
1

© Narain Gehani
Introduction to Databases Slide 1

Introduction to Database
Systems

Narain Gehani

© Narain Gehani
Introduction to Databases Slide 2

CS 431
� Welcome
� Who should take this course
� Syllabus
� Book � copies / volunteer / $
� TA
� Your background
� If I go faster, I will have a review class if

you like

2

© Narain Gehani
Introduction to Databases Slide 3

Introduction
� What is a database?

� Any repository of data (paper file cabinets, Word files,
Excel spread sheets, database systems)

� Facilitates for storage, manipulation, retrieval,
persistence, concurrency, fast access

� Users of databases
� End users
� Database users
� Database designers
� Database administrators (DBAs)
� Application programmers
� Database system implementers

© Narain Gehani
Introduction to Databases Slide 4

Introduction (Contd.)
� Will teach you how database systems work, not

how database systems are implemented.
� Why the above?
� Focus on concepts & fundamentals on how to

use (relational) databases effectively.
� SQL � great for querying/manipulating relational

databases but not a full-fledged language
� Host language such as Java/C++ make up for

deficiencies � control structures, formatting,
networking, etc

3

© Narain Gehani
Introduction to Databases Slide 5

MySQL

� We will use MySQL
� �Open source� relational database
� Over 5 million installed systems

© Narain Gehani
Introduction to Databases Slide 6

Relational Database Model
� Relational database

� Data stored as tables
� Data is extracted by throwing away unwanted rows

and columns.
� Tables can be joined in the process of extracting data

� Relational databases have won the war between
competing database models
� Conceptual simplicity
� Separation of logical organization from physical

details
� Simple declarative language
� Sound theoretical underpinnings (Codd)

4

© Narain Gehani
Introduction to Databases Slide 7

Other Database Models

� Hierarchical
� Network
� Object-oriented (Ode Object Database)
� XML

© Narain Gehani
Introduction to Databases Slide 8

Hierarchical Databases

� Data is stored hierarchically with parent-
child relationships between data items at
adjacent levels � querying based on this.

� Consists of sets of records called record
types organized as nodes of a tree.

� Record types and records correspond to
the tables and rows in relational
databases.

5

© Narain Gehani
Introduction to Databases Slide 9

Hierarchical Databases (contd.)

� Customers is a record type � one record per
customer.

� Each customer record is associated with records
of types � Orders and Preferences.

� Each customer can have multiple orders &
preferences.

Customers

PreferencesOrders

© Narain Gehani
Introduction to Databases Slide 10

Network Databases
� Consists of a bunch of sets
� Set elements are called records.
� Sets and records correspond to the tables and rows in

relational databases.
� A record can belong to more than one set and this

defines a relationship.
� The network formed by these relationships is what gives

this database model its name.
� The network model eliminates the hierarchical limitation

of hierarchal databases.
� No restriction on the number & type of relationships

makes the database complex hard to understand.

6

© Narain Gehani
Introduction to Databases Slide 11

Object Databases
� Started appearing circa 1987 with the growing popularity of C++.
� Allow users to structure, retrieve, and update data in terms of

objects in the application domain.
� No �impedance� mismatch between the database & the application,

� no need to convert data from the application data model to the database
model & vice versa.

� The object database model, particularly the C++ model, does not
have the simplicity or the sound theoretical underpinning of the
relational database model.

� Object databases also have other disadvantages. E.g., there is no
formal definition of the semantics of the C++ or its object model.

� Nevertheless, object databases have had a significant impact &
object capabilities are being incorporated into relational databases.

© Narain Gehani
Introduction to Databases Slide 12

XML Databases
� The Extensible Markup Language (XML) is a

text markup language designed, circa 1996, for
specifying the syntax of data and electronic
documents [XML] such as Web pages. XML is
particularly useful for describing semi-structured
data. However, XML has proved to be so
versatile that it is now being used extensively to
describe the syntax and �semantics� of data in a
wide variety of domains such as ecommerce,
protocols that exchange data, etc.

7

© Narain Gehani
Introduction to Databases Slide 13

XML Databases (contd.)

Example
invoice stored
in a XML
database

© Narain Gehani
Introduction to Databases Slide 14

XML Datbases (contd.)
<Invoice>

<Number> 5785796 </Number>
<Date> 1/4/2004 </Date>
<Vendor>

<CompanyName> PC Inc. </CompanyName>
<Address>

<Number> 1100 </Number>
<Street> South Street </Street>
<City> Morristown </City>
<State> NJ </State>
<Zip> 07960 </Zip>

</Address>
</Vendor>

<Customer>
<First> Susan </First>
<Last> Witzel </Last>
<Address>

<Number> 32 </Number>
<Street> Broadway </Street>
<City> Hoboken </City>
<State> NJ </State>
<Zip> 07030 </Zip>

</Address>
</Customer>

�

8

© Narain Gehani
Introduction to Databases Slide 15

XML Datbases (contd.)
<Item>

<Number> 1 </Number>
<Quantity> 1 </Quantity>
<PC>

<Processor> Pentium 4 </Processor>
<Speed> 2 GHz </Speed>
<Memory> 1GB </Memory>
<Price> $1099.00 </Price>

</PC>
</Item>
<Item>

<Number> 2 </Number>
<Quantity> 1 </Quantity>
<Printer>

<Make> HP </Make>
<Model> 970Cxi </Model>
<Price> $399.00 </Price>

</Printer>
</Item>
<Summary>

<TotalCost> $1498.00 </TotalCost>
<Paid> 0.00 </Paid>
<BalanceDue> $1498.00 </BalanceDue>

</Summary>
</Invoice>

© Narain Gehani
Introduction to Databases Slide 16

XML Datbases (contd.)
� XML describes the data part of the invoice but not the formatting, which is done with

�style sheets� that are also written in XML
� XML databases are natural for storing & retrieving XML documents:

� invoices, product information, medical records, B2B transaction logs.
� XML documents can contain both data and metadata

� Relational databases are designed for storing data but not metadata.
� XML documents can be stored in a relational database but the database will not be able to

differentiate between data and metadata. Moreover, SQL will not understand XML.
� Storing XML documents in a relational database requires back & forth conversion �

significant overhead.
� XML databases

� will allow queries using XML concepts. In case of the invoice example, users will be able to
write queries using components such as customer name and items ordered.

� Locking, indexing, storage organization, etc. will be in terms of XML concepts leading to
faster queries as compared to queries relating to XML documents stored in relational
databases.

� XML databases are currently far from approaching the success of the relational
databases in terms of simplicity, efficiency, and, most importantly, acceptance.

9

© Narain Gehani
Introduction to Databases Slide 17

Interacting with a Database
Application or Single-User Mode

� The database runs on a workstation or a
PC as an application that is invoked every
time a user wants to use the database:

© Narain Gehani
Introduction to Databases Slide 18

Interacting with a Database
Client-Server Mode

� When running in the �client-server� mode, typically
multiple users can simultaneously interact with the
database. The server runs continuously waiting for
requests from clients (Ci) who come and go:

10

© Narain Gehani
Introduction to Databases Slide 19

Interacting with a Database
Client-Server Mode (as a backend)

� The database server can also operate behind an
application. Example scenario: users using a
browser client (Cij) to interact with a web server
which interacts with a database server:

© Narain Gehani
Introduction to Databases Slide 20

Under the Hood (Mechanics)

11

© Narain Gehani
Introduction to Databases Slide 21

Disk vs. Main Memory
� Typically, databases store data on disks

� bring data to memory only when needed
� write the data back to disk if it is changed.

� Since memory is much faster than disk, why not use memory?
� Disk storage is persistent unlike main memory which is volatile
� Disk storage is cheaper than main memory

� Items retrieved by the database from disk are stored in area of
memory, called the data buffer.
� Size of data buffer is typically much smaller than size of database

because only a portion of database is accessed to answer a query.
� If data needed to answer a query is larger than the buffer size, then

either the buffer size is increased or the data is brought to the buffer in
batches, each batch being processed & replaced by the next batch.

© Narain Gehani
Introduction to Databases Slide 22

Disk vs. Main Memory (contd.)
� Buffer Operation

� Read Query: If items needed for the query are not in the buffer they are
brought from disk and put in the buffer.

� Update Query: If the items to be updated are not in the buffer, they are
brought from disk and placed in the buffer. They are updated and then
written to disk (to make them persistent).

� Insert Query: Items to be inserted in the database are first inserted in
the buffer and then copied to disk.

� Delete Query: Items are deleted from the disk and also from the buffer,
if present in the buffer.

� After a data item in the buffer has been read or written to disk, it is
not automatically discarded. Only when the buffer gets full, items are
deleted to make space for new items.

� The bigger the buffer, the higher the probability that the data needed
by a query will be in the buffer. Consequently, the larger the data
buffer, faster the queries.
� Classic tradeoff of speed vs. memory.

12

© Narain Gehani
Introduction to Databases Slide 23

Disk vs. Main Memory (contd.)
Why Not Keep the Database in Memory?

� Since memory is getting cheap, one option is to make
the data buffer as large as the database. However,
database algorithms, in disk-based databases, have
been designed for storing data items on disk. They will
not make optimal use of such a buffer.

� To get maximal performance, database algorithms must
be specially designed for databases that fits into
memory. Such databases will be kept in main memory
from the beginning with a copy on disk for persistence.

� An example of a commercial main-memory database is
TimesTen (www.timesten.com).

© Narain Gehani
Introduction to Databases Slide 24

Everest Books Database
� Everest Books is a book seller that

� buys books from publishers and distributors and then
� sells books to customers.

� To support the information needs of its business,
Everest Books uses a database for
� tracking the books bought and sold,
� tracking payments,
� generating invoices, and
� generating a variety of analysis reports on demand.

13

© Narain Gehani
Introduction to Databases Slide 25

Everest Books Database (contd.)
Inovice

© Narain Gehani
Introduction to Databases Slide 26

Everest Books Database (contd.)
Sales Report

14

© Narain Gehani
Introduction to Databases Slide 27

Everest Books Database (contd.)
Database Design

1. Determine queries that are needed
2. Determine data that needs to be stored
3. Requirements reality check
4. Design

� Iterative process between requirements
and design

© Narain Gehani
Introduction to Databases Slide 28

Everest Books Database (contd.)
Queries

� Invoicing
� Invoice Generation
� Lookup old invoices

� Explicit Database Updates needed when
� more copies of existing books arrive,
� new books (not in the database) arrive,
� book prices change,
� making corrections,
� recording payments, etc.

� Lookups: Users should be able to
� access book information,
� look up information about their orders, etc.

� End Of Period Reports
� sales per book,
� total sales,
� total sales tax collected,
� total shipping charges,
� cash received per book,
� total cash received, etc.

15

© Narain Gehani
Introduction to Databases Slide 29

Everest Books Database (contd.)
Data to be Stored

� Book Data
� Customer Data
� Order Data

© Narain Gehani
Introduction to Databases Slide 30

Everest Books Database (contd.)
Specification Reality Check

� Besides the fact that nothing has been said about the user interface,
much information has been left unspecified in the requirements in
the book. For example:
� �etc.� has been used several times when specifying the data that needs

to be stored.
� The data format of the items is unspecified. For example, what exactly

is an ISBN, �?
� The report contents and formats are unspecified
� The number of users accessing the database simultaneously is

unspecified.
� The number of orders and queries expected is unspecified, etc.

� The design of the database will be affected by the specifics of the
above requirements. We will have to manage with an informal
specification.

� Fortunately, the informal and incomplete nature of the above
requirements specification also has a positive aspect � much
freedom in producing a final database design.

16

© Narain Gehani
Introduction to Databases Slide 31

Everest Books Database (contd.)
Functionality That Will Not Implemented To

Keep the Database Simple
� Database will not track some activities, e.g., it will not

� record the price Everest Books pays to buy books from publishers and
distributors

� handle disbursements
� receipts for invoice payments.

� Some information will not be recorded to reduce the number of
columns in the tables so that the tables can be displayed on a book
size page. E.g.,
� customer contact information

� No provision for discounts, different types of shipping, no shipping
rates table, etc.

� No restrictions on who can look at what data.
� Order shipping information will not be recorded. Changes to orders

should be entertained only if the order has not been shipped.
� The database will not be integrated with ecommerce facilities such

as a shopping cart and credit card authorization.

© Narain Gehani
Introduction to Databases Slide 32

Relational Databases
� A relational database, consists of relations (tables),

which are manipulated by
� cutting, selecting, joining, along with union, insertion, difference,

and deletion operations to extract, add, and delete data.
� The �schema� of is a logical description (meta data) of

the tables in the database, restrictions on the data, if
any, alert actions (triggers), and data structures
(indexes) specified for fast access.

� Relational databases are closely associated with the
SQL query language which is used for manipulating
relational databases.

17

© Narain Gehani
Introduction to Databases Slide 33

MySQL
� MySQL supports entry-level SQL-92 and is aiming to support the full SQL-

2003. MySQL also supports some non-standard SQL.
� Most databases support transactions which have many desirable properties

� grouping of multiple operations into one atomic action, multiple users can
manipulate the database simultaneously without interfering with each other,
etc.

� MySQL databases can have both transaction-safe & non-transaction-safe tables.
� Using transaction-safe tables means automatic recovery in case of failures,

grouping of multiple actions into one atomic action, concurrent users, etc.
� MySQL treats each operation on non-transaction-safe tables as atomic but

multiple operations cannot be grouped & treated as a single atomic operation.
� Fine for single-user databases but multiple simultaneous users can lead to an

inconsistent database.
� A front-end application, such as a web server, can ensure that multiple users are

serialized, that is, the one user at a time is allowed to manipulate the database.
� Databases that do not support transactions are typically much faster, use

less disk space and less memory.

© Narain Gehani
Introduction to Databases Slide 34

MySQL
Some Storage Engines

Clustered, fault-tolerant, memory-
based tablesNoNDBCLUSTER

Transactions & page-level lockingNoBDB

Transactions, row-level locking, and
foreign keys YesInnoDB

Stored in memory, useful for
temporary tablesYesMEMORY

Alias for MEMORYYesHEAP
Default engine – great performanceDefaultMyISAM

CommentSupportEngine

MySQL databases can to use different storage engines, each with different
characteristics.

18

© Narain Gehani
Introduction to Databases Slide 35

MySQL
Client-Server

� In the �client-server� mode, MySQL runs as a server application
− arbitrary number of users (Ui) called clients:

� Each user runs a MySQL client in a Windows command
prompt window

� Clients manipulate a MySQL database by sending SQL
commands to the server, which executes the requests, &
sends the command status and results back to the client.

© Narain Gehani
Introduction to Databases Slide 36

MySQL
Embedded Server

� For standalone applications with their own embedded database
MySQL provides a library that allows a MySQL database server
to be embedded in the application.
� ideal for applications where a database is needed �behind the

scenes� but where users do not need to directly interact with the
database.

19

© Narain Gehani
Introduction to Databases Slide 37

Firing up MySQL
� Starting the Database Server

� The MySQL database server is started in a command prompt window by typing
C> mysqld

Assumption: Windows PATH environment variable has been modified to include
� MySQL�.

