
Two-Dimensional Numerical Simulations 

Motivation of these simulations was to observe instabilities of fluid flowing down a vertical and 

down an inclined (  
 

 
) plane. We predominantly focused on three types of wave profiles: 

stable traveling wave solution, convective instability and absolute instability. 

Governing equation and numerical method 

For two dimensional simulations, equation governing the film height is considered as follows [1]: 
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where   measures the film height over which anchoring adjusts from strong to weak, in our 

simulations     is used. Numerical solution is obtained using finite difference method. 

Precisely, implicit Crank–Nicolson method in time, second order discretization in space and 

Newton’s method are implemented [2]. Constant flux boundary condition is used at the inlet and 

prewetting condition at the contact line, also called precursor film: 
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where   is the precursor thickness, here       is used. The initial condition is chosen as a 

hyperbolic tangent to connect smoothly     and     at     . [3] For these simulations 

     .  

Figure 2. Convective instability N=22 for flow down the 
vertical. From top to bottom, t=0, 40, 80, 120. 

Figure 1. Flow down the vertical plane (N=16). From top 
to bottom, t=0, 40, 80, 120. 



Numerical Results for   
 

 
   

By varying parameter   and keeping other parameters constant, we obtained a range of   for 

each of the desired wave profiles mentioned above.  

Stable traveling wave solution:         . For this range of   the dominant capillary ridge 

is present, followed by a secondary strongly damped oscillation. Figure 1 shows wave profile for 

     at different times. For     we observe a traveling wave solution with a constant 

velocity which agrees with the result obtained from linear stability analysis (  (    
  ) ).  

Convective instability:            . These instabilities are characterized by sinusoidal 

waves followed by a constant state. Figure 2 illustrates      wave profile. Capillary ridge is 

still dominant. However, since the waves are moving faster than the front, as the first wave 

reaches the front, it interacts and merges with it. As the front moves forward its height decreases 

until the next wave arrives. Therefore the velocity of the front is not constant anymore.[3]  

Absolute instability:       . For early times 

we still observe flat film which disappears after 

sufficiently long time. Figure 3 shows wave 

profile for        Also two kinds of waves are 

present, sinusoidal waves and solitary type waves.  

 

 

 

 

Finding critical values of   from LSA 

To find the value of   where the transition occurs from stability to convective instability 

(   ) and from convective to absolute instability (   ) we will study the speed of the boundary 

of the expanding wave packet. Let us consider the governing equation (1) again. It follows from 

linear stability analysis by assuming        : 
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 Substituting     (     ), where          we obtain the dispersion relation 

Figure 3. Flow down the vertical plane (N=27). From top 
to bottom, t=0, 40, 80, 120. 
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It has been found that the speed of the left and right boundary of the wave packet [3] is given as 
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In the case of   
 

 
 we have                       we have  (
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. We 

can see that the right moving boundary (
 

 
)
 

is alwas positive and grather that the speed of leading 

capillary ridge. This explains why waves catch up and mearge with the front. The left moving boundary 

will determine which kind of wave profie will appear. If the speed of the left boundary, (
 

 
)
 

, is positive, 

than that boundary will move to the right. However, if it is slower than the front (        )   the 

region with sinelike waves will still grow, but there will always be a constant state region. Therefore, we 

will have convective instability for the following region: 
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Solving for   yields              . Comparison with numerical results is given in Table 1. We 

can see that the result agree within 5% error.  

 

Results for   
 

 
  

Using the inclination angle 
 

 
, produced similar results. The parameters in this case are       

√ 

 
   

√ 

 
          Numerical and analytical values for     and     are given in Table I. 

Again, we see a very good agreement.  
 

 
Table 1 

   
 

 
   

 

 
 

 Num LSA Num LSA 

    18.6 17.79 25.43 25.44 

    24.4 24.13 30.6 30.46 

NUMERICS 



Back ground:  

Numerical methods must be applied to this equation to obtain numerical solutions. For our simulations, we 

needed a method to solve to solve a PDE with either two or three variables. The general equation which 

models the height of a drop of liquid crystal is given by  
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In order to solve this equation numerically, the terms had to first be discretized. This discretization was 

accomplished by applying a centered finite difference based computational technique on the terms of 

the PDE. The way in which the equation was solved is summed up in the steps outlined below. For 

simplicity, the scheme is shown for the two dimensional case, but can be directly extended to three 

dimensions by repeating the steps for the additional space component. In two dimensions, the equation (1) 

above reduces to 
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The finite difference discretization procedure for this case is as follows: 

Spatial discretization: 

1. Discretization of the surface tension term: The surface tension term is given by 

   ( ( )    )         (3) 

(Where  ( )    ). We defined the forward and backward differences by 

     
       

  
            ̅   

       

  
      (4) 

The surface tension term (3) was thus discretized as 
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       (5) 

Where  (     ) is some approximation to  ( ). This scheme produces a five point stencil in the 

2D case (two points on either side of the given point   on one axis) and a nine point stencil in the 

3D case (two points on either side of the given point   on each axis). 

