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A GRAPHICAL REPRESENTATION OF MEMBRANE
FILTRATION∗
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Abstract. We analyze the performance of membrane filters represented by pore networks using
two criteria: (1) total volumetric throughput of filtrate over the filter lifetime and (2) accumulated
foulant concentration in the filtrate. We first formulate the governing equations of fluid flow on a
general network, and we model transport and adsorption of particles (foulants) within the network
by imposing an advection equation with a sink term on each pore (edge) as well as conservation
of fluid and foulant volumetric flow rates at each pore junction (network vertex). Such a setup
yields a system of partial differential equations on the network. We study the influence of three
geometric network parameters on filter performance: (1) average number of neighbors of each vertex,
(2) initial total void volume of the pore network, and (3) tortuosity of the network. We find that total
volumetric throughput depends more strongly on the initial void volume than on average number
of neighbors. Tortuosity, however, turns out to be a universal parameter, leading to almost perfect
collapse of all results for a variety of different network architectures. In particular, the accumulated
foulant concentration in the filtrate shows an exponential decay as tortuosity increases.
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1. Introduction. In many real membrane filters, cavities in the membrane ma-
terial (pore junctions) are connected by capillaries or channels (pore throats) of length
significantly larger than their radius (see Figure 1). Such slender geometry allows for
simplifications of the equations governing filtration. At the same time, the mem-
brane pore structure can be viewed as a complex network with vertices and edges,
which represent the pore junctions and pore throats, respectively [14, 21]. A fluid
feed with foulants is then driven across the membrane through these channels by the
transmembrane pressure, while foulant is deposited on the pore walls.

There is a broad range of studies involving dynamics on networks, such as models
of the cardiovascular network [3], chemical reaction networks [23] and optimal control
in networks of pipes and canals [6], among many others. Accordingly, there are
various graph models that may be used to represent complex networks, including
pore networks in porous media. One such setup is the random geometric graph (RGG)
model that has garnered significant attention from theoreticians [16, 7], as well as from
applied scientists working on applications such as sensor networks [8], social science
[24, 12, 25, 2], neuroscience [15], and, most relevant to our work, filtration modeling
[22, 10]. The RGG setup involves generating a specified number of random points,
uniformly distributed within a specified domain, and then connecting any pair of
points that are closer than some search radius (according to the chosen metric).

Within the specific RGG setup used by Griffiths et al. [10] for filtration modeling,
the chosen domain is a unit cube (normalized on the membrane thickness and repre-
senting a portion of the filter membrane); the metric is the usual three-dimensional
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A GRAPHICAL REPRESENTATION OF MEMBRANE FILTRATION 951

(a) Experimental Image (b) Inlets and Interior Junctions

Fig. 1. Schematic: (a) an experimental image with lateral view of a filter cross section [1]; (b)
a corresponding (partial) graph representation with inlets on the top surface (blue) and interior pore
junctions and throats (red).

(3D) Euclidean distance; and to model top inlets and bottom outlets (see Figure 1(a))
random points are uniformly distributed on the top and the bottom surfaces of the
cube. This setup requires four parameters: the number of interior points, the search
radius, the number of top inlets, and the number of bottom outlets. Furthermore, the
fluid flow is modeled by the Hagen–Poiseuille equations, whose validity relies on the
physical assumption that the edges have a small aspect ratio (radius versus length),
prompting an additional constraint on the network generation.

Another important aspect of modeling the dynamics of filtration on the membrane
network is fouling. Membrane fouling occurs when contaminants transported by the
fluid feed within the pore network become trapped within it. There are three primary
fouling mechanisms in membrane filtration: (1) adsorption, (2) sieving, and (3) cake
layer formation. Adsorption occurs when small particulate foulants are deposited on
the pore walls due to physical or chemical interactions with membrane material (or
with existing particle deposits). Sieving involves fouling particles of size comparable
to the pore size that may partially cover or completely block upstream pore entries or
internal junctions. Cake formation occurs during the later stages of filtration, where
fouling particles are packed against each other inside the pore throats or on top of
the membrane surface, further restricting fluid flow.

In this work, we consider adsorptive fouling only, modeling two main features.
First, the fouling particles (referred to simply as particles henceforth) deposit on pore
walls as they are advected by fluid flow, thereby reducing foulant concentration in
the feed as it traverses the network. Second, pore radius decreases due to the particle
deposition on the pore wall. Within a continuum model for the particle concentration,
the first effect can be captured by an appropriate sink term in the advection equation
for the particle concentration, while the second may be modeled by an evolution
equation for the pore radius.