� Starting the Database Client
� The client is started in a Windows command prompt window by typing

C> mysql
� Execution of the above command generates the following prompt

mysql>
provided the MySQL server mysqld has been started.

� A user can now enter SQL queries which are sent by the client to the MySQL
server.

� Stopping the Client and Server
� A MySQL client can be terminated by typing quit or \q, e.g.,

mysql> quit
� The MySQL database server can be terminated with the command

C> mysqladmin shutdown
in a different command prompt window.

© Narain Gehani
Introduction to Databases Slide 38

Creating the Everest Books
(empty) Database

� Create a new and empty database for Everest Books
and make it the default database:
mysql> CREATE DATABASE Everest;
mysql> USE Everest;

� To see all the databases being managed by the MySQL
database server:
mysql> SHOW DATABASES;

� The following command shows all the tables in the
default database:
mysql> SHOW TABLES;

� Incidentally, as you can see, a semicolon must also
terminate MySQL commands (and SQL queries), when
entered at the MySQL client.

20

© Narain Gehani
Introduction to Databases Slide 39

Using the Everest Books
Database

� Assuming that database has been created & populated:
mysql> SELECT Title

-> FROM Books;
� Title is a column of table Books (coming up).
� The MySQL server returns

� the result (as a table), the number of rows, execution time.
� as follows:

+---------------+
| Title |
+---------------+
| Born Confused |
| White Moghuls |
| Java |
| Bell Labs |
+---------------+
4 rows in set (0.02 sec)
mysql>

© Narain Gehani
Introduction to Databases Slide 40

Relational Databases
Organization

� Relational databases are �flat�. But, there is hierarchy in
the database organization:

In MySQL, the command
mysql> show databases;

displays database names, in effect, the catalog.

21

© Narain Gehani
Introduction to Databases Slide 41

Tables
Customer Table

© Narain Gehani
Introduction to Databases Slide 42

Creating & Using the Database
Creating Tables (the Customer Table)

CREATE TABLE Customers(
Id INT(8) PRIMARY KEY,
Company VARCHAR(30),
First VARCHAR(30),
Last VARCHAR(30),
Street VARCHAR(50),
City VARCHAR(30),
State2 CHAR(2),
Zip CHAR(5),
Tel CHAR(10)

) ENGINE = InnoDB;

22

© Narain Gehani
Introduction to Databases Slide 43

Creating & Using the Database
Populating Tables (the Customer Table)

INSERT INTO Customers
VALUES(1, ′Acme′, ′Tom′,′Jones′,

′25 Scenic Road′, ′Hilltop′,
′NJ′, ′18901′, ′9189088919′);

© Narain Gehani
Introduction to Databases Slide 44

Creating & Using the Database
Queries

� Lists all the rows of the Customers table:
SELECT *
FROM Customers;

� The above query unconditionally selects all the rows in the
Customers table.

� If the table is large, we may not want to print the whole table. E.g., to
list only the rows for customers in NJ:
SELECT *
FROM Customers
WHERE State2 = ′NJ′;

23

© Narain Gehani
Introduction to Databases Slide 45

Creating & Using the Database
Queries (contd.)

� Irrelevant columns can be left out by explicitly
listing only columns of interest:

SELECT Company, First, Last, Tel
FROM Customers
WHERE State2 = ′NJ′;

© Narain Gehani
Introduction to Databases Slide 46

Steps in Designing the Database

1. Problem or requirements definition.
2. Determining the data that needs to be stored in

the database.
3. Deciding what tables will contain what data.
− The tables should reflect the problem structure.
− Data should be stored only once as far as possible

because data redundancy will require multiple
updates and can lead to data inconsistency.

4. Deciding upon data properties based on the
requirements.

5. Deciding what queries have to be
implemented.

24

© Narain Gehani
Introduction to Databases Slide 47

Everest Books Tables
Descriptions

© Narain Gehani
Introduction to Databases Slide 48

Everest Books Tables
Comments On Orders & OrderInfo Tables

� Problem: In the Orders table, it would be nice to record
each order as a single row.
� Unfortunately, orders can have variable number of books !

variable number of columns.
� Tables cannot have a variable number of columns.

� Possible Solution
� Define the table to have a large number of columns, allowing

most orders to fit in one row.
� Larger orders will be have to be placed and filled as multiple

orders.
� In many cases, space will be wasted.

� The above solution is not pleasing.
� Multiple orders for one logical order is not good because it will

require reentering shipping and other information for each of the
multiple orders.

� A large book limit is wasteful of storage.

25

© Narain Gehani
Introduction to Databases Slide 49

Everest Books Tables
Comments On Orders & OrderInfo Tables (contd.)

Solution Used Typically
� Shunt the variable items to another table whose

rows are used for the variable number of items �
one per row. An id is used to identify the multiple
rows in the new table with a single row in the
original table.
� We will define a new table OrderInfo that will have

a row for each book in an order, and each such row
will have an id that associates it with the order in the
Orders.

© Narain Gehani
Introduction to Databases Slide 50

Manipulating the Database
� The relational database model defines an algebra for

manipulating tables as mathematical objects.
� Not a practical language for manipulating a real world database.
� For example, the relational algebra does not provide facilities for

creating tables and updating tables.
� The SQL database language, based on the relational

algebra, is practical for manipulating databases.
� Before we take a close look at SQL, we will look at the

relational algebra
� shows the beauty of relational databases
� helps understand important relational database concepts.

26

© Narain Gehani
Introduction to Databases Slide 51

Example Tables

� Sample data coming up
� Small tables both in number of rows and

columns
� presentation purpose
� can be easily extended

© Narain Gehani
Introduction to Databases Slide 52

Everest Book Tables
Books

27

© Narain Gehani
Introduction to Databases Slide 53

Everest Book Tables
Customers

© Narain Gehani
Introduction to Databases Slide 54

Everest Book Tables
Orders

28

© Narain Gehani
Introduction to Databases Slide 55

Everest Book Tables
OrderInfo

© Narain Gehani
Introduction to Databases Slide 56

Some Table Characteristics
� Tables (relations, to be precise) can be treated as mathematical objects.

� Tables are sets of rows.
� Values in each column are of the same basic (atomic) type.
� No duplicate rows in the relational algebra. SQL query results can have duplicate

rows � these can optionally be eliminated.
� Each row in a table can be uniquely identified using a subset of column

values called the key
� This subset can be the whole row since each row in a table is unique since

duplicates are not allowed.
� A multi-column key is called a composite key.
� A table can have many keys, but only one can be selected as the primary key. A

primary key value cannot be a null value or, in case of a composite key, cannot
contain null values.

� A key whose role is not going to change over time, and is likely to remain a key
over time is a good candidate for being selected as the primary key.

� Database systems take advantage of key information, e.g., rows are ordered
according to the primary key to support fast searches based on primary key.

29

© Narain Gehani
Introduction to Databases Slide 57

Some Table Characteristics
Column Names

� Columns in different tables can have the same name. To avoid ambiguity,
such column names can be prefixed with their table names:

tableName.columnName

� Using the same column name in different tables does not imply that the
columns or of the same type and/or that they have the same semantics.

� Column Qty in Books represents the number of copies of a book in stock while
in OrderInfo it specifies the number of copies ordered by a customer.

� Column Price in Books represents the current price of book but in OrderInfo
represents the price of the book when the order was placed.

� Different columns names can represent the same semantic value while
identical column names can refer to semantically different items. Columns in
different tables may have the same name for reasons such as

� convenience, and
� tables were defined by different persons.

© Narain Gehani
Introduction to Databases Slide 58

Relational Algebra

� Mathematical foundation
� Closed under its operations
� Not a full fledged programming language
� SQL based on this (not a full fledged

programming language)

30

© Narain Gehani
Introduction to Databases Slide 59

Relational Algebra (contd.)

© Narain Gehani
Introduction to Databases Slide 60

Relational Algebra
Projection

� The projection operator π is used to extract columns of
interest from a table by cutting out the other columns

π Company, First, Last, Tel(Customers)

yields

31

© Narain Gehani
Introduction to Databases Slide 61

Relational Algebra
Projection (contd.)

� General form
π column-names(table)

� Unlike in SQL, duplicate rows are automatically eliminated
π State2(Customers)

for example,

© Narain Gehani
Introduction to Databases Slide 62

Relational Algebra
Projection (contd.)

Should duplicates be automatically
eliminated?

32

© Narain Gehani
Introduction to Databases Slide 63

Relational Algebra
Selection

� The selection operator σ is used to select
or pick only those rows from a table that
satisfy the specified criteria. E.g.:

σState2=NJ(Customers)

© Narain Gehani
Introduction to Databases Slide 64

Relational Algebra
Selection (contd.)

� General Form
σselection-condition(table)

� Selection condition is a Boolean condition
� Closed under algebra � nested operations

πCompany,First,Last,Tel(σState2=NJ(Customers))

33

© Narain Gehani
Introduction to Databases Slide 65

Relational Algebra
Nested Operations: Selection & Projection

� Better to do selection first and then
projection

� Why?
� We can in many cases do the projection

first and then the selection.
� However, this will not work in the above

example because if we first delete the
State2 column, then it will not be possible to
do the selection since there will be no state
values left on which to base the selection.

© Narain Gehani
Introduction to Databases Slide 66

Relational Algebra
Cross Product

� The cross product and join operators are used to paste
together two tables. The cross product

R × S
produces a new table in which each row of R is
appended with each row of S. Thus if R has n rows
and S has m rows, the result will have n × m rows. The
number of columns in the result equals the number in
R plus the number in S.

� The cross product, when used in isolation, is generally
not meaningful. For example,

Books × OrderInfo
will produce a table with 32 rows (based on our
example tables) with most rows not being meaningful.

� Why?

34

© Narain Gehani
Introduction to Databases Slide 67

Relational Algebra
Cross Product (contd.)

� The following cross product is meaningful because
only matching ISBN rows appear pasted in the result:
σOrderInfo.ISBN = Books.ISBN(Books × OrderInfo)

© Narain Gehani
Introduction to Databases Slide 68

Relational Algebra
Join

� The combination of a selection operation with the cross product
operation is defined as an operation in its own right, the join (or
the inner join) operation. A join is basically a pasting of related
rows in two tables, the relationship being defined by a Boolean
condition. The join condition involves comparing values in the
rows of the two tables and pasting together rows that satisfy the
condition. The join operation is denoted by the !" operator and
has the form

� R !" join-condition S
� The rows in the join table, the result of the join, are formed by

pasting the rows of the tables R and S that satisfy the join-
condition. Each row in the first relation, R, is compared to the
each row of the second relation S All possible pair combinations
of rows in R and S are considered to determine if the join
condition is satisfied. Pairs of rows that satisfy the condition are
pasted together and included in the join table. The total number of
columns in the join table is sum of the number of columns in
tables R and S.

35

© Narain Gehani
Introduction to Databases Slide 69

Relational Algebra
Join (contd.)

� To illustrate the use of the join operator,
suppose we want a table that lists the book
titles along with the number of copies sold:

© Narain Gehani
Introduction to Databases Slide 70

Relational Algebra
Join (contd.)

� The data is 2 tables:
� The Info about books sold is in OrderInfo
� But this is in ISBNs. Titles we have to

extract from Books
� We have to join these 2 tables together

andn then extract the info
� We also need to compute the sums � but we

cannot do is in the relational algebra. We
can do this in SQL.

36

© Narain Gehani
Introduction to Databases Slide 71

Relational Algebra
Join (contd.)

OrderInfo !" OrderInfo.ISBN = Books.ISBN Books

© Narain Gehani
Introduction to Databases Slide 72

Relational Algebra
Join (contd.)

� Many columns in the previous table are
irrelevant. We will use projection:

π OrderId, Title, OrderInfo.Qty (OrderInfo !"

OrderInfo.ISBN = Books.ISBN Books)

37

© Narain Gehani
Introduction to Databases Slide 73

Relational Algebra
EquiJoin + Natural Join

EquiJoin
� An equijoin is a join operation that joins rows (of two

tables) with equal values for a common set of columns.
Leads to one or more pairs of columns with identical
values.

Natural Join
� A natural join is the same as equijoin with the following

exception. The join is performed on columns with the
same name in the two tables and only one of each
identical pair of columns is retained. Notation example:

OrderInfo !" Books

© Narain Gehani
Introduction to Databases Slide 74

Relational Algebra
Set Operations

� Union
� Intersection
� Difference
� etc.

38

© Narain Gehani
Introduction to Databases Slide 75

Database Design
� Designing a database is critical to the correct and efficient

functioning of a database.
� In a relational database, this means defining the tables and the

information that should be stored in them.
� It may be also appropriate to define data structures, called indexes, to

facilitate fast execution of queries.
� The design of the database must reflect user needs.
� A database designer must understand how the database will be

used.
� The database designer must determine items such as

� the data that needs to be stored,
� the operations that will be performed on the stored data,
� the frequency of the operations that will be performed,
� the constraints that are to be imposed on the data, etc.

� Database modeling tools are often used to capture database
requirements and the resulting database model then used to design
the database.

© Narain Gehani
Introduction to Databases Slide 76

ER Model
� A popular model used for modeling databases is the Entity-Relationship

(ER) model
� Data is described in terms of �entities�, �entity sets,� �attributes,� and

�relationships.�.
� An entity is an object that can be distinguished from other objects.

� Examples: a book is an entity, a customer is an entity.
� Similar entities form entity sets.

� Examples: Books and Customers are entity sets if they represent a set of
books and customers, respectively.

� Entities are characterized by properties called attributes.
� the price of a book is an attribute of the entity book
� An entity must have one or more attributes.
� All entities in an entity set have the same attributes.

� Attributes have values associated with them.
� Example: attribute price of a book may have the value $29.95.
� Different attribute values distinguish similar entitles from each other.
� Many entities can have the same attribute value.

� Values of a subset of these attributes are used to distinguish entities in an
entity set from each other.

� This set of attributes is called the key of the entity set.

39

© Narain Gehani
Introduction to Databases Slide 77

ER Model -- Relationships
� Relationship

� A relationship instance specifies an association between entities.
� A relationship set specifies a relationship between two entity sets.
� We will informally use the term relationship to refer to both of the above
� A relationship maps or relates entities in one entity set to entities in another entity

set.
� Types of relationships:

� One-to-one
� One-to-many
� Many-to-one
� Many-to-many

� Example: relationship Buy between entity sets Customers and Books is
many-to-many.

� Relationships can also have attributes.
� They are used to give information about the relationship.
� For example, the PurchaseDate attribute in the Buy relationship can be used

to describe when a book was purchased.
� Each book identified by the relationship Buy will have its own PurchaseDate

value.

© Narain Gehani
Introduction to Databases Slide 78

ER Model
Graphical Representation

� The ER model allows the database design to be
represented graphically:
� An entity set is represented by a rectangle.
� A relationship is represented by a diamond with lines

connecting it to the two entity sets that it relates.
� A �many� relationship is indicated by a �N� next to the line.
� A �one� relationship is indicated by a �1� next to the line.

� An attribute is represented by an oval connected by a
solid line to the entity set rectangle or to the
relationship diamond.

40

© Narain Gehani
Introduction to Databases Slide 79

ER Model (Contd.)
� As an example, the following ER diagram models the fact that a

customer can buy many books and many customers can buy the
same book.
� A deeper look into the operations of the Everest Books will lead us to

modeling book buying as a 2-step process with each customer placing
an order to buy books and Everest Books shipping books specified in
the order.

© Narain Gehani
Introduction to Databases Slide 80

Modeling Everest Books’ Database
� We will now develop a reasonably complete ER model

for the Everest Books database.
� By understanding data needs of Everest Books, one can

conclude that

Everest Books’ business revolves around
customers placing orders for books and
Everest books shipping the books specified
in the orders.

� This leads us to model the Everest Books database as
consisting of
� three entity sets, Customers, Orders, and Books, and
� two relationships, PlaceOrder between Customers and
Orders, and OrderInfo between Orders and Books.

41

© Narain Gehani
Introduction to Databases Slide 81

Customers Entity Set
� Everest Books database needs to store the customer�s company, name,

and contact information. This leads to the following attributes:
� Company,
� Last (last name),
� First (first name),
� Street,
� City,
� State,
� Zip, and
� Tel (telephone number).

� Note that the name and address of a customer should be stored in
component form to facilitate querying and report generation.

� The attributes listed above may not uniquely identify a customer
� several customers can belong the same company,
� several customers can have the same name,
� a family can share an address.

� Consequently, we will add an attribute
� Id (unique customer id for each customer)

© Narain Gehani
Introduction to Databases Slide 82

Orders Entity Set
� Entity set Orders needs to have the following attributes:

� OrderId (a unique id that identifies each order),
� CustomerId (stores customer Id values),
� OrderDate,
� ShipDate,
� Shipping (shipping charge), and
� SalesTax.

� The above attributes do not address the books in each order.
� An order can have a variable number of books.
� Specifying a variable number of attributes is not possible
� An one-to-many relationship between Orders and Books will allow us

to specify the books in each order.
� Information about the books ordered will be stored as attribute values of

the OrderInfo relationship that will map each order in Orders to the
books in the order, the books being members of the entity set Books.

� There will be one set of attribute values for each book in the order.
� Order information in a database designed for commercial use will

include other information such as purchase order number.

42

© Narain Gehani
Introduction to Databases Slide 83

Books Entity Set
� Information to be stored about each book leads us to the attributes

� ISBN (unique value),
� Title,
� Price (current price of the book),
� Authors (comma separated list of last names),
� PubDate (publishing date), and
� Qty (quantity of each book in stock).

� Better to list each author individually, author�s first & last names
separate.
� Will facilitate searches and report generation.

� Also, a book can have a variable number authors.
� As mentioned earlier, specifying a variable number of attributes is not

possible.
� Recording information about a variable number of authors can be

modeled as a one-to-many relationship between Books and a new
AuthorNames entity set.

� To keep the example succinct, we will store author last names in a
comma separated list.

© Narain Gehani
Introduction to Databases Slide 84

Relationships
� PlaceOrder

� The relationship PlaceOrder between the entity sets
Customers and Orders is a one-to-many
relationship

� A customer can place multiple orders, but an order
can be associated with only one customer.

� No attributes needed
� OrderInfo

� The relationship OrderInfo between entity sets
Orders and Books is a many-to-many relationship.
An order can have multiple books, and a book can be
in multiple orders.

� Needs attributes to record the information about the
books in an order.

43

© Narain Gehani
Introduction to Databases Slide 85

Everest Books’ Database Model

The key attributes in the
three entity sets are
identified by shaded ovals.

© Narain Gehani
Introduction to Databases Slide 86

ER Model ! Relational DB
� The ER model shown above captures the

requirements of the Everest Books
database system.

� The next step is to create a relational
database schema that reflects this ER
model
� specify and create the tables

44

© Narain Gehani
Introduction to Databases Slide 87

Entity Sets ! Tables
Attributes ! Columns

� Each entity set in the ER model is represented
by a table in a relational database.
� Entity sets Customers, Orders, and Books are

represented as tables
� Attributes become columns

� Values of columns Id, OrderId, and ISBN uniquely
identify members of the entity sets Customers,
Orders, and Books, respectively

� Consequently, they become the key columns

© Narain Gehani
Introduction to Databases Slide 88

Relationships ! Tables
Attributes ! Columns

� Each relationship is also represented by a table.
� A relationship table includes the key columns of

the two entity set tables it relates.
� Relationship attributes become columns of the

relationship table.

45

© Narain Gehani
Introduction to Databases Slide 89

Relationships ! Tables (contd.)
� Relationship OrderInfo links the entity sets Orders

and Books.
� Attributes OrderId and ISBN uniquely identify members

of the entity sets Orders and Books, respectively.
� These two attributes, along with the other attributes, become

columns in the relationship table OrderInfo

© Narain Gehani
Introduction to Databases Slide 90

Relationships ! Tables (contd.)
� PlaceOrder relationship table will have columns Id

and OrderId to enable mapping of customers to orders.
� Given a customer id, we can determine the ids of the orders

placed by the customer.

� Since the customer id has been included in the entity set
Orders, there is no need for the table PlaceOrder.

� It is possible to eliminate a relationship table by storing
the relationship information in one of the tables of being
related.
� In case of one-to-many or one-to-one relationships, this can be

done without duplicating data

46

© Narain Gehani
Introduction to Databases Slide 91

Ad Hoc Database Design
� A database can be designed informally

using ad hoc techniques but this can get
challenging when the database is
complex.

� As an example of ad hoc design, assume
that we start off by storing all the data in
one table.
� Such a table is called the universal table (or

relation):

© Narain Gehani
Introduction to Databases Slide 92

Universal Table

47

© Narain Gehani
Introduction to Databases Slide 93

Universal Table (contd.)
� Instead of 4 tables, we have 1 table
� Advantages

� Simplicity of schema
� No joins, which are expensive

� Disadvantages
� Relationships between columns are hard to

understand.
� Lots of columns, some not needed for each row �

wasted space
� Large table, will require lot of disk accesses
� Data redundancy
� Less concurrency

© Narain Gehani
Introduction to Databases Slide 94

Ad Hoc Database Design (contd.)
� Seeing many disadvantages of a universal table, how do we partition data

into multiple tables?
� Seems reasonable to keep book data in a separate table, say Books.
� The rest of the data can be stored as follows:

1. Customer and order information are stored in one table and order details in a
separate table.

2. Order information and order details are stored in one table, and customer
information in a separate table.

3. Customer information, order information, and order details are kept in separate
tables (as shown earlier).

� Assume we start with option 2 � order information in OrderWithDetails.

48

© Narain Gehani
Introduction to Databases Slide 95

Ad Hoc Database Design (contd.)
� OrdersWithDetails can handle only orders with at most 4

different books.
� This arbitrary design limit is imposed because a table cannot have a

variable number of columns.
� Table OrdersWithDetails wastes storage when less than 4 books

are ordered.
� A table cannot have a variable number of columns but can have a

variable number of rows.
� A separate table can be therefore be used to store information about a

variable number of books � ISBNs, the number of copies, and prices.
� To eliminate above problems, a database designer may want to split

table OrdersWithDetails into multiple tables.
� Note that in such a scenario, joins will be required to retrieve information

about all the books in an order.
� Splitting OrdersWithDetails into two tables leads us back to our

original tables Orders and OrderInfo.

© Narain Gehani
Introduction to Databases Slide 96

Normal Forms
� Data normalization is the decomposition of tables into

smaller tables to make databases efficient by
� keeping logically related data in separate tables, and
� eliminating redundancy.

� Normalized tables
� facilitate the correct and consistent modification of data.
� lead to update efficiency.

� Several normal forms of tables have been proposed.
� They form a linear hierarchy with each normal form building

upon the previous one.
� We will just discuss the first three normal forms.

49

© Narain Gehani
Introduction to Databases Slide 97

Normal Forms (contd.)
� A database with tables in third normal form (3NF) has desired

properties:
� ensuring that logically separate data is in separate tables
� eliminating redundancy.

� Ensuring that the database design is good from the start is critical.
� Hard to make changes later without serious consequences such as

rewriting applications.
� Table normalization rules are guidelines for good database design.

� At times it may be appropriate to deviate from these guidelines to
improve database performance.

� E.g., normalization typically requires splitting a table into multiple tables
as a result of which queries may require joins.

� Joins can be expensive.
� If the majority of the queries require joins, then consider using a non-

normalized database but be careful to avoid inconsistencies by
ensuring, e.g., that all duplicate items are updated.

© Narain Gehani
Introduction to Databases Slide 98

First Normal Form
Tables in the first normal form (1NF):

All columns must contain
atomic data type values

Table Interpreter (below) is not in 1NF:

50

© Narain Gehani
Introduction to Databases Slide 99

First Normal Form (contd.)
� The previous version of the Interpreter table

is not in 1NF because column Languages
consists of a repeating group.

� We can transform Interpreter to 1NF by
keeping each language a separate column.

© Narain Gehani
Introduction to Databases Slide 100

First Normal Form (contd.)
� Although Interpreter is now in 1NF, the number of languages

that can be associated with an interpreter is four.
� Space is wasted, if an interpreter has less than four language skills.
� To avoid this problem, we can split the table into two tables � a

revised Interpreter table

and a new table Languages:

51

© Narain Gehani
Introduction to Databases Slide 101

First Normal Form (contd.)
Languages:

© Narain Gehani
Introduction to Databases Slide 102

First Normal Form (contd.)
� Splitting the Interpreter table (2nd version)

into two ensures that the new tables are in 1NF,
but now a join will be required for some queries.

E.g., list interpreters with Spanish skills:

πFirstName, LastName, Language

(σLanguage=Spanish (Interpreter !" Languages))

52

© Narain Gehani
Introduction to Databases Slide 103

Second Normal Form
� Tables in the second normal form (2NF) satisfy the

following property

The table must be in 1NF and, in addition, all non key
attributes must be dependent on each candidate key

� Table Books, which we saw earlier, is in 2NF:

© Narain Gehani
Introduction to Databases Slide 104

Second Normal Form (contd.)
� Suppose table Books contained a non-key column
#BooksWritten listing the number of books written by
the authors.

� #BooksWritten depends upon the non-key column
Authors but not on the key ISBN. This version of
Books table (below) will not be in 2NF.

� A 1NF table is converted to 2NF by removing all columns
that are not dependent on the key columns. These other
columns go into another table.

53

© Narain Gehani
Introduction to Databases Slide 105

Second Normal Form (contd.)
� A 1NF table is converted to 2NF by removing all

columns that are not dependent on the key
columns. These other columns go into another
table.

� Note that column Authors is the atomic type
VARCHAR(50) � string type with maximum of 50
characters.

© Narain Gehani
Introduction to Databases Slide 106

Third Normal Form
� Tables in the third normal form (3NF) satisfy the

following property:

The table must be in 2NF and, in addition, no non-key
column determines another non-key column.

� Suppose the Books table contained another column
listing a 20% discounted price for Premium Customers.

54

© Narain Gehani
Introduction to Databases Slide 107

Third Normal Form (contd.)
� The non-key columns Price and pPrice determine

each other. This version of the Books table (below) is
thus not in 3NF.

� A 2NF table is converted to 3NF by removing one or
more non-key columns so that it does not contain any
non-key columns whose values are determined by other
non-key columns.

© Narain Gehani
Introduction to Databases Slide 108

SQL
� Standardized declarative programming language designed for

interacting with relational databases.
� Expressive programming language
� Much database interaction can be done in one statement.
� Provides facilities for creating the database, adding and changing

information in the database, querying and viewing the information in the
database, and managing information.

� SQL is a set-oriented database query language.
� Based on relational algebra, which treats tables as mathematical

objects.
� Practical incarnation of the relational algebra.

� SQL provides facilities other than those for manipulating tables such
as
� support for database creation and administration
� concurrency control to support simultaneously multiple users
� security, etc

� Most SQL statements return a table as their result allowing these
SQL statements to be used wherever a table can be specified.

55

© Narain Gehani
Introduction to Databases Slide 109

SQL (contd.)
� Relational algebra views a relation as a set of tuples

(rows).
� No duplicate rows are allowed.

� SQL views relations as tables
� Allows duplicate rows for practical reasons in

� a table (but not in a table with a primary key because that will violate
the definition of a primary key), and

� a query result
� For example, counting the number of customers by projecting

the Customer relation on the state column and then counting
the number of customers will yield different results based on
whether or not duplicates are allowed.

� Duplicates can be thrown away in SQL by using the DISTINCT
clause in a SELECT query.

� We have been informally using relation and table
interchangeably.
� Despite this difference, we will keep doing so.

© Narain Gehani
Introduction to Databases Slide 110

SQL (contd.)
SQL consists of three parts:
� Data Definition Language (DDL): Provides

facilities for defining the database structure,
such as tables, and for controlling the database.

� Data Manipulation Language (DML): Provides
facilities for interacting with the database

� Data Control Language: Provides facilities for
managing the database. Typically these deal
with creating views and indexes, security,
concurrency control, and transactions.

56

© Narain Gehani
Introduction to Databases Slide 111

SQL Basics
� One language for both data definition and data manipulation (and

managing the database).
� Each data manipulation operation takes one or more tables as

operands.
� Each query returns a table as its result which can be used with other

operations.
� Case insensitive.
� Comment lines in MySQL begin with #. Or they begin with /* and

are terminated by */. Standard SQL uses -- for comment lines.
� Database objects such as databases, tables, and columns are

identified using identifiers (names) � there is one exception rows are
identified using unique values, i.e.,keys. An identifier is a sequence
of letters and digits that must begin with a letter.
� Names may or not may be case sensitive depending upon the

underlying operating system. Safe to assume that names are case
insensitive.

© Narain Gehani
Introduction to Databases Slide 112

SQL Column Types

57

© Narain Gehani
Introduction to Databases Slide 113

SQL– Strings

© Narain Gehani
Introduction to Databases Slide 114

SQL Operators

� BETWEEN min AND max
� string LIKE pattern-string
� string NOT LIKE pattern-string

� % matches substrings and _ matches arbitrary characters.

58

© Narain Gehani
Introduction to Databases Slide 115

SQL
Data Definition Language

� The data definition language provides
facilities for

� creating and deleting databases,
� creating, deleting, and modifying tables, and
� creating and deleting views, etc.

� Data definition language commands are
commands of the form:

Action DataItem Details

© Narain Gehani
Introduction to Databases Slide 116

MySQL
� Tables reside in a database object. A MySQL

server handles many databases, each with its
own schema (tables):

59

© Narain Gehani
Introduction to Databases Slide 117

SQL
Database Creation

1. CREATE DATABASE databaseName;
2. CREATE DATABASE IF NOT EXISTS databaseName;

mysql> CREATE DATABASE everest;
ERROR 1007 (HY000): Can't create database

'everest'; database exists
mysql> CREATE DATABASE IF NOT EXISTS NewDB;
Query OK, 1 row affected (0.03 sec)
mysql> CREATE DATABASE IF NOT EXISTS NewDB;
Query OK, 0 rows affected (0.01 sec)

© Narain Gehani
Introduction to Databases Slide 118

SQL
Database Deletion / Specifying Default

� DROP DATABASE databaseName;

mysql> DROP DATABASE NewDB;
Query OK, 1 row affected (0.73 sec)

� USE databaseName;

mysql> USE everest;
Database changed

60

© Narain Gehani
Introduction to Databases Slide 119

SQL
Information About the Database

mysql> SHOW TABLES;

+--------------------+
| Tables_in_everest |
+--------------------+
| books |
| customers |
| orderinfo |
| orders |
+--------------------+
4 rows in set (0.01 sec)
mysql>

© Narain Gehani
Introduction to Databases Slide 120

SQL
Creating Tables

CREATE TABLE tableName (
one or more column definitions
zero or more column properties

) ENGINE = InnoDB;

� Specifying table type as InnoDB is a MySQL (not SQL)
feature needed for transaction-safe tables.