2. Discretization of the gravity term:  

The normal component of gravity term given by 
 

  
[    ] was discretized using the centered 

finite difference, and is expressed as 
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This scheme produces a three point stencil in the 2D case and a five point stencil in the 3D case. 

The parallel component of gravity term given by 
   

  
 was discretized as 
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The weak anchoring term was also discretized using the centered finite difference method. 

Time discretization: An implicit scheme was used to carry out the time discretization. The scheme used is 

a   scheme, and the PDE is discretized as follows 
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 Where      , and    is the discretization of the spatial terms of equation (1). The specific   scheme 

used is that for which    
 ⁄ , the implicit second-order Crank- Nicholson scheme. 



The result of the Crank-Nicholson scheme is a system of      nonlinear algebraic equations for 

  (    )              where    represents the number of grid points used. These nonlinear 

equations were linearized using newton’s method: newton’s method is used first to linearize equation (8) 

about a guess for the solution, and then solve the resulting linear system for the correction. These 

iterations are repeated until the convergence criterion is met. 

Our simulations: 

In this project, we ran 3D liquid crystal simulations using the programming language FORTRAN. We ran 

these for two different cases: 

1. Constant Flux: We ran the simulation for the hypothetical case where an infinite volume of liquid 

is used. In this case, the initial condition used is the semi-infinite hyperbolic tangent profile. The 

analysis carried out on this simulation was compared to the analysis carried out on equation (2). 

2. Constant Volume: We also ran simulation for the case where a fixed volume of liquid is used. In 

this case, the initial condition used was a square hyperbolic tangent profile. This simulation served 

to model the experiments which we carried out. 

Both of these simulations are shown in the graphs below. In both cases, the parameters used were: 

C = 1, B = 0, N = 10, U = 1, b = 0.1, beta = 1. These parameters indicate a liquid crystal flowing down a 

vertical surface (at a 90 degree angle). We ran these simulations for 10 time steps, and obtained an output 

files at each time step. The output files were then plotted and analyzed using MATLAB. For each case, we 

sought to find out the wave length k with the maximum growth rate  . To this end, we ran simulations for 

k = 6, 8, 10, 12, 14, 16, 18 and 20. We carried out growth rate analysis on the results of these simulations, 

and the results are shown below. 

Lastly, we ran a simulation for a liquid crystal flowing down an incline, as done by the experimental 

group. For this, we used the following parameters: C = 1, B =  
√ 

⁄ , N = 30, U =  
√ 

⁄ , and the wave 

length k = 14 (which we found to be the critical wave length for this case). 
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Growth Rate Analysis 

Using linear stability analysis, we find that instability growth follows an exponential model 

(     
  ).  The technique to get this data follows: 

All the simulations for this part (both constant volume and constant flux, for all different  ) were 

with parameters               and    .  This implies, these simulations are for flow 

down a vertical surface.  All simulations were run until t = 10 and output files are created every 1 

unit of time.  The growth rate,  , was obtained using a linear fit for the model:  
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The A values were calculated by subtracting the minimum of XZ profile at 
 

 
 (where we expect 

the middle of the wave front to be) and the XZ profile at y = 0.  The  

Below are the computed growth rate values with 95% confidence. 

  
  

 
 

           (Constant Volume)   (Constant Flux) 

8 0.7854         (             )  

10 0.6283          (             )           (             ) 

12 0.5236           (            )           (            ) 

14 0.4488          (             )           (              ) 

16 0.3927          (            )           (              ) 

18 0.3491           (            )            (               ) 

20 0.3142           (             )            (               ) 

For constant volume, the calculated   is: 



 

Above plot shows the expected relationship between   and t. 

However, for constant flux, the error is very large. 

 

The data obtained using the simulations did not exhibit exact behavior expected via LSA.  

Similar analysis was done in the SIAM paper, where the author used only the data until t = 5.  

Getting more output files from first few time units should give a better approximation for  . 



The comparison of the obtained data with experiment is not possible at the moment because no 

comparable data was obtained from the experiment.  
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