Classical models of particle advective transport on graphs were developed and
studied by Chapman and Mesbahi [4], but these authors did not incorporate a sink
term to capture external effects such as fouling. Meanwhile, Gu et al. [11] considered
a coarse discretization of a transport equation with deposition on regular layered pore
structures with interconnections, which can be generalized to more complex networks
(represented by graphs). In this work, we combine these two approaches and formulate
a transport equation on the network using the graph theoretical framework.
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952 BINAN GU, LOU KONDIC, AND LINDA J. CUMMINGS

Our principal contributions are to develop and solve a fluid flow and fouling
problem on a graph representing the pore network within a membrane filter, by con-
structing the associated operators based on the underlying graph, and to use our
model to identify important correlations between measurable network properties and
key filtration performance metrics. The novel random graph generation technique we
use achieves two primary goals: the constructed network is such that physical assump-
tions for the Hagen–Poiseuille fluid flow model remain valid, and the overall number
of model parameters is minimized. Our model is described in detail in section 2:
in subsection 2.1, we introduce the aspects of graph theory relevant to the present
problem; in subsection 2.2 we present a specific graph construction that represents a
membrane network; and in subsection 2.3, we describe the fluid flow in an arbitrary
pore (edge of the graph), before defining the necessary graph operators and associated
function spaces on graphs in subsection 2.4. With these building blocks we are then
able to set up the governing equations for fluid flow and foulant transport on a graph
in subsections 2.5 and 2.6, respectively. In subsection 2.7, we define the metrics that
will be used to characterize filter performance. In section 3 we introduce appropriate
scalings to nondimensionalize the model and in section 4 we outline the algorithm
we use to solve it. Section 5 contains our results, presented in the context of the
performance metrics defined in subsection 2.7. In section 6 we discuss our findings
and summarize conclusions.

2. Modeling. In this section, we describe and construct a graph that models a
membrane filter pore network, and set up the governing equations of fluid flow and
foulant transport through the network. We then introduce the performance mea-
sures associated with our membrane filter, which we will use to characterize filtration
effectiveness. We refer the reader to Table 1 for all notation used in this paper.

2.1. Graph theoretical setup. We consider a membrane filter as a slab of
porous material that consists of an upstream (top) surface containing pore inlets, a
downstream (bottom) surface containing pore outlets, and a porous interior compris-
ing membrane material as the solid region and pore junctions and throats as the void
region. We restrict our attention to a cubic subregion of the membrane slab in which
the top and bottom surfaces are squares with side length W separated by distance W
(the membrane depth). The pore throats in the interior of this subregion are assumed
to be circular cylinders connected at pore junctions, forming a network. We model
this interior network of pores by a graph G consisting of a set of vertices V (the pore
junctions) and edges E (the pore throats; see Figure 1), more compactly written as

Table 1
Key nomenclature used throughout this work.

vi ith vertex eij An edge connecting vertices vi and vj
V Set of all vertices E Set of all edges
Vtop Set of vertices on the top membrane surface Vbot Set of vertices at the bottom membrane surface
LW (Weighted) Graph Laplacian of G W Weighted adjacency matrix of G
M Incidence matrix of G MT Incidence matrix transpose
P (vi) Pressure at the vertex vi Ci Concentration in vertex vi (unit of number per volume)
P0 Pressure at membrane top surface C0 Foulant concentration in the feed solution
Kij Conductance of edge eij Qij Flux through edge eij
Rij Radius of edge eij Aij Length of edge eij
W Side length of the square cross section χ (·, ·) Metric on V
D Search radius Ntotal Total number of vertices
Dmin Minimal edge length τ Tortuosity
µ Fluid viscosity α Parameter related to particle volume
Λ Affinity between the foulant and the pore wall (unit of velocity) N Average number of neighbors for a graph G
H Throughput Cacm Accumulated foulant concentration at membrane outletD

ow
nl

oa
de

d 
06

/1
6/

22
 to

 1
28

.2
35

.1
2.

