of individuals. A vector of individuals 

gives stochasticity because though a vector of proportions such as  

 {0.5, 0.5} (Table 2.3) 

 and  {1,1}  (Table 2.4) 

may seem identical, their result can be very different. If the vector for the first time step 

was  {a, b} = {1,1} (Table 2.5) 

the next time step vector could be  {1,1}, {0,2} or {2,0}  (Table 2.6) 

with the relative probabilities  {0.5,0.25,0.25}.  (Table 2.7) 

This means that fifty percent of the time, one of the species would die out. 

These are much bigger changes than if given a vector  

 {a, b}={100,100}  (Table 2.8) 

where the result is far more likely to be very close to itself- such as  

 {94, 106} (Table 2.9) 

rather than  {0,200}  (Table 2.10) 

Essentially, as the number of individuals increases, the vector predicted for a certain 

time step approaches the vector prediction for proportions. If the number of individuals 

is small, there is a much greater degree of variance. Using individuals generates a 

second type of stochasticity. 

The third option combines the first two with a set matrix and a vector of individuals, 

increasing the stochasticity.  
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Figure 2.2 

 

 

Since it is nearly impossible that a transition from one plant type to another would have 

a set probability with no variance, it is much more realistic to produce a Markov where 

each transition is represented by a set of numbers which are the minimum and 

maximum percentage of plants that underwent that transition.  For example, instead of 

giving constant percentages such as in Table 2.4a it is much more likely that the 

percentages will lie in ranges as in Table 2.4b 

Simple Matrices vs. Set Matrices 
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Figure 2.3 

 

 

 

Simulator 
Options, Components and Results 

Eigen Vector Fluctuating 

Fluctuating Fluctuating 

The simple matrix has no inherent stochasticity and neither does the vector of proportions. 
Both the vector of individuals and the set matrix have inherent stochasticity. With these four 
options four types of stochasticity can be obtained. These may converge (deterministic) or 
fluctuate (stochastic). The fluctuation will be asymptotic but not deterministic. 
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Number of Plots and Plot Size 

One of the first questions to be answered is how many plots need to be tracked and how 

big these plots should be in order to get accurate data by balancing the stochasticity 

from these two sources. A measurement called Bray Curtis Distance4 was employed to 

measure the effect of noise in the process on the final community.   

Bray Curtis Distance is a measure of the difference between two communities. The 

limits of this measurement are between 0 and 1. Given vectors {a,b,c} and {x,y,z}, the 

equation is: 

 Bray Curtis Distance=  (Table 2.11)   

A zero would result when the proportions (vectors) are identical and one would be 

obtained when the for example, a equaled 1 and x equaled 0. This was used to 

determine the noise generated by plots of different sizes where the size of a plot was 

“measured” by the number of individuals it contained. The results of the Bray Curtis 

Distances were graphed when the number of individuals was varied and the matrix 

was kept as a constant. As expected, the more individuals are introduced, the less effect 

the noise has on the results. The other line on the graph was generated with four plots 

by assuming an infinite population of the individuals with a set matrix where the 

values of the matrix were picked randomly every time. Where these two plots intersect 

is the place where the noise generated by these two sources of stochasticity (number of 

individuals and randomly picked values from a set to fill the matrix) is equal. This point 

gives us the optimal number of individuals per plot when there are four plots.  
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Figure 3.1 
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Graphs of Noise Based on Population Variation vs. Noise Based on 
Matrix Variation 

The intersection point of these graphs represents the number of individuals per plot where the 
level of noise generated by the number of plots is equal to the level of noise generated by the 
number of individuals. This is the best number of individuals given the number of plots. 
[Note: the y value on these graphs in the Bray Curtis Distance] 
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Optimal Number of Previous Time Steps 

Now that the method of generating matrices has been developed, it is important to 

design the experiment. Since every matrix needs at least one previous data point to 

estimate the current one, the next question is how many data points are best? Is there a 

predictable result achieved by using more previous time steps? These questions are 

important because in order to have the least error in predictions, since these matrices 

depend on the previous time steps it is important to know that, for example, with 100 

previous time steps available the last 50 will generate the answer with the smallest error 

(Bray Curtis Distance) (Figure 4.1). 

It may seem that the more data points the better the result will always be, however this 

will not always be the case. If the data is homogenous it should level out, making for a 

better approximation the more time steps are used. Also an increase in time steps will 

decrease the negative affect that fluctuations due to bad readings, unexpected changes, 

etc. will have on the result. But, if the data is non-homogenous, there will be a point in 

time where the previous data is irrelevant which will make the results worse. In the 

long run, every data set will be significantly different so the probability that through 

some program the number of previous time steps to be utilized could be magically 

estimated is very small.  