� Each column definition has the form

columnName type properties

� Properties involving more than one column are specified
separately from the column definition.

61

© Narain Gehani
Introduction to Databases Slide 121

SQL
Creating Tables Example

CREATE TABLE Books (
ISBN CHAR(10) PRIMARY KEY,
Title VARCHAR(50),
Price DECIMAL(5,2),
Authors VARCHAR(50),
Pages INT,
PubDate YEAR(4),
Qty INT

) ENGINE = InnoDB;

� MySQL uses, by default, the MyISAM storage engine
which is efficient in storage but not transaction-safe.

© Narain Gehani
Introduction to Databases Slide 122

SQL
Table Description

mysql> DESCRIBE Books;

62

© Narain Gehani
Introduction to Databases Slide 123

SQL
Inserting Data In Tables

INSERT INTO Books
VALUES(′0929306279′, ′Bell Labs′, 29.95,

′Gehani′, 269, ′2003′, 121);
INSERT INTO Books
VALUES(′0929306260′, ′Java′, 49.95,

′Sahni & Kumar′, 465, ′2003′, 35);
INSERT INTO Books
VALUES(′0670031844′, ′White Moghuls′,

34.95, ′Dalrymple′, 459, ′2003′, 78);
INSERT INTO Books
VALUES(′0439357624′, ′Born Confused′,

16.95, ′Hidier′, 432, ′2002′, 11);

© Narain Gehani
Introduction to Databases Slide 124

SQL
Table – After Data is Inserted

63

© Narain Gehani
Introduction to Databases Slide 125

SQL
Table Definition – Customers

CREATE TABLE Customers(
Id INT(8) PRIMARY KEY,
Company VARCHAR(30),
First VARCHAR(30),
Last VARCHAR(30),
Street VARCHAR(50),
City VARCHAR(30),
State2 CHAR(2),
Zip CHAR(5),
Tel CHAR(10)

) ENGINE = InnoDB;

© Narain Gehani
Introduction to Databases Slide 126

SQL
Table Definition (Contd.)

CREATE TABLE Orders (
OrderId INT(8) PRIMARY KEY,
CustomerId INT(8),
OrderDate DATE,
ShipDate DATE,
Shipping DECIMAL(5,2),
SalesTax FLOAT

) ENGINE = InnoDB;

64

© Narain Gehani
Introduction to Databases Slide 127

SQL
Table Definition

CREATE TABLE OrderInfo (
OrderId INT(8),
ISBN CHAR(10),
Qty INT,
Price DECIMAL(5,2)

) ENGINE = InnoDB;

© Narain Gehani
Introduction to Databases Slide 128

SQL
Column Properties

� In addition to the column type, SQL allows users
to specify other column properties.
� Default Values
� Key Specification
� Constraints
� Triggers

Default Values
DEFAULT default-value

� Exception � primary key columns cannot have
default values.

65

© Narain Gehani
Introduction to Databases Slide 129

SQL
Column Property – Keys

© Narain Gehani
Introduction to Databases Slide 130

SQL
Column Property – Keys (contd.)

Primary Key
� Single Column or Multiple Columns

PRIMARY KEY
or

PRIMARY KEY(col1, col2, �)

Secondary Key or Unique
� Single Column or Multiple Columns

UNIQUE
or
UNIQUE(col1, col2, �)

66

© Narain Gehani
Introduction to Databases Slide 131

SQL
Column Property – Constraints

Constraints specify restrictions on values that can be
stored

� Required Values
� A column (field) value can be required when data (a row) is

inserted or updated with the property

NOT NULL

By default, field values can be omitted (except the primary key).
� Check Constraint

� Ensures that the values inserted in a table satisfy a specified
condition:

CHECK(condition)

© Narain Gehani
Introduction to Databases Slide 132

SQL
Column Property – Constraints (contd.)

� Foreign Keys
� Implement the referential integrity constraint.
� define relationships between rows in referencing & referenced tables.
� Impose restrictions on column values which must equal primary key values in the

�foreign� (referenced) table.
� Called constraint because it imposes a restriction.

Single Column Foreign Key

REFERENCES table(column)

Multiple Column Foreign Key

Must be specified separately as an property

FOREIGN KEY(columns) REFERENCES table(columns)

� Constraint violation, because of update or delete, causes an action (trigger), if
specified, to be executed.

� Resetting to default values can also be specified to address the violation.
� Otherwise, the transaction is aborted (happens also if trigger does not fix

violation).

67

© Narain Gehani
Introduction to Databases Slide 133

SQL
Triggers

� Actions that are executed by the database
server automatically whenever the
specified trigger condition is satisfied.

� We will discuss triggers in detail later

© Narain Gehani
Introduction to Databases Slide 134

SQL
Modifying Table Definitions

� Table definitions can be altered and deleted.
� Note existing queries & applications may be affected & may not

work.
� The ALTER TABLE command can be used to

� add/delete columns,
� add/delete indexes
� change column types
� rename columns, and so forth.

� E.g. the following command alters the table Books by adding
column Binding with type VARCHAR(32)after column Pages:

ALTER TABLE Books
ADD Binding VARCHAR(32)
AFTER Pages;

68

© Narain Gehani
Introduction to Databases Slide 135

SQL
Modifying Table Definitions

� After the execution of this command, MySQL can be asked to
display the new description of the table Books with the command

� mysql> DESCRIBE Books;
� MySQL displays the following information which now includes

information about the column Binding:

© Narain Gehani
Introduction to Databases Slide 136

SQL
Deleting / Renaming Tables

DROP TABLE tableName;

RENAME TABLE oldName TO newName;

69

© Narain Gehani
Introduction to Databases Slide 137

SQL – Data Manipulation
SQL provides facilities for retrieving and modifying

data.
� The most powerful is the SELECT statement

� used for extracting data from the database, i.e.,
extracting rows or portions of rows from one or more
tables.

� SQL embeds many capabilities in the SELECT
statement
� projection,
� selection, and
� join.

© Narain Gehani
Introduction to Databases Slide 138

SQL – Data Manipulation (contd.)
� Informal description of the simple SELECT statement

SELECT column names or expressions
FROM tables
WHERE search condition

� column names listed specify projection (column selection),
� search condition specifies row selection
� listing multiple tables in the FROM clause and specifying the search

condition to find associations between values in these tables
specifies the join operation.

� column expressions are used to specify computations (discussed in
the next section).

A single SELECT statement is often used to perform projection,
selection, and join operations together.

70

© Narain Gehani
Introduction to Databases Slide 139

SQL – Projection
� The following SELECT statement generates a list

of all the books along with their titles, ISBNs,
and prices (but no other information)

SELECT Title, ISBN, Price
FROM Books;

© Narain Gehani
Introduction to Databases Slide 140

SQL – Projection (contd.)
� A SELECT statement listing the

appropriate fields for all the rows in a table
is fine when the table is small.

� However, typically when the table is large,
a search condition is used to restrict the
size of the result to data of interest.

� Incidentally, the asterisk symbol * can be
used as a short hand for listing all the
columns.

71

© Narain Gehani
Introduction to Databases Slide 141

SQL – Computations
� Along with projection, SQL allows the user to

perform computations in the SELECT statement.
� Suppose we want to prepare a table with book

titles, ISBNs, along with prices that are
discounted 20%. This can be easily
accomplished with the following SQL statement:

SELECT Title, ISBN, Price*0.8
FROM Books;

which produces the table

© Narain Gehani
Introduction to Databases Slide 142

SQL – Computations (contd.)

72

© Narain Gehani
Introduction to Databases Slide 143

SQL – Renaming Columns
� Columns in a result table produced by a SELECT statement can be

renamed. E.g., to change the column name in the previous example
from

Price*0.8
to

20% Discounted Price
the renaming clause

AS newName

can be used as follows

SELECT Title, ISBN,
Price*0.8 AS '20% Discounted Price'

FROM Books;

producing the table

© Narain Gehani
Introduction to Databases Slide 144

SQL – Renaming Columns
(contd.)

73

© Narain Gehani
Introduction to Databases Slide 145

SQL - Selection
� Selection is the extraction of data (rows) that satisfy specified

criteria. from a table. The SELECT statement

SELECT *
FROM tables
WHERE search condition

yields a table with rows that satisfy the search condition. * is a
shorthand for all the columns of the tables in the FROM clause.

� The SELECT statement

SELECT *
FROM Books
WHERE Price BETWEEN 15.0 AND 30.0;

takes the Books table and yields

© Narain Gehani
Introduction to Databases Slide 146

SQL – Selection (contd.)

74

© Narain Gehani
Introduction to Databases Slide 147

SQL – Selection (contd.)

� To get book titles and their price, then we
can combine projection with selection

SELECT Title, Price
FROM Books
WHERE Price BETWEEN

15.0 AND 30.0;

to get the table

© Narain Gehani
Introduction to Databases Slide 148

SQL – Selection (contd.)

75

© Narain Gehani
Introduction to Databases Slide 149

SQL – WHERE Clause
� The search condition in the WHERE clause is an

expression that filters out rows for which the
expression is not satisfied.

� The search condition is used for
� comparing values (using operators such as =, <>, <,
>, <=, >=, and BETWEEN),

� checking for NULL values,
� pattern matching, etc,

� Complex conditions can be formed using the
AND, OR, and NOT operators.

© Narain Gehani
Introduction to Databases Slide 150

SQL – Joins
� Data is typically stored in multiple tables to take

advantage of data normalization.
� But it would be easier to write queries if all the data was

in one universal table.
� Also users will not have to determine which tables contain what

information.
� Tables may have to joined to get the needed data.
� Suppose we want to print the titles of the books sold

along with the total quantities sold. The information, is
split between two tables, Books and OrderInfo.

� We need to
� join these two tables,
� extract the needed information, and then
� do some addition (aggregation).

76

© Narain Gehani
Introduction to Databases Slide 151

SQL – Joins (Contd.)
� Consider the following two equivalent queries:

SELECT *
FROM OrderInfo, Books
WHERE Books.ISBN =

OrderInfo.ISBN;
and

SELECT OrderInfo.*, Books.*
FROM OrderInfo, Books
WHERE Books.ISBN =

OrderInfo.ISBN;

© Narain Gehani
Introduction to Databases Slide 152

SQL – Joins (Contd.)
� Both queries join the two tables Books and OrderInfo

by pasting the rows that have matching ISBNs.
� The Books table has unique ISBNs but the OrderInfo table

can have multiple rows with the same ISBN.
� Consequently, each row in the Books table may be pasted to

zero or more rows from the table OrderInfo.
� These queries differ only in how the columns to be

displayed are specified.
� The first query specifies that all the columns in the two tables

(denoted by are to be shown *) are to be shown in the result.
� The second specifies that only the columns in OrderInfo

(denoted by OrderInfo.*) and Books (denoted by Books.*)
are to be shown in the result.

� The columns that will be displayed are the same in either case.

77

© Narain Gehani
Introduction to Databases Slide 153

SQL – Joins (Contd.)

© Narain Gehani
Introduction to Databases Slide 154

SQL – Joins (Contd.)
� There are 2 columns labeled Price and 2 columns named Qty.
� Each table contributes one of the duplicate columns.
� To avoid confusion, one duplicate column in each case needs to

renamed (requires explicitly listing the columns of at least one table):

SELECT OrderInfo.*,
Title, Books.Price AS CurrentPrice,
Authors, Pages, PubDate,
Books.Qty AS Stock

FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN;

� Columns Price & Qty had to be qualified by the table name to
avoid ambiguity.

78

© Narain Gehani
Introduction to Databases Slide 155

SQL – Joins (Contd.)
� The result table has extra columns. These columns are

easily discarded by simply listing the columns needed:
SELECT Title, OrderInfo.Qty
FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN;

The result of this query is the table

© Narain Gehani
Introduction to Databases Slide 156

SQL – Joins (Contd.)
� By default, SQL does not eliminate duplicates in query results.
� Eliminating duplicates in the previous result will lead to a loss of

information � some books sold.
� Sometimes we may not want duplicates. Suppose we want to list the

titles that have sold so far. The SELECT statement
SELECT Title
FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN;

79

© Narain Gehani
Introduction to Databases Slide 157

SQL – Joins (Contd.)
� Duplicates are not needed in the previous query result.
� To eliminate duplicates, SQL provides the DISTINCT

option:
SELECT DISTINCT Title
FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN;

© Narain Gehani
Introduction to Databases Slide 158

SQL – Joins (Contd.)

� Back to the table with titles and quantities.
� We still need to �aggregate� the quantities

sold for each of the different books instead of
having this information distributed in multiple
rows.

80

© Narain Gehani
Introduction to Databases Slide 159

SQL – Aggregation
� Our earlier query

SELECT Title, OrderInfo.Qty
FROM OrderInfo, Books
WHERE Books.ISBN=OrderInfo.ISBN;

yields a result table with information that we
need but the information is not in an appropriate
form because the number of books sold for each
title is not totaled & presented in one line.

© Narain Gehani
Introduction to Databases Slide 160

SQL – Aggregation (Contd.)

We need to
� group identical titles together, and
� count the total number of books per group.

81

© Narain Gehani
Introduction to Databases Slide 161

SQL – Aggregation (Contd.)
� Instead of using loops as in traditional programming

languages, SQL provides a high level �aggregation�
facility to perform the addition as shown in the following
query:

SELECT Title, SUM(OrderInfo.Qty)
FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN
GROUP BY Title;

� There are two parts of this query that are new.
� The GROUP BY clause specifies that all rows with the same
Title value are to be grouped into one row.

� The SUM aggregation function specifies that the Qty value from
the OrderInfo table is to be aggregated (totaled) for each
group and associated with the group.

© Narain Gehani
Introduction to Databases Slide 162

SQL – Aggregation (Contd.)
� The table produced by the above query is

almost what we need � with one exception.
� The name of the second column is not pleasing � it

needs a new name.

82

© Narain Gehani
Introduction to Databases Slide 163

SQL – Aggregation (Contd.)
� Renaming is easily done using the AS clause:

SELECT Title,
SUM(OrderInfo.Qty) AS 'Copies Sold'

FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN
GROUP BY Title;

� We now have the table we want:

© Narain Gehani
Introduction to Databases Slide 164

Common Aggregation Functions

� column can be an expression that evaluates to a column.
� Functions COUNT, SUM, & AVG take into account duplicates.

Duplicate values are eliminated using the keyword DISTINCT as
� COUNT(DISTINCT column),
� AVG(DISTINCT column), and
� SUM(DISTINCT column).

83

© Narain Gehani
Introduction to Databases Slide 165

Joins of More Than 2 tables
� Suppose we need to print a report that lists

� customer ids,
� the order ids associated with them, and
� the number of Java books in each order.

� Requires joining 3 tables � Orders, OrderInfo, Books :

SELECT CustomerId, Orders.OrderId, Title,
OrderInfo.Qty

FROM Orders, OrderInfo, Books
WHERE Orders.OrderId = OrderInfo.OrderId

AND OrderInfo.ISBN = Books.ISBN
AND Title = 'Java';

© Narain Gehani
Introduction to Databases Slide 166

More About Joins
� SQL provides an explicit JOIN operator. Query

SELECT DISTINCT Title
FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN;

can be written using an explicit JOIN operator as :

SELECT DISTINCT Title
FROM OrderInfo JOIN Books
ON Books.ISBN = OrderInfo.ISBN;

� Using the operator JOIN is equivalent to using
INNER JOIN.

84

© Narain Gehani
Introduction to Databases Slide 167

More About Joins
� If the names of the columns of the two

tables being joined are the same and the
join condition is equality, then the USING
clause can be used:

SELECT DISTINCT Title
FROM OrderInfo JOIN Books
USING (ISBN);

� SQL supports several different types of
joins in addition to the default inner join.

© Narain Gehani
Introduction to Databases Slide 168

More About Joins
Left Outer Join

� We want a list customers, along with order dates.
� The Customers table includes persons who never placed

an order.
� A left outer join on Customers and Orders tables allows

us to generate such a list
� For rows that match, a left outer join works like an inner join.
� For rows in the left table without a matching row in the right table, it

appends NULL values for the columns from the right table.
� The inner join ignores such rows.

� Here is the query that produces the customer list we need:

SELECT First, Last, Company, OrderDate
FROM Customers LEFT OUTER JOIN Orders
ON Id = CustomerId;

85

© Narain Gehani
Introduction to Databases Slide 169

More About Joins
Left Outer Join (Contd.)

© Narain Gehani
Introduction to Databases Slide 170

More About Joins
Left Outer Join (Contd.)

� If we change the order of tables in the left outer
join, then we will not get the same result.
� Result will be different because each row in the left

table (Orders) will have a matching a row in the right
table (Customers).

� The left outer join will not pick up customers who
have not placed an order.

SELECT First, Last, Company, OrderDate

FROM Orders LEFT OUTER JOIN Customers
ON Id = CustomerId;

86

© Narain Gehani
Introduction to Databases Slide 171

More About Joins
Left Outer Join (Contd.)

© Narain Gehani
Introduction to Databases Slide 172

More About Joins
Right Outer Join

� The right outer join is like the left outer join
except that the focus is on the right table.

� The following query
SELECT First, Last, Company, OrderDate
FROM Customers RIGHT OUTER JOIN Orders
ON Id = CustomerId;

produces as its result the same table as the
rearranged left outer join query.

87

© Narain Gehani
Introduction to Databases Slide 173

Nested Queries
� A nested query (subquery) is a query that is embedded

in another query
� Nested queries are often used in the WHERE clause. The

value returned can be
� of a basic type -- can be compared using the comparison

operators,
� a column � can be compared using the comparison operators

followed by the operators ANY or ALL,
� tested for membership in the set of values returned (using IN or
NOT IN), and

� checked to see if a null or a non-null value is returned (operators
EXIST and NOT EXIST are used).

� The nested query must always be enclosed in
parentheses.

© Narain Gehani
Introduction to Databases Slide 174

Nested Queries – IN Operator
� The following query prints names of companies that ordered books in 2004.

mysql> SELECT Company
-> FROM Customers
-> WHERE Id IN
-> (SELECT CustomerId
-> FROM Orders
-> WHERE OrderDate BETWEEN
-> '2004-01-1' AND '2004-12-31');

+-----------+
| Company |
+-----------+
| Acme |
| |
| FastTrack |
+-----------+
4 rows in set (0.00 sec)
mysql>

� The blank row � one customer did not have company in the address.

88

© Narain Gehani
Introduction to Databases Slide 175

Nested Queries – EXISTS Operator
� List titles of all books for which more than one copy has

been ordered (on a �line item� basis) in a single order:

SELECT Title
FROM Books
WHERE EXISTS

(SELECT *
FROM OrderInfo
WHERE OrderInfo.Qty > 1 AND

Books.ISBN = OrderInfo.ISBN);

� For each book (identified by its ISBN in the nested
query) in Books, its title is printed only if the result of the
nested query contains one or more rows

� The SELECT list in the nested query is not used for
anything, so typically * is used.

© Narain Gehani
Introduction to Databases Slide 176

Nested Queries – ALL Operator
� List the titles of the books with the highest quantity

ordered in a single order (on a line item basis):

SELECT Title
FROM Books, OrderInfo
WHERE Books.ISBN = OrderInfo.ISBN AND

OrderInfo.Qty >= ALL (SELECT Qty
FROM OrderInfo

);

� The nested query returns a table with the quantities
ordered for every book (on a line item).

� The number of copies of every book ordered (on a line
item basis) is then compared with the values in this
table, and if this number is greater than or equal to all
the values in the table, the comparison evaluates to true.

89

© Narain Gehani
Introduction to Databases Slide 177

Nested Queries – Advantages
� Allow the partitioning of a complex query

into simpler queries
� Make queries more readable

© Narain Gehani
Introduction to Databases Slide 178

SQL – Inserting Data into Tables
� We have seen several examples of the INSERT

statement. Simple version:

INSERT INTO table
VALUES(list of values for all columns);

� Here is another example:

INSERT INTO Customers
VALUES(1, ′Acme′, ′Tom′,
′Jones′, ′25 Scenic Road′, ′Hilltop′,
′NJ′, ′18901′, ′9189088919′);

� This form requires values for all the fields.
� Keyword DEFAULT sets a field to its default value

(otherwise, field will be set to the NULL value).

90

© Narain Gehani
Introduction to Databases Slide 179

SQL – Inserting Data into Tables
(contd.)

� If all field values are not going to be supplied, then the following
version of the INSERT can be used:

INSERT INTO table(columns)
VALUES(values for the columns listed);

� The INSERT statement

INSERT INTO Customers(Id, Company, Zip)
VALUES(22, ′Lucent', ′07974′);

� will insert NULL values for the omitted columns.

© Narain Gehani
Introduction to Databases Slide 180

SQL – Deleting Data
� Rows that match specified criterion can be

deleted with a single DELETE statement. Simple
form:

DELETE FROM table
WHERE expression;

� Example:
DELETE FROM Customers
WHERE Id=22 OR Id=23;

will delete the rows with Id equal to 22 or 23.

91

© Narain Gehani
Introduction to Databases Slide 181

SQL – Modifying Data
� Values in a table are modified using the UPDATE

statement. Simple form:

UPDATE table SET column = expression1
WHERE expression2;

which sets the values of column elements to expression1
for all the rows that satisfy expression2.

� If the WHERE clause is left out, then the values of all the
rows will be updated.

� The following UPDATE statement will increase, by 10%,
the price of all the books in the Books table:

UPDATE Books
SET Price = Price * 1.1;

The Books table will change from

© Narain Gehani
Introduction to Databases Slide 182

SQL – Modifying Data (contd.)

To

92

© Narain Gehani
Introduction to Databases Slide 183

SQL – Data Control Language
� The data control language part of SQL relates to facilities for

managing the database. Typically these deal with
� views,
� triggers,
� indexes,
� security,
� concurrency control,
� transactions etc.

� We will be discussing these facilities in depth in the ensuing
chapters.

� Note: Indexes are not part of standard SQL because they relate to
the physical, not logical, organization of the data.
� They are used for improving query access times.
� They used to be part of SQL but were removed from SQL.
� Most database specific SQLs provide facilities for indexes because

access speed is a critical in database use.

© Narain Gehani
Introduction to Databases Slide 184

Stored Procedures
� Stored routines allow a set of SQL commands to be compiled and stored on

the database server.
� They can then executed by referencing their names.
� Stored routines are more efficient than executing the same SQL commands

because they do not have to be transmitted to the server or compiled every time.
� Stored procedures allow parameterization of the SQL commands.
� They also allow an expert to write complex queries for use by others.

� Two kinds of stored routines:
� Procedures
� Function (not discussed)

� Procedures definitions use syntax of the form
CREATE PROCEDURE pname(parameter declarations)

statement;
� If the procedure consists of multiple statements, then BEGIN ATOMIC / END

must be used.
� A procedure is executing by referencing it using a statement of the form

CALL procedureName(arguments);

93

© Narain Gehani
Introduction to Databases Slide 185

Stored Procedures (contd.)
SELECT OrderInfo.ISBN, Title,

SUM(OrderInfo.Qty) AS Quantity,
SUM(OrderInfo.Qty*OrderInfo.Price) AS Sales

FROM OrderInfo, Orders, Books
WHERE OrderInfo.ISBN = Books.ISBN AND

OrderInfo.OrderId = Orders.OrderId AND
ShipDate >= ′2004-04-01′ AND
ShipDate <= ′2004-04-02′

GROUP BY OrderInfo.ISBN, Title;

� Above query produces the following table

© Narain Gehani
Introduction to Databases Slide 186

Stored Procedure Definition
CREATE PROCEDURE Sales(S Date, E Date)
BEGIN ATOMIC

SELECT OrderInfo.ISBN, Title,
SUM(OrderInfo.Qty) AS Quantity,
SUM(OrderInfo.Qty*OrderInfo.Price)AS Sales

FROM OrderInfo, Orders, Books
WHERE OrderInfo.ISBN = Books.ISBN AND

OrderInfo.OrderId = Orders.OrderId AND
Orders.ShipDate >= S AND
Orders.ShipDate <= E

GROUP BY OrderInfo.ISBN, Title;
END;

94

© Narain Gehani
Introduction to Databases Slide 187

Stored Procedures in MySQL
mysql> delimiter //
mysql> CREATE PROCEDURE Sales(S Date,E Date)

-> BEGIN
-> SELECT OrderInfo.ISBN, Title,
-> SUM(OrderInfo.Qty) AS Quantity,
-> SUM(OrderInfo.Qty*OrderInfo.Price)
-> AS Sales
-> FROM OrderInfo, Orders, Books
-> WHERE OrderInfo.ISBN = Books.ISBN AND
-> OrderInfo.OrderId = Orders.OrderId
-> AND
-> Orders.ShipDate >= S AND
-> Orders.ShipDate <= E
-> GROUP BY OrderInfo.ISBN, Title;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)
mysql> delimiter ;

© Narain Gehani
Introduction to Databases Slide 188

Stored Procedures in MySQL

� To get the sales information for the first
two days of April, we can now simply call
procedure Sales as follows:

CALL Sales('2004-04-01','2004-04-02');

95

© Narain Gehani
Introduction to Databases Slide 189

Everest Books
Orders, Invoices & Reports

� We will now illustrate the use of SQL to
� enter an order, and
� generate invoices and reports.

� SQL does not provides much in the way of
formatting facilities.

� In case of complex applications and those that
require non-trivial formatting facilities
� SQL is typically used from within the context of a host

programming language such as Java using classes
that allow users to intermix Java and SQL.

� But we will use SQL directly (not from within a host
language) using its limited data formatting.

© Narain Gehani
Introduction to Databases Slide 190

Everest Books
Orders, Invoices & Reports (contd.)

� Order Leading to an Invoice
� Updating the database to record an order and then generating

the corresponding invoice is a multi-step process involving
� entering the customer information, if needed, into the database,
� entering the order information after checking to ensure that the

books are in the inventory and that they are available for this
order (they are not allocated to another customer order), and

� generation of the actual invoice.
� In practice, all the above steps should happen as a

single atomic action.
� The invoice generation process should not stop in the

middle nor should it be affected by other orders.
� We will not worry about ensuring atomicity of the multiple

steps � we will be discussing that later.

96

© Narain Gehani
Introduction to Databases Slide 191

Invoice
EVEREST BOOKS

2300 GREAT SCENIC VIEW
SUMMIT TOP, VT 08211

Ship Date 2/4/04 Invoice # 004 Customer Id # 003
Order Date 2/4/04

Liza Singh
FastTrack
155 Route 133
Holmdel, FL 48901

ISBN Title Qty Unit Price Total

0929306279 Bell Labs 1 29.95 29.95
0929306260 Java 1 49.95 49.95
0439357624 Born Confused 1 16.95 16.95
0670031844 White Moghuls 1 34.95 34.95

Subtotal 131.80
Sales Tax 0.00
Shipping 6.99
TOTAL DUE 138.79

© Narain Gehani
Introduction to Databases Slide 192

Inovice

� We will not be able to print such a nice
looking invoice by directly using SQL. As
mentioned earlier, data formatting typically
requires the use of SQL from within a host
language.

� The sales report to be generated is

97

© Narain Gehani
Introduction to Databases Slide 193

Sales Report
EVEREST BOOKS
SALES REPORT
4/1/04 to 4/2/04

ISBN Title Qty Book Sales

0929306279 Bell Labs 1 29.95
0929306260 Java 1 49.95
0439357624 Born Confused 4 67.80
0670031844 White Moghuls 2 69.90

TOTAL for period $217.60

© Narain Gehani
Introduction to Databases Slide 194

Recording the Order
(Shown in the Invoice)

� The customer is

Liza Singh
FastTrack
155 Route 133
Holmdel, FL 48901
Tel no: 218-555-2223

� Steps in inserting customer information in database:
� Check if customer is in database
� if yes, find the customer�s id.
� If no, assign a new id to the customer.
� Insert customer information in the database.

� Query checking to see if customer exists:

SELECT Id
FROM Customers
WHERE Company = ′FastTrack′

AND First = ′Liza′
AND Last = ′Singh′;

Liza is not in the database. Customer ids are assigned sequentially starting from 1.

98

© Narain Gehani
Introduction to Databases Slide 195

Recording the Order (contd.)
� Determine largest id value been assigned and use this plus1 as new id
� The largest id assigned is determined by the query

SELECT MAX(Id)
FROM Customers;

� Assume at this time that there are only two customers in the database.
� The id to be assigned for the next customer is 3:

INSERT INTO Customers
VALUES(3, ′FastTrack′, ′Liza′, ′Singh′,

′155 Route 133′, ′Holmdel′, ′FL′,
′48901′,′2185552223′);

� Assigning a id to a new customer can be automated using user variables
(not standard SQL). Alternatively, if SQL is being used from within a host
language such as Java, then Java facilities can be used.

� MySQL user variables have the form
@variableName

� They are assigned values using the SET statement e.g.,
SET @newid = 0;

© Narain Gehani
Introduction to Databases Slide 196

Recording the Order (contd.)
� User Variables can also be assigned values within other

statements by using the assignment operator := in
places where expressions are allowed. For example:

SELECT @newid := MAX(Id) + 1
FROM Customers;

INSERT INTO Customers
VALUES(@newid, "FastTrack",

"Liza", "Singh",
"155 Route 133", "Holmdel", "FL",
"48901", "2185552223");

99

© Narain Gehani
Introduction to Databases Slide 197

Recording the Order (contd.)
� We also need to assign a new id to the order for the above

customer. We determine the largest order id used so far as

SELECT MAX(OrderId)
FROM Orders;

� The largest order id is 3. The new order id will be 4.
� We insert order information in the tables Orders and OrderInfo.

First in Orders:

INSERT INTO Orders
VALUES(4,3,′2004-04-2′,′2004-04-2′,0.0,0.0);

� Computing new customer and order ids is painful.
� Fortunately, the MySQL column property AUTO_INCREMENT can

be used to automatically supply a new value, one more than the last
highest value used in the column, for a new row. E.g., if the
OrderId column of Orders is defined with the
AUTO_INCREMENT property:

© Narain Gehani
Introduction to Databases Slide 198

Recording the Order (contd.)
CREATE TABLE Orders (

OrderId INT(8) PRIMARY KEY AUTO_INCREMENT,
CustomerId INT(8),
OrderDate DATE,
ShipDate DATE,
Shipping DECIMAL(5,2),
SalesTax FLOAT

) ENGINE = InnoDB;
� With AUTO_INCREMENT we can now omit the OrderId value and

let MySQL do the computing as in

INSERT INTO Orders(CustomerId, OrderDate,
ShipDate,Shipping, SalesTax)

VALUES(3,′2004-04-2′,′2004-04-2′,0.0,0.0);

100

© Narain Gehani
Introduction to Databases Slide 199

Recording the Order (contd.)
� Using AUTO_INCREMENT, the user or application will not have to worry about

computing a new value for the OrderId. MySQL will automatically provide
a new value for OrderId (starts with 1). Incidentally, function
LAST_INSERT_ID()can be used to retrieve the last OrderId inserted, e.g.,

SELECT LAST_INSERT_ID();

� Continuing with our invoice example, the order details are inserted into table
OrderInfo as follows:

INSERT INTO OrderInfo
VALUES(4, ′0929306279′, 1, 29.95);

INSERT INTO OrderInfo
VALUES(4, ′0929306260′, 1, 49.95);

INSERT INTO OrderInfo
VALUES(4, ′0439357624′, 1, 16.95);

INSERT INTO OrderInfo
VALUES(4, ′0670031844′, 1, 34.95);

© Narain Gehani
Introduction to Databases Slide 200

Recording the Order (contd.)
� The price info & availability information was found using the Books table.
� The inventory can be updated as follows:

UPDATE Books
SET Qty = Qty - 1
WHERE ISBN = ′0929306279′;

UPDATE Books
SET Qty = Qty - 1
WHERE ISBN = ′0929306260′;

UPDATE Books
SET Qty = Qty - 1
WHERE ISBN = ′0439357624′;

UPDATE Books
SET Qty = Qty - 1
WHERE ISBN = ′0670031844′;

101

© Narain Gehani
Introduction to Databases Slide 201

Recording the Order (contd.)
� The shipping amount is reflected in the table Orders after

determining the number of books being shipped. For four books, the
shipping charge is $6.99 ($3.99 for the first book and $1 for each
additional book):

UPDATE Orders
SET Shipping = 6.99
WHERE OrderId = 4;

� Note that determining the order and customer ids, computing the
shipping info, updating the inventory, determining the price, etc.
could all be automated using MySQL facilities or by using host
language facilities if SQL is being used from within a host language.
And from a user perspective, a GUI needs to be provided to enter
the data.

� The order is now in the Everest database. We still have to print the
invoice using the information in the database � our next step

© Narain Gehani
Introduction to Databases Slide 202

Printing the Invoice
� We will extract the information in the order needed for the invoice.

� This information will need to be assembled and formatted properly to
print the invoice.

� We will not do this here, because SQL does not provide the needed
formatting capabilities.

� Extracting the invoice information will be based primarily on the
order id. The query

SELECT ShipDate,OrderId,CustomerId,OrderDate
FROM Orders
WHERE OrderId = 4;

� extracts the following information needed for the top part of the
invoice (following the Everest Books address whose location is fixed
to be on top of the invoice):

102

© Narain Gehani
Introduction to Databases Slide 203

Printing the Invoice (contd.)
� Now we need to extract the customer information.

� We can do this using the order id which will requires determining
the customer id and using it to extract the customer information.

� If the customer id is known, as should be the case, it can be
used directly

SELECT First, Last, Company, Street,
City, State2, Zip

FROM Customers
WHERE Id = 3;

extracts the customer information:

© Narain Gehani
Introduction to Databases Slide 204

Printing the Invoice (contd.)
� Now here is the query extracting information

about the books ordered (based on the order id):
SELECT Books.ISBN, Books.Title,

OrderInfo.Qty, OrderInfo.Price,
OrderInfo.Price*OrderInfo.Qty

FROM Books, OrderInfo
WHERE Books.ISBN = OrderInfo.ISBN

AND OrderId = 4;

103

© Narain Gehani
Introduction to Databases Slide 205

Printing the Invoice (contd.)
� Now we determine the cost for the books (subtotal) & the

sales tax, extract the shipping cost, & compute the grand
total. First the subtotal & sales tax:
SELECT SUM(OrderInfo.Price*OrderInfo.Qty)

AS SubTotal,
SUM(OrderInfo.Price*OrderInfo.Qty)

* SalesTax AS SalesTaxAmount
FROM OrderInfo, Orders
WHERE OrderInfo.OrderId =

Orders.OrderId AND
Orders.OrderId = 4;

© Narain Gehani
Introduction to Databases Slide 206

Printing the Invoice (contd.)
� The shipping cost is extracted from the Orders

table using the query

SELECT Shipping
FROM Orders
WHERE OrderId = 4;

which produces

104

© Narain Gehani
Introduction to Databases Slide 207

Printing the Invoice (contd.)
� The total cost of the order is computed using the query

SELECT SUM(OrderInfo.Price*OrderInfo.Qty)*
(1+SalesTax) + Shipping AS Total

FROM OrderInfo, Orders
WHERE OrderInfo.OrderId = Orders.OrderId
GROUP BY Orders.OrderId
HAVING Orders.OrderId = 4;

which yields the following information:

© Narain Gehani
Introduction to Databases Slide 208

Printing the Invoice (contd.)
� We can compute the subtotal, sales tax, shipping cost, and total in

one SQL statement
SELECT SUM(OrderInfo.Price*OrderInfo.Qty)

AS SubTotal,
SUM(OrderInfo.Price*OrderInfo.Qty) *

SalesTax AS SalesTax,
Shipping,
SUM(OrderInfo.Price*OrderInfo.Qty) *
(1+SalesTax) + Shipping AS Total

FROM OrderInfo, Orders
WHERE OrderInfo.OrderId = Orders.OrderId
GROUP By OrderInfo.OrderId
HAVING Orders.OrderId = 4;

The above query produces the following table:

105

© Narain Gehani
Introduction to Databases Slide 209

Sales Report
� The Sales report shown is for the first two days of April

2004.
� Two dates are recorded in the Everest Books database.

� The order date and the ship date.
� Because we are not told which date to use, we use the

ship date.
� The sales report lists the sales period. We will leave

printing the sales period to an application � printing
headings, text, etc., is not part of SQL.

� Query for first part of Sales report (excludes total sales
for period). We use the stored procedure Sales Defined
earlier

© Narain Gehani
Introduction to Databases Slide 210

Sales Report (contd.)

CALL Sales('2004-04-01','2004-04-02');

106

© Narain Gehani
Introduction to Databases Slide 211

Sales Report (contd.)
� This query computes total sales in the first 2 days of

April 2004:
SELECT SUM(OrderInfo.Qty*OrderInfo.Price)

AS 'Total�
FROM OrderInfo, Orders
WHERE OrderInfo.OrderId = Orders.OrderId
AND

ShipDate >= ′2004-04-01′ AND
ShipDate <= ′2004-04-02′;

We now have information for the report, but not in a nice
format.

© Narain Gehani
Introduction to Databases Slide 212

Sales Report (contd.)

� SQL does not provide facilities for
generating nicely formatted reports.

� One has to go beyond SQL. E.g.,
� SQL tables and results can be saved into files

and then manipulated by other tools
� Using SQL from within a host language and

using the host language facilities for
formatting.

107

© Narain Gehani
Introduction to Databases Slide 213

Transactions
� A consistent (or valid) database is one

whose data satisfies all the constraints
specified in the database.

� Examples of constraints are
� specifying a column to have non null values,
� specifying a column as a primary key (no

duplicate or null values), or
� specifying the range of allowed column

values.

© Narain Gehani
Introduction to Databases Slide 214

Transactions
� Most database systems ensure that users

accessing a database and manipulating data do
not make the database inconsistent.

� Databases accomplish this by using a
transaction – defined as

an exchange or transfer of goods, services,
or funds (“electronic” transactions)

� Strict rules are enforced that
� govern how multiple simultaneous transactions

update databases and
� control how transactions read updates made by

transactions that have not completed execution.

108

© Narain Gehani
Introduction to Databases Slide 215

Transactions (contd.)
� Some examples of common database transactions:

� A stock trade.
� A deposit in a bank.
� A hotel reservation.

� A transaction can consist of many actions.
� E.g., executing an order for an Everest Books customer

involves executing the following group of statements:
� check if the book is available,
� if yes, then enter the

� customer information,
� order information,
� payment information, etc.

© Narain Gehani
Introduction to Databases Slide 216

Transactions (contd.)

� A transaction takes a database from
one consistent state to another.

� If a transaction tries to take the
database to an inconsistent state,
then the database system will �kill�
(abort) the transaction and undo its
changes, if any.

109

© Narain Gehani
Introduction to Databases Slide 217

Transaction Correctness
� Besides being consistent, a database must also be �correct.�
� A correct database is one that is consistent and satisfies �external�

correctness properties.
� External because the database system does not know about them and

they cannot be checked or be enforced by it.
� For example, if the Everest Books database contains incorrect book

prices, the database system cannot do anything about them since it has
no knowledge about correct book prices.

� Ideally, a transaction should take a database from one correct state
to another.
� Will happen only if the transaction is written correctly.

� Since a database system does not know about correctness, it can
only guarantee that a transaction will take a database from one
consistent state to another.
� Database systems ensure this by aborting transactions that violate

constraints.

© Narain Gehani
Introduction to Databases Slide 218

Transaction Correctness (contd.)
� Proving that a transaction is written correctly is a non trivial task,

especially for complex transactions.
� Consequently, most programmers test programs (such as

transactions) for �correctness.�
� Unfortunately, from a practical perspective, testing cannot be used

to prove the correctness of programs.
� Testing demonstrates the presence of errors but not their absence.
� Only by exhaustive testing (using all possible inputs) can a program be

guaranteed to be correct.
� In most cases, exhaustive testing is not a realistic option because of the

amount of testing required.
� In lieu of being able to prove programs correct, most programmers

build confidence in the correctness of their programs by
� understanding the code,
� testing as much as is reasonable, and
� having others look at and test their code.

110

© Narain Gehani
Introduction to Databases Slide 219

Transaction Properties
� A database transaction is an action that takes a

database from one �consistent� (valid) state to another.
� A transaction cannot be executed partially � it is either

executed in its entirety or not at all.
� Transactions also allow a group of statements to be

executed as one logical �atomic� action.
� Transactions allow multiple users to simultaneous

access and update the database while guaranteeing that
transactions will not interfere with each other.
� In there is potential of interference, the system may delay

execution of some transactions (or even abort them).

© Narain Gehani
Introduction to Databases Slide 220

Transactions Properties (contd.)

� Simultaneously execution of multiple
transactions can lead to higher throughput &
faster response times compared to executing
them serially.

� Each transaction gets the illusion that it is
operating in isolation, i.e., in single-user mode.

� Database systems guarantee that simultaneous
execution of multiple transactions will not cause
the database to become inconsistent
� by ensuring that such execution corresponds to some

serial (sequential) execution of these transactions.

111

© Narain Gehani
Introduction to Databases Slide 221

Transactions Properties (contd.)
� Suppose there is only one copy of a book in the Everest

Books inventory.
� Two customer agents should NOT be able to sell the one copy to

their customer.
� Only one agent should be able to see this information and the

other agent forced to wait until the first agent is done.
� The second agent will then see that there is either one copy or

none in stock.
� To increase concurrency, some database systems may

� allow the two agents to see that one copy is available,
� but will allow only one of them to complete the sale
� the other agent�s transaction will be aborted.
� In this case, the agent can deduce that some other agent made

the sale first thus weakening/eliminating the single-user mode
illusion.

© Narain Gehani
Introduction to Databases Slide 222

Transactions in SQL
� SQL statements execute as transactions in one of two modes.

� auto (implicit) commit mode in which each SQL statement is
executed as a transaction � default mode.

� explicit commit mode in which a group of SQL statements can be
executed as one transaction.

� Explicit Commit Transaction syntax:
START TRANSACTION;

SQL statements
COMMIT;

� The ROLLBACK statement can be used to abort a transaction:

START TRANSACTION;
SQL statements

ROLLBACK;

112

© Narain Gehani
Introduction to Databases Slide 223

Transactions Example
� Suppose we want to change the order with OrderId

equal to 4 by
� deleting the book with ISBN 0670031844
� reduce the shipping charge by $1.00.
� Note that the invoice total is not stored but will have to be

calculated on demand based on the information stored.
� This requires two changes:

� deleting one row in table OrderInfo
� updating the shipping charge in table Orders.

� Both these changes must occur together or not at all.
Otherwise, the database will be inconsistent.

© Narain Gehani
Introduction to Databases Slide 224

Transactions Example (Contd.)

113

© Narain Gehani
Introduction to Databases Slide 225

Transaction Example (contd.)
START TRANSACTION;

DELETE FROM OrderInfo
WHERE OrderId = 4 AND

ISBN = '0670031844';

UPDATE Orders
SET Shipping = Shipping - 1
WHERE OrderId = 4;

COMMIT;

© Narain Gehani
Introduction to Databases Slide 226

Transactions
Informal Definition

� A database transaction is one logical action
� that consists of one or more component actions � collectively executed

as a single action;
� that is executed in effective isolation even in the presence of other

transactions running simultaneously; the database system ensures no
�conflicts� occur (see next slide);

� whose execution either happens in its entirety or does not happen
� all or nothing semantics, no partial execution;

� whose changes become permanent after it commits
� a transaction is said to commit after it has successfully executed and

changes made by it have been written to the log (on disk);
� that leaves the database in a consistent state even if the system

crashes;
� whose, if aborted or rolled back before it commits, changes are

effectively not applied to the database (if applied they are undone).

114

© Narain Gehani
Introduction to Databases Slide 227

Transaction Conflict
� Two simultaneously executing transactions are

said to conflict if they access the same data item
with one of them updating the item.

� A conflict makes the order of execution of the
two simultaneously executing transactions
significant

� One transaction may
� be required to commit before the other
� have to be aborted

to ensure that the conflict does not cause
inconsistent semantics.

© Narain Gehani
Introduction to Databases Slide 228

Transactions
Formal Definition – ACID Properties

� Database transactions are actions with the
properties of
� atomicity,
� consistency,
� isolation, and
� durability.

collectively known as the ACID model
properties:

115

© Narain Gehani
Introduction to Databases Slide 229

Transactions
Atomicity

� A transaction is either executed
completely or not at all.

� Partial executions are not allowed
� may cause database to become inconsistent.

� Protects against database server crashes.
� Although a transaction is atomic from the

user perspective but for the database
server it consists of many operations.

© Narain Gehani
Introduction to Databases Slide 230

Transactions
Consistency

� A �correctly written� transaction operating
on a consistent database will leave it in a
consistent state.

� Database constraints satisfied before the
execution of the transaction must be
satisfied after its execution
� even though during the execution of the

transaction they may temporarily not be
satisfied.

116

© Narain Gehani
Introduction to Databases Slide 231

Transactions
Isolation

� A transaction must execute as if it was
executing alone even though there may be
other simultaneously executing
transactions.

© Narain Gehani
Introduction to Databases Slide 232

Transactions
Durability

� Updates of a transaction that has successfully executed must be
permanently reflected in the database.

� It is the responsibility of the database system to ensure that the
updates will be permanent.

� A transaction is said to have successfully executed when the
changes made by it have been are recorded in a log (on disk). The
changes are applied to the database after writing to the log.

� Recording the changes in the log is what makes the transaction�s
changes permanent even if the computer system crashes before the
changes are written to the database.
� Upon system recovery, the log will be examined for changes that need

to be reflected in the database.
� If there are such changes, they will be applied to the database.

117

© Narain Gehani
Introduction to Databases Slide 233

Transactions Example

� Consider a money �transfer� transaction in
a bank that transfers money from one
account.
� We want to transfer $100 from account

number 1001 to account number1005.
� If account 1001 does not have at least $100,

the transaction does nothing to the database.

© Narain Gehani
Introduction to Databases Slide 234

Transactions Example (Contd.)
� Accounts Table � Before & After Transfer

(ActNum is the primary key)

118

© Narain Gehani
Introduction to Databases Slide 235

Transactions Example (contd.)
� First, the transaction needs to see if there is at least $100 in the account.

START TRANSACTION;
SELECT ActNum, Balance
FROM Accounts
WHERE ActNum = 1001 OR ActNum = 1005;

� If the result is less than 100, then the transaction should be aborted by
executing

ROLLBACK;
� Otherwise, the transfer can proceed by executing the statements:

UPDATE Accounts
SET Balance = Balance � 100
WHERE ActNum = 1001;
UPDATE Accounts
SET Balance = Balance + 100
WHERE ActNum = 1005;

COMMIT;

© Narain Gehani
Introduction to Databases Slide 236

Transactions Example (contd.)
� Ensuring that there is enough money in the account is

part of the transaction:
� between the BEGIN and COMMIT statements
� or, between the BEGIN and ROLLBACK statements
� otherwise, another transaction can possibly change the amount

in the account before the transfer takes place.
� The money transfer can be made conditional in SQL.

� SQL-99 has the IF-THEN-ELSE conditional statement.
� The transaction code can be embedded in an application

written, for example, in Java using JDBC to connect to
the database.
� In such a case, a Java conditional statement can be used to

determine whether the transaction should be committed or rolled
back.

119

© Narain Gehani
Introduction to Databases Slide 237

Transactions Example & ACID
Properties

� The transfer transaction has three parts.
� It first checks the account balance.
� Then if the balance is less than $100, the transaction is aborted.
� Otherwise, the money is transferred and the transaction committed.

� ACID Guarantees:
� Atomicity: The amount withdrawn from one account and its deposit to

the other either succeeds or fails but there is no partial execution.
� Consistency: No constraints will be violated (only constraint is the

primary key column ActNum which is not impacted by the transaction).
� Isolation: The transfer transaction will correctly move $100 from one

account to another even in the presence of other simultaneously
executing transactions that may be interested in modifying the same
accounts.

� Durability: Once the transaction has successfully executed, its effects
will be reflected in the database, i.e., they will become permanent.

© Narain Gehani
Introduction to Databases Slide 238

Transactions Serializability
� Database systems allow simultaneous execution of

multiple transactions for better performance.
� To show that a set of simultaneously executing

transactions do not interfere or conflict with each other,
it suffices to show that their execution is equivalent to
some serial (sequential) execution.

� Simultaneous execution of transactions on different parts of a
database trivially corresponds to a sequential execution.

� The same applies for read-only transactions.
� Interesting cases arise when simultaneously executing

transactions read and update common objects.

120

© Narain Gehani
Introduction to Databases Slide 239

Transactions Serializability
(contd.)

� Suppose simultaneously executing transactions T1 and T2 both
want to access item Qty of the book B.

� It is the database system�s responsibility to ensure that the
simultaneous execution of T1 and T2 is equivalent to either

� T1 executes before T2 or
� T2 executes before T1.

� Here are the different possibilities:
� T1 and T2 both read Qty from the customer database but do not

change it. This simultaneous execution is equivalent to either of the
two orders, T1 before T2, or T2 before T1.

� T1 and T2 read Qty, then T2 changes Qty.
� In this case, there is only one order that is equivalent to the simultaneous

execution and that is T1 before T2.
� T1 and T2 both read Qty, both change Qty. In this case, the

simultaneous execution cannot be equivalent to any sequential order.
� Therefore one of the two transactions must be aborted and restarted so

that it reads the new value.

© Narain Gehani
Introduction to Databases Slide 240

Ensuring Serializability of
Transactions

� Serializability of transactions can be ensured by allowing
� only one transaction at a time,
� many simultaneous read transactions but no update transactions,
� many simultaneous transactions as long as they operate on different parts of the

database, or
� many simultaneous transactions and preventing conflicts by delaying some

transactions and aborting others.
� Allowing multiple transactions to execute simultaneously while ensuring

serializability
� complicates the implementation of a database system but
� it does reduce response time and maximize throughput

� In case of Everest Books database, there are many opportunities for
conflicts.

� For example, there will be conflicts between order transactions for the same
book � lots of people may want to order the same book in a short span of time,
say soon after a book has won a prestigious award like the Pulitzer Prize.

� The database item over which the conflict occurs is the number of copies Qty of
the book in stock.

121

© Narain Gehani
Introduction to Databases Slide 241

Locks
� Conflicts between transactions that simultaneously want to access the same

database items are prevented by using locks.
� they are variables used as flags or semaphores.

� Locks are associated with database items such as tables and rows.
� A lock indicates the sharing status of a database item � if it is being used by

a transaction and whether the transaction will just be reading its value or
updating it.

� The simplest lock is a binary lock.
� Two states indicating that the associated database item is either available for

reading or writing or not.
� Such locks do not allow multiple transactions to read the same database item

simultaneously.
� Variations of the binary lock with additional states allow multiple read

transactions but only one update transaction.
� A transaction requests read permission by requesting a �read� lock and

update permission by requesting a �write� lock:
� A read or write lock must be acquired by a transaction before it is allowed to

read or update a database item, respectively.

© Narain Gehani
Introduction to Databases Slide 242

Locks (contd.)
� Locks are implemented using variables that can be

updated by only one transaction at a time.
� To understand how locks are implemented, one needs to

understand the states of a lock.
� A lock�s state indicates whether or not the associated

database item is
� free for reading or updating,
� free for reading, or
� not free (either for reading or updating)

� The following state diagram illustrates how the state of a
lock changes it accepts read requests (Read) and write
requests (Write), and when a transaction that is done
with a lock frees the lock (Free):

122

© Narain Gehani
Introduction to Databases Slide 243

Locks (contd.)

© Narain Gehani
Introduction to Databases Slide 244

Locks – SQL
� SQL users do not have to worry about locking because it is done

implicitly.
� SQL code, when translated, contains code to acquire and release

locks.
� Consider the following SQL query that computes the total sales in

April 2004.

START TRANSACTION;
SELECT SUM(OrderInfo.Qty*OrderInfo.Price)
FROM OrderInfo, Orders
WHERE OrderInfo.OrderId = Orders.OrderId

AND ShipDate >= ′2004-04-01′
AND ShipDate <= ′2004-04-30′;

COMMIT;

123

© Narain Gehani
Introduction to Databases Slide 245

Locks (contd.)
� This transaction needs to access the tables OrderInfo

and Orders. These two tables should not be updated
while the query is computing the total sales.

� Here is what some of the generated code may look like:

get_read_lock("OrderInfo");
get_read_lock("Orders");

Code for computing the total sales
free_read_lock("OrderInfo");
free_read_lock("Orders");

© Narain Gehani
Introduction to Databases Slide 246

Lock Granularity

124

© Narain Gehani
Introduction to Databases Slide 247

Lock Granularity (contd.)

© Narain Gehani
Introduction to Databases Slide 248

Pros of Row Locking
� Good results for databases subject to large

number of transactions and high throughput.
� Fewer lock conflicts when accessing different rows in

different transactions.
� Fewer changes for rollbacks because the rows that

may have changed are easy to identify.
� A single row can be locked for a long time without

affecting most other transactions � a table locked for
a long time will slow the system because it locks all
the rows in a table.

125

© Narain Gehani
Introduction to Databases Slide 249

Cons of Row Locking
� Row locking takes more memory than table

locking
� each row locked requires a lock

� Row locking takes longer than table locking
� many more locks are required

� Row locking will be definitely much worse than
table locking if a scan of the whole table is
required (as in aggregation).

� Row locking can lead to the �phantom� problem
� a new row satisfying the locking criteria is inserted

into a table after the rows have been locked
(discussed later)

© Narain Gehani
Introduction to Databases Slide 250

Locks Required for a Query
� Consider the query we saw earlier, i.e.,

START TRANSACTION;
SELECT
SUM(OrderInfo.Qty*OrderInfo.Price)
FROM OrderInfo, Orders
WHERE OrderInfo.OrderId =

Orders.OrderId
AND ShipDate >= ′2004-04-01′
AND ShipDate <= ′2004-04-30′;

COMMIT;

126

© Narain Gehani
Introduction to Databases Slide 251

Locks Required for Query (contd.)

© Narain Gehani
Introduction to Databases Slide 252

Phantom Problem – Row Locking

� Consider a transaction T that queries only one table.
� Before T is executed, all the rows in the table satisfying

the WHERE expression of the SELECT statement in T are
locked.

� Then, but before T has committed, another transaction
arrives, adds a new row that also happens to satisfy the
WHERE expression of T, and commits.

� T will not �see� the new row even though it will be in the
table before T commits. The new row, called the
�phantom� row because it was not present initially,
should be part of the T�s computation.

127

© Narain Gehani
Introduction to Databases Slide 253

Phantom Problem & Serialization

� Consider transaction T1 that retrieves all orders
of a customer whose customer id is 91:

SELECT *
FROM Orders
WHERE CustomerId = 91;

� And a simultaneous transaction T2 that wants to
insert another order for the customer with id
equal to 91.

© Narain Gehani
Introduction to Databases Slide 254

Phantom Problem & Serialization
Locking Options

1. Table Orders locked
� T2 must wait for T1 to complete and commit.

2. Rows in Orders with customer id equal to 91 locked
� T2 does not have to wait for T1 to commit before inserting a

new order in the Orders table.
� Assume T1 starts before T2. Concurrent execution of

T1 and T2 must be equivalent to some serial order:
� If T1 commits before T2 commits, then the existence of an

equivalent order is trivially obvious.
� If T1 commits after T2 commits, then there is a problem. T1

should have seen the order inserted by T2. But this is not the
case if T1 locks (and reads) the rows of Orders table before
the row inserted by T2.

128

© Narain Gehani
Introduction to Databases Slide 255

Phantom Problem (contd.)
� T1 committing after T2 means that T1 did not execute in

isolation because it did not read the new row inserted by
T2.

� To avoid this problem, T1 must commit before T2.
� Under row locking semantics, this cannot be guaranteed.

� No guarantee on serialization since if T1 commits after T2 there
will be a conflict over a customer order (row) that did not exist
when T1 started.

� Solution of the phantom row problem requires preventing
future insertions of rows that match the criteria used by
T1 to select rows which it locked � until after it commits.

© Narain Gehani
Introduction to Databases Slide 256

Phantom Problem (contd.)
Solution

� Orders table is locked (lock released after T1 commits).
� T2 will not be able to insert the order until after T1 has

committed.
� Inefficient since it forces all transactions, even those that do not

conflict with T1 (say those inserting orders for different
customers) to be delayed until after T1 commits.

� Predicate locks are used to lock the set of rows of the
customer with customer id equal 91.
� Predicate locking does not suffer from the phantom row problem

because predicate lock checking is dynamic.
� The predicate lock, in our example, will checked before the

insertion of every row into the Orders table.
� The attempt by T2 to add a row with customer id equal to 91 will

be delayed until after T1 commits.

129

© Narain Gehani
Introduction to Databases Slide 257

Phantom Problem (contd.)
� Predicate locks are a good conceptual tool but they are

expensive to implement
� they must be evaluated for every row insertion.

� Databases such as MySQL lock indexes (data
structures for fast table access) using a technique called
next-key or index record locking, that produces results
similar to row locking but without the phantom problem.
� Instead of locking the rows directly, portions of the index that

point to the rows are locked.
� Index record locking requires an index on the search field.

� Of course, all this locking happens behind the scenes.

Users do not have to worry about locks.

© Narain Gehani
Introduction to Databases Slide 258

Starvation
� Multiple transactions can simultaneously hold a read lock

but only one transaction can have a write lock.
� Transactions requesting read locks automatically get preferential

treatment since they do not have to wait for the read locks to be
released.

� A transaction requesting a write lock for an item has to wait until all
the read locks on the item are released.

� It is possible that a transaction requesting a write lock will
never get it
� because of a steady arrival of transactions requesting read locks.

� A transaction requesting a write lock can be �starved� by
being forced to wait forever.

Such a transaction is said to be starved.

130

© Narain Gehani
Introduction to Databases Slide 259

Starvation
� To avoid starvation of a transaction requesting a

write lock:
� Suspend granting read locks when a write lock

request is pending.
� However, with this strategy, transactions requesting

read locks can starve.
� Refine strategy by

� honoring a read lock request, if read lock requests are
pending, every time between two successive requests
for write locks.

Once again, all this all happens behind the
scenes.

© Narain Gehani
Introduction to Databases Slide 260

Deadlocks

� Locks can cause a deadlock, a state in
which
� two or more transactions are each waiting for

the other(s) to release a lock and
� are unable to make progress until this

happens.

131

© Narain Gehani
Introduction to Databases Slide 261

Deadlocks
� Consider two transactions T1 and T2

� each wants to update the same two database items, A and B
� but they request locks in different orders
� T1 wants write locks, first for the database item A and later one

for B.
� T2 wants write locks, first for the database item B and later one

for A.
� The database system�s lock manager grants locks as

follows:
� T1 requests a write lock for A and gets it.
� T2 requests a write lock for B and gets it.
� T1 requests a write lock for B and is told to wait until it becomes

available.
� T2 requests a write lock for A and is told to wait until it becomes

available.

© Narain Gehani
Introduction to Databases Slide 262

Deadlocks (contd.)

132

© Narain Gehani
Introduction to Databases Slide 263

Deadlocks (contd.)
� At this point, transactions T1 and T2 are said to be in

deadlock.
� T1 is waiting for T2 to release the lock for B
� T2 is waiting for T1 to release the lock for A

� No progress will occur unless some radical action is
taken.

� Databases resolve deadlocks by aborting one or more of
deadlocked transactions so that the remaining
transactions can proceed.

� To break the deadlock one of T1 or T2 has to be aborted
� Databases automatically detects a deadlock and aborts or rolls

back a transaction.
� When aborted, a transaction releases the locks its holding.
� So if T1 is aborted, it will release the lock for A that it holds
� T2 will then be able to get the lock allowing it to proceed.
� After is aborted, T1 is rescheduled for execution.

© Narain Gehani
Introduction to Databases Slide 264

Deadlocks (contd.)
� There are several schemes for preventing deadlocks, E.g.
� Scheme 1

1. Transactions get all the locks they need at the very beginning.
2. Transactions must release all the locks immediately if they do not

get the locks they want and try again.
3. Potential problem

� A transaction may not be able to get the locks it wants because every
time it tries to get the locks, one or more locks may not be available.

� Sophisticated algorithms are used to avoid this problem.

� Scheme 2
1. The database items are linearly ordered.
2. Locks for these items must be requested in increasing order.
3. If a lock is not available, the transaction is forced to wait until the

lock is free.

133

© Narain Gehani
Introduction to Databases Slide 265

Deadlocks (contd.)
Back to the Example

� Scheme 1
� T1 and T2 will have to request locks for both A and B at the

beginning.
� One of T1 and T2 will get the locks while the other is forced to

wait until the first transaction finishes.
� Scheme 2

� Assume that A precedes B in the linear ordering specified for
lock acquisition.

� This will force both T1 and T2 to first request the lock for A and
then the lock for B.

� One of T1 and T2 will get the lock for A and the other will be
forced to wait until the lock is free.

� The successful transaction can then request the lock for B.

Deadlock is avoided in both cases.

© Narain Gehani
Introduction to Databases Slide 266

Locks & Serializability
� Using locks to control access to resources does not by

itself guarantee that concurrent execution of transactions
will correspond to some serial execution.

� To ensure serializability
� Transactions must follow some protocols when acquiring and

releasing locks.
� These protocols guarantees serializability but they do reduce

concurrency.
� One such protocol known as the two-phase locking protocol.
� The two-phase refers to the lock acquisition and release phases

that a transaction must follow.
� We will discuss three variations of the two-phase

protocols and how they lead to serializability.

134

© Narain Gehani
Introduction to Databases Slide 267

Locks & Serializability
Basic 2-Phase Locking

� Ensures serializability of concurrently executing transactions by
requiring every transaction to
� acquire locks it needs as it proceeds (acquisition or growth phase),
� release locks when done using the associated database items (shrinking

or release phase),
� perform all lock acquisitions before any lock release.

� The two-phase locking protocol suffers from
� Deadlocks

� Since a transaction acquires locks as it needs them, it may end up waiting for a
lock held by a 2nd transaction which is holding a lock wanted by the 1st
transaction.

� Cascading Aborts
� A transaction T releases locks when it is done using the associated database

items but before it commits or is aborted.
� Other transactions are free to get the released locks and access the

associated database items.
� These transactions may have be to be aborted if T is aborted � to prevent dirty

reads.

© Narain Gehani
Introduction to Databases Slide 268

Locks & Serializability
Basic 2-Phase Locking – Dirty Read Example

� Transaction T1
� locks table Books,
� updates the table,
� releases the lock.

� Then, before T1 commits or aborts, transaction T2
� locks Books,
� reads data from it,
� releases the lock.

� Although T2 has completed execution
� it cannot commit until after T1 commits because it is relying on

T1�s update to Books.
� In case T1 aborts or is aborted, T2 will have to be aborted since

the updates made by T1 will no longer be valid.

135

© Narain Gehani
Introduction to Databases Slide 269

Locks & Serializability
Basic 2-Phase Locking Example (contd.)

� Informally, we can see that the basic 2-phase locking
protocol will ensure that the execution of transactions T1
and T2 is serializable.
� If T2 uses the updates made by T1, then the database system

will ensure that T2 commits after T1.
� And if T1 aborts, then T2 will also be aborted.

� There may be a series of aborts.
� Just like T2�s fate depends upon that of T1, there may be other

transactions whose fate depends upon that of T1 (if they are also
executing simultaneously with T1 and depend upon T1) or on
the fate of T2, and so on.

� These transactions will also need to be aborted if T1 is aborted.

© Narain Gehani
Introduction to Databases Slide 270

Locks & Serializability
Conservative 2-Phase Locking

� Guarantees serializability without deadlocks & cascading aborts.
� Requires that a transaction

� acquire all locks before it starts;
� if all locks are not available, transaction releases all locks and waits until they are

available;
� Deadlocks do not occur because all locks are acquired in the beginning.
� There is no partial lock acquisition and waiting -- scenario that leads to

deadlocks.
� Aborts can occur because transactions will be able to read updates

made by uncommitted transactions.
� Transactions will be able to perform dirty reads.

� Reduces concurrency by requiring a transaction to acquire all locks at
the beginning even though it may not need them until much later.
� May increase execution time of transactions as it may take them longer to get

locks.

136

© Narain Gehani
Introduction to Databases Slide 271

Locks & Serializability
Strict 2-Phase Locking

To increase concurrency, a transaction can
acquire locks as it needs them
� can lead to deadlocks.

� Eliminates cascading aborts by requiring a
transaction to release locks only when it
commits or aborts (as part of the commit or
abort)
� prevents dirty reads.

Strict two-phase locking protocol is commonly
used.

© Narain Gehani
Introduction to Databases Slide 272

Locks & Serializability
Example

Consider the following 2 transactions that
execute simultaneously:

� Transaction NewOrder
� updates tables Orders, OrderInfo, and
Books to place an order for an existing
customer.

� Transaction CancelOrder
� update tables OrderInfo, Orders, and Books
to cancel an order

137

© Narain Gehani
Introduction to Databases Slide 273

Locks & Serializability
Example – Basic 2 Phase Locking

� Transactions acquire locks as needed but release them only after no
more locks are to be acquired and when the locks are no longer needed.

Deadlock
� NewOrder needs write locks for the tables: Books, Orders,

OrderInfo
� CancelOrder needs write locks for the following tables: Orders,

OrderInfo, Books
� These two transactions happen to execute as follows

� NewOrder: Get lock for table Books
� CancelOrder: Get lock for table Orders
� NewOrder: Get lock for table Orders ... waiting
� CancelOrder: Get lock for table Books ... waiting

One transaction must be aborted!

© Narain Gehani
Introduction to Databases Slide 274

Locks & Serializability
Example – Basic 2 Phase Locking

Dirty Read
� Another execution scenario:

� NewOrder: Get locks for Books, Orders, &
OrderInfo

� NewOrder: Make updates & complete execution
� NewOrder: Release locks (before committing)
� CancelOrder: Get locks for Books, Orders, &
OrderInfo

� CancelOrder: Make updates & complete execution
� CancelOrder: release locks (before committing)
� CancelOrder: Commit ... forced to wait

138

© Narain Gehani
Introduction to Databases Slide 275

Locks & Serializability
Example – Basic 2 Phase Locking

Dirty Read (contd.)
� Going forward there are two scenarios:

� NewOrder: Aborts
� CancelOrder: Aborted (relied on updates made by

NewOrder which will be undone because
NewOrder aborted)

or
� NewOrder: Commits
� CancelOrder: Commits

© Narain Gehani
Introduction to Databases Slide 276

Locks & Serializability
Examples (contd.)

Conservative Two-Phase Locking
� Transactions NewOrder and
CancelOrder will not deadlock

� Cascading aborts are possible.

139

© Narain Gehani
Introduction to Databases Slide 277

Locks & Serializability
Examples (contd.)

Strict Two-Phase Locking
� Transactions NewOrder and
CancelOrder may deadlock
� transactions are allowed to acquire locks as

they need them
� No cascading aborts.

© Narain Gehani
Introduction to Databases Slide 278

Locks & Serializability
Multi-Version Locking

� Database system keeps multiple versions of
database items (typically rows) to increase
concurrency by allowing a transaction to read
one version while another version is being
updated.

� The cost of this concurrency is more storage.
� Transactions may see an older version of a

database item
� Database will guarantee that the transaction sees a

consistent view of the database by guaranteeing
serializability.

140

© Narain Gehani
Introduction to Databases Slide 279

Locks & Serializability
Two-Version Locking

Most common version of multi-version locking.
� When transaction T acquires a write lock on a database

item, a new version of the item is created.
� T works on the new version.
� Meanwhile, other transactions can read the old version.
� When a write lock is outstanding on a database item,

read locks are allowed but on the old version only.
� When T is ready to commit, there must be no other

transactions with read locks on items for which T has the
write locks.
� All transactions with read locks on the old versions of the

database items write locked by T must have committed or
aborted.

� Otherwise, T must wait until the read locks are freed.

© Narain Gehani
Introduction to Databases Slide 280

SQL Isolation Levels
� Concurrent transactions can be made to execute

completely independently, that is, in isolation
� by ensuring that they do not �conflict� with each other.

� A transaction does not conflict with another concurrently
executing transaction if it
� does not or cannot read updates made by the other transaction
� update database items being read by the other transaction.

� In this scenario, transactions are executing in complete
isolation

� Such execution is said to be �serializable�
� there exists an equivalent serial execution producing the same

results.
� Executing transactions in serializable mode is the safest

mode
� results are guaranteed to be equivalent to a serial execution.

141

© Narain Gehani
Introduction to Databases Slide 281

SQL Isolation Levels (contd.)
� In serializable mode

� a transaction waits to access the database items it needs until
the transaction that preceded it in locking these items commits or
aborts.

� waiting reduces concurrency.
� To minimize or eliminate waiting & increase throughput

(amount of work per time unit), database systems offer a
choice of less than complete isolation.
� leads to non-serializable transactions,
� results may not be repeatable.

� Relaxing the complete isolation requirement of the
serializable mode can lead to
� dirty reads
� non-repeatable reads
� phantom� problem

© Narain Gehani
Introduction to Databases Slide 282

SQL Isolation Levels (contd.)
� To minimize or eliminate waiting & increase

throughput, SQL allows
� transactions to read the changes made by a

transaction that has not committed.
� Values read are �dirty� since they are not guaranteed to be

final values because they may be changed again or the
changes undone if the transaction aborts.

� SQL specifies 4 levels of transaction isolation
reflecting different levels of correctness of the
values read.

The degree of isolation of a transaction is
called its isolation level.

142

© Narain Gehani
Introduction to Databases Slide 283

SQL Isolation Level 1
READ UNCOMMITED

� No isolation between transactions.
� Reads are non-locking reads

� database items are read without locking.
� Reads can thus be dirty reads, and may not be

consistent
� they may not come from the same �snapshot� of the

database
� snapshot is a consistent view of the database, that

is, one that contains only changes made by
committed transactions.

© Narain Gehani
Introduction to Databases Slide 284

SQL Isolation Level 2
READ COMMITTED

� Same as Level 1 isolation but without dirty reads.
� Reads are consistent

� the value read reflects changes made only by committed
transactions.

� However, the reads are not repeatable because
between two reads

� the database item read may have been changed by a
transaction that commits its changes.

� Consider, for example, a transaction T1 that reads a
row from a table.

� Another transaction comes along, updates the row, and
commits.

� T1 will see the updated value when it reads the row again.

143

© Narain Gehani
Introduction to Databases Slide 285

SQL Isolation Level 3
REPEATABLE READ

� The reads are repeatable with transactions seeing a
consistent view of the database.

� To ensure that the reads are repeatable, the database
item to be read is locked for reading until the
transaction commits.

� Transactions see changes made by transactions that
committed before the item was locked and their own
changes but do not see changes made by later
transactions or uncommitted transactions.

� Level 3 isolation does not suffer from dirty or
inconsistent reads (from different snapshots) but it
does suffer from the phantom problem.

© Narain Gehani
Introduction to Databases Slide 286

SQL Isolation Level 4
SERIALIZABLE

� Supports serial execution of transactions.
� Transactions see a consistent view of the

database.
� Like the REPEATABLE READ isolation

level except phantoms are prevented!
� Transactions may be aborted and

applications or users must be prepared
to re-execute them.

144

© Narain Gehani
Introduction to Databases Slide 287

SQL Isolation Levels Examples
Isolation Levels 3 and 2

� Consider two users, U1 and U2,
interacting with a MySQL database server
to insert into and query records from a
table TEAM defined as follows:

CREATE TABLE TEAM(
First VARCHAR(30),
Last VARCHAR(30)

) ENGINE = InnoDB;

© Narain Gehani
Introduction to Databases Slide 288

SQL Isolation Levels Example
Repeatable Read – Level 3 (MySQL Default)

145

© Narain Gehani
Introduction to Databases Slide 289

SQL Isolation Levels Example
Repeatable Read – Level 3 (MySQL Default)

� U1 sees the empty table Team even after U2 has
inserted a pair of rows into Team and committed.

� Only after U1 commits, can U1 see the rows
inserted by U2. This ensures repeatable reads.

� If is important to read the latest committed value
of a database item, then in MySQL, the SELECT
statement can be used in locking mode, e.g.,

SELECT *
FROM Team IN LOCK SHARE MODE;

as shown below in row number 8 (grayed):

© Narain Gehani
Introduction to Databases Slide 290

SQL Isolation Levels Example
Repeatable Read–Level 3 (MySQL Lock Share Mode)

146

© Narain Gehani
Introduction to Databases Slide 291

SQL Isolation Levels Example
Repeatable Read – Level 3 – LOCK SHARE MODE

� In LOCK SHARE MODE, the SELECT statement
reads the latest values of the specified database
items.

� Repeating such reads will not necessarily yield
the same values.

� In case, the database items reflect changes
made by as yet uncommitted transactions, then
the SELECT statement will be forced to wait until
the transactions commit.

© Narain Gehani
Introduction to Databases Slide 292

SQL Isolation Levels Example
Read Committed – Level 2

147

© Narain Gehani
Introduction to Databases Slide 293

Transactions in MySQL
� MySQL, by default, operates in the auto commit mode

� Each SQL statement is treated as a transaction.
� Multiple SQL statements can be grouped together into a single

transaction using the brackets
START TRANSACTION;
�
COMMIT;

or
BEGIN;

�
COMMIT;

� To abort a transaction, instead of the COMMIT use the statement
ROLLBACK;

© Narain Gehani
Introduction to Databases Slide 294

Locking in MySQL/ InnoDB
� Uses row-level multi-version two-phase

locking.
� Presents a consistent version of the

database, a single snapshot of the
database, for reading to the transaction.
� Transaction will see changes made by other

transactions that committed before the
snapshot was taken

� Transaction will not see changes made after
the snapshot was taken.

148

© Narain Gehani
Introduction to Databases Slide 295

Specifying Isolations Levels
� MySQL supports all the four SQL isolation levels .

� The default Isolation is REPEATABLE READ.
� The isolation level can be changed using the using the
SET TRANSACTION statement

SET [SESSION | GLOBAL]
TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED | READ COMMITTED
| REPEATABLE READ | SERIALIZABLE};

� Users can specify the isolation level for the current
session using the keyword SESSION or for all future
sessions using GLOBAL.
� By default the isolation level is set for the next statement.