25
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A GRAPHICAL REPRESENTATION OF MEMBRANE FILTRATION 953

G = (V,E). The set of vertices V consists of pore inlets on the membrane top (up-
stream) surface, pore junctions in the interior of the membrane material where edges
(pores) meet, and pore outlets at the downstream surface of the filter. Each edge
e ∈ E represents a pore throat that connects two vertices. From a fluid dynamics
perspective the graph forms a flow network, with fluid flowing along the edges and
through the vertices. Each edge of the graph is associated with a weight to be speci-
fied depending on the context; in our model the weights are associated with the fluid
flux through the edge. In constructing G we begin with an undirected graph, with
directionality to be imparted by the direction of fluid flow (once defined).

Each vertex v ∈ V is associated with a Euclidean position vector X (v) =
(X1 (v) , X2 (v) , X3 (v)) ∈ R3, where coordinates X1, X2 lie in the plane of the mem-
brane, while X3 is measured perpendicular to the membrane in the direction of flow.

Definition 2.1 (vertex set). Let X3 (v) be the depth of the vertex v, measured by
the shortest distance from the vertex to the membrane inlet surface. Let Vtop, Vbot ⊂ V
be the set of vertices that lie in the top and bottom membrane surfaces, respectively,

Vtop = {v ∈ V : X3 (v) = 0} , Vbot = {v ∈ V : X3 (v) = W} ,

where W is the depth of the membrane. The set of vertices in the interior of the
membrane is given by Vint = V \ (Vtop ∪ Vbot).

We further assume that the graph is simple, i.e., no vertex is connected to itself,
equivalent to the assumption that fluid always flows out of a pore junction.

Definition 2.2. An edge eij ∈ E ⊆ V × V is a pair (vi, vj), with i ̸= j whose
existence is governed by a connection law (to be described). We do not distinguish
between the order of the pair, namely, eij = eji.

2.2. Graph generation for a membrane network. Here we describe a ran-
dom graph model in the specific context of membrane filtration by clarifying the
constituents of Vtop, Vbot, Vint, and E, using a variant of the RGG.

In the interior of a rectangular box Ω with square cross sections of side length W
and height 2W , Ω := [0,W ]× [0,W ]×

[
−W

2 , 3W
2

]
, we generate independent uniformly

distributed random points in each cartesian coordinate, from which our set of vertices
will be taken. To set up a connection rule for vertices in order to define edges, we first
introduce a physically motivated assumption. Earlier work such as that of Iritani [13]
and Siddiqui, Arif, and Bashmal [19] suggests that pore throats in certain types of
membrane filters are approximately cylindrical and slender, with Rij/Aij ≪ 1, where
Rij and Aij are the radius and length, respectively, of the edge (pore throat) eij
connecting vertices (pore junctions) vi and vj . We assume our model membrane filter
to be of this type, justifying the use of the Hagen–Poiseuille framework [17] to model
steady laminar flow of fluid, assumed to be Newtonian with viscosity µ, within each
edge (details of the flow model are in subsection 2.5). In all simulations we present,
the initial edge radii are the same for all i, j (though they will shrink at different rates
under subsequent fouling depending on local particle concentration), thus validity of
the Hagen–Poiseuille model requires that the length of each edge must exceed a certain
threshold, Dmin. Meanwhile, to tune vertex connectivity, we prescribe a parameter D
as the maximum possible edge length. More precisely, we define the edge set,

E = {(v, w) ∈ V × V : Dmin < χ (v, w) < D} ,(2.1)

where χ (·, ·) is the metric on our graph. In this paper, we investigate and compare
two distinct metrics: (1) Ω is treated as an isolated domain, with no pores entering
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954 BINAN GU, LOU KONDIC, AND LINDA J. CUMMINGS

or leaving through the four sides parallel to the X3 direction, representing an isolated
subunit of the whole membrane (isolated case), and (2) Ω is treated as a periodic
domain such that any pore exiting through one of these four sides reenters on the
opposite side (periodic case). In each of these two cases the metric is defined by

χ (v, w) =

{
∥X (v)−X (w)∥2 , isolated,

minz

∥∥∥X (v)−X (w)− (z, 0) | z = {−W, 0,W}2
∥∥∥
2
, D ≤ W

2 , periodic,

(2.2)

where we note that the periodic metric wraps points around the boundaries in the X1

andX2 directions. This metric effectively determines the pore lengths Aij = χ (vi, vj).
All scenarios considered in this paper have search radius D ≤ W

2 , so we avoid the
complication of having pores connect to each other twice (in the periodic case).

To generate the set of upstream (top) inlets Vtop and downstream (bottom) outlets
Vbot, we cut Ω with two horizontal planes, X3 = 0 (upstream cutting plane) and X3 =
W (downstream cutting plane). The points of intersection of these planes and the
edges defined by (2.1) form the set of pore inlets Vtop and outlets Vbot, respectively (see
Figure 2). All points between the planes X3 = 0,W form the set of interior vertices
Vint. This cutting procedure effectively eliminates two parameters (number of inlets
and outlets) from the RGG setup proposed by Griffiths et al. [10]. We also impose two
geometric constraints: (1) total volume of the edges generated by the above scheme
cannot exceed that of the box and (2) total cross-sectional area of all inlets (resp.,
outlets) cannot exceed the area of the top (resp., bottom) membrane surface.

Our setup ensures that vertices in the top and bottom membrane surfaces are
not connected by any edges that lie in the same surface. Another nice feature of
our graph generation is that top inlets and bottom outlets are always connected to

(a) 2D schematic of the 3D
graph generation

(b) 3D realization with the periodic metric

Fig. 2. Labels for (a) and (b): red filled circles form Vint, blue filled circles form induced inlets
Vtop, and black filled circles form induced outlets Vbot. In (a), blue dotted lines are cutting lines
(planes in three dimensions), and magenta circles are discarded points. The blue and orange dotted
circles form the search annulus enforced by D and Dmin. In (b), periodicity is enforced only through
the four interior walls per (2.2).
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A GRAPHICAL REPRESENTATION OF MEMBRANE FILTRATION 955

interior points, a feature that the classical RGG setup does not guarantee (some inlets
or outlets may be isolated with positive probability and must be regenerated).

2.3. Flow in an edge. We now briefly describe how Newtonian fluid of viscosity
µ flows through a single edge (pore), before introducing the definitions of the relevant
graph operators and associated function spaces (in subsection 2.4), necessary to de-
scribe flow through the whole network. Two key physical quantities specify the flow:
pressure P (vi) at each vertex vi ∈ V and flux Qij through each edge (vi, vj) ∈ E.
For each such edge, with length Aij and radius Rij (assumed to depend only on i, j
and time T in the following, but see the more detailed discussion in subsection 2.6),
we use the Hagen–Poiseuille equation to describe fluid flow through it. This law gives
fluid flux Qij in (vi, vj) as

Qij = Kij (P (vi)− P (vj)) , (vi, vj) ∈ E,(2.3)

where Kij are the entries of a weight matrix K listing the conductance of each edge,

Kij =

{
πR4

ij

8µAij
, (vi, vj) ∈ E,

0 otherwise.
(2.4)

Note that Qij is spatially uniform within the edge under the Hagen–Poiseuille frame-
work. Moreover, to ensure the Hagen–Poiseuille approximation remains valid we
require that the aspect ratio of each edge, Rij/Aij , is small, enforced by choosing
Dmin (introduced in (2.1)) sufficiently large that

Rij

Aij
≤

max
(vi,vj)∈E

Rij

Dmin
≪ 1.

To solve (2.3) on a graph with many edges we must utilize the graph structure to
express, for example, the pressure difference P (vi)−P (vj) in (2.3), while maintaining
flux conservation at each vertex. We introduce the necessary operators below.

2.4. Operators and function spaces on graphs. We now introduce the func-
tion spaces and operators required to solve for the above-defined flow on our graph.
First, define the set of vertex functions

V =

{
u : V → R :

∑
x∈V

u (x)
2
< ∞

}
,(2.5)

endowed with inner product (u · v)V =
∑

x∈V u (x)v (x), and the set of edge functions

E =

F : E → R :
1

2

∑
x,y∈V

wxyF (x, y)
2
< ∞

 ,(2.6)

where F is a skew-symmetric function that satisfies

F (x, y) = −F (y, x) ,(2.7)

also known as the flow condition, and wxy are specified weights. This space is endowed
with weighted inner product

(F 1 · F 2)E =
1

2

∑
x,y∈V

wxyF 1 (x, y)F 2 (x, y) .
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956 BINAN GU, LOU KONDIC, AND LINDA J. CUMMINGS

An example of a vertex function in the context of our problem is the pressure at each
pore junction, while flux is an edge function when a well-defined weight is specified.

We next introduce the incidence matrix (and its transpose), a matrix opera-
tor that encodes the most fundamental information of a network represented by a
graph—an array specifying the vertices that each edge connects. Its operation on
edge functions provides a finite difference of quantities prescribed at connected ver-
tices.

Definition 2.3 (incidence matrix and transpose). Let G = (V,E) be a graph.
The incidence matrix M is a linear operator M : V → E such that for u ∈ V,

(Mu) (vi, vj) = u (vi)− u (vj) , vi, vj ∈ V.(2.8)

The transpose MT : E → V is also a linear operator that satisfies

(Mu · F )E =
(
u ·MTF

)
V , u ∈ V, F ∈ E .(2.9)

A direct calculation of (2.9) using the above definitions yields the identity(
MTF

)
(x) =

∑
y:(x,y)∈E

wxyF (x, y) ,(2.10)

which computes a weighted sum of the edge functions whose edges connect to x.
Moreover, each graph G can be associated with a graph Laplacian L, an item

central to graph analysis.

Definition 2.4 (graph Laplacian). The W-weighted graph Laplacian is given by

LW := D−W,(2.11)

where D is the (diagonal) W-weighted degree matrix for G, with entries

Dij =

{∑|V |
k=1 Wik, j = i,

0 otherwise,
(2.12)

and W is a weighted adjacency matrix, with nonnegative entries Wij when (vi, vj) ∈
E, to be specified according to context. We also say that eij is an edge connecting vi
and vj iff Wij > 0 (or simply, vi and vj are connected or adjacent).

LW is symmetric since W is, and the nonzero entries in the diagonal matrix D
represent the respective row sums of W. An unweighted version of LW corresponds
to the case where Wij = 1 for every eij ∈ E, and thus each entry of the adjacency
matrix is an indicator that identifies an edge between a pair of vertices. In this case,
each diagonal element of D is the number of edges connected to each vertex.

Combining (2.8), (2.10), and (2.11) we obtain the classical result connecting the
incidence matrix and the graph Laplacian.

Proposition 2.5. For u ∈ V, MTMu = LWu.

This result (a proof of which is given by Grady [9]) provides the basis for theoreti-
cal understanding of the structure of M and, in turn, LW. The continuum analogue of
this result is the equivalence between the divergence of a gradient and the Laplacian.

In many applications, the choice of weights W depends on the physical problem
of interest. In the context of membrane filtration it is natural to consider weights
such as conductance and flux, which we describe in subsection 2.5 in more detail. We
will apply Proposition 2.5 to set up the flow problem on our graph G.
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2.5. Flow on a graph. In this section, we outline a general approach to describe
fluid flow on a graph using the definitions given in subsection 2.4. We set up the system
of governing equations using the structural information of G, i.e., the graph Laplacian
LW with a properly chosen weight matrix W.

First, we rewrite (2.3) using the incidence operator (2.8),

Qij = Kij (P (vi)− P (vj)) = Kij (MP ) (vi, vj) , (vi, vj) ∈ E,(2.13)

where Kij is given by (2.4). The values of the pressure at the vertices, P (vi) for each
vi ∈ V , form a vector of length |V | (a vertex function, P ∈ V). The flux values Qij

naturally form a matrix. Note that Q is an edge function, Q ∈ E , since it satisfies the
flow condition (2.7). Next, we impose conservation of flux at each junction,∑

vj :(vi,vj)∈E

Qij = 0, vi ∈ Vint.(2.14)

Using (2.10) with F = MP , using (2.13), and noting that Q ∈ E , we obtain for
vi ∈ Vint,

0 =
∑

vj :(vi,vj)∈E

Qij =
∑

vj :(vi,vj)∈E

Kij (MP ) (vi, vj) =
(
MTMP

)
(vi) = (LKP ) (vi) ,

(2.15)

to which we append the boundary conditions

P (v) = P0, v ∈ Vtop; P (v) = 0, v ∈ Vbot,(2.16)

modeling the transmembrane pressure difference that drives fluid flow.
Once we solve the linear system (2.15)–(2.16) for pressure P , we use (2.13) to

compute the entries of the flux matrix Q.

2.6. Foulant advection and adsorptive fouling. The previous section was
concerned solely with the flow of Newtonian fluid through the graph. Here we address
the fact that in filtration the fluid is a feed solution carrying particles, which are
removed by the filter, leading to fouling. Fouling can occur via a number of distinct
modes; we consider only adsorptive fouling by particles much smaller