Figure 5.2 shows another way to visualize these types of results and some conclusions 

that can be drawn using the other method of visualization. 
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Figure 4.1 

   
Timestep 
 
Plant A  
Plant B 

1  2 3 4 5 6 7 
------------------------------------------- 
.3  .2 .4 .3. .5 .2 .4 
.7  .8 .6 .7 .5 .8 .6 

 
(a) Previous Time Steps: 

Which is better at predicting A? B or C? 

A 
 
B 
 
C 

(b) Data Showing Accuracy of Prediction Based on Previous Time Steps 

20 40 60 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

In (a) the theory is illustrated with random numbers. If A is to be predicted, is it better to use 
the data enclosed in B or C (or any other set of data for that matter)? 
In (b) one of the graphs generated in Mathematica by graphing the Bray Curtis Distance and 
the number of previous time steps used is shown. The data was closest around 6 or 7 previous 
time steps. In the area before that, the noise seems to be too great to obtain reasonable results. 
In the area around 20 and after, the noise seems to settle to a basically constant level. 

x axis= number of previous time steps used  
y axis= Bray Curtis Distance (0 is most accurate, 1 is most inaccurate) 
 

Predictions: 
Using the Optimal Number of Previous Time Steps 
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Visualizations of Homogeneity of Data 

One way that homogeneity can be visualized is the amount of difference over time 

between data points. One easy way to visualize this is stacked bar charts. In Figure 5.1 

one of the bar charts used in this experiment is shown. The data appears homogenous 

with a small amount of noise. These graphs can be a useful visualization. Figure 5.2 

shows a way this type of graph can be useful to visualize optimal previous time steps. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 

 

Homogeneity Visualization by Stacked Bar Charts 

This graph attempts to visualize the relative “sameness” of points with respect to one another 
by graphing the values of each of the types over time (represented by the bars). The sum of all 
the data values at all times is equal to 3 and the width of each color in a bar represents the 
amount of data made up by that type of plant. Through this, the relative fluctuations in the 
amount of a certain type of plant can be visualized by the width of its color band. 
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Figure 5.2 

Plot of Changes in the Data Set with Optimal Previous 
Time Step(s) Below 

*---------------------------* 
*-----------------------------------------* 
*--------------------------------------* 
*----------------------------------* 
*-------------------------------* 
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*---------------------* 
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*------------------------------* 
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10 
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2 

Value at Lower End of                           Value Being  
    Predicting Range                    Predicted 

This figure is an attempt to show any possible correlation between the optimal number of previous time 
steps and the percentage of the population made up by each of the three types (gold, red, blue). The left 
star shows the value at the lower end of the optimal number of previous time steps, while the star on 
the right shows the time step being predicted. The figure shows that predicting time steps from 12 to 17 
is best accomplished by using previous time steps with a lower value in the range of 5 or 6. Other time 
steps are less uniform. Looking at the chart above the lines, the values of the red, blue and gold are 
mostly uniform from 12 to 17 which agrees with the uniformity of their best predicting values. 
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Conclusion  

The goals of this research were to explore the stochasticity inherent in the modeling 

system in order to determine the size and number of plots and to develop a method to 

find the optimum number of previous time steps. Before we could do this we needed to 

replicate Samuel’s methods in Mathematica and test them on her data to determine if 

our replications were accurate. The results of these tests proved they were.  

Moving on to our goals we found that  Stochasticity was inherent in the use of 

individuals instead of proportions (stochasticity type 1) and the different Markov 

matrices estimated from different plots which were represented by set matrices 

(stochasticity type 2). This knowledge of the sources of stochasticity resulted in a 

method for determining the best number of individuals in a plot and number of plots. 

 For the second part of our research, we explored the homogeneity of Markov matrices 

in real data sets and experimented with data sets to see if we could develop a method of 

determining how many time steps should be included in the calculations of the Markov 

matrix calculated for the prediction of a certain time step. The method we developed 

enabled us to determine the best place to begin using previous time steps from in order 

to have a Markov matrix that gave the best prediction. Since in homogenous data, this 

time step should be the same in all cases, when the calculations revealed different 

starting points for a different time step to be predicted, it became a strong reason to believe 

that the data was non homogenous.  
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Further Research 

Now that the methods are generated, the next step is working with some new larger 

sets of ecological data in order to test and fine tune the model as well as discover new 

pieces of the design. In the next steps of the larger experiment, field testing will begin to 

gather more information about successional steps and how small changes in 

composition, environment, etc. affect those steps.  

We also hope to explore our results using standard deviation and standard error. We 

would also like to change the number of plots tested in the intersection of stochasticities 

graph to see how the change affects the intersection point. 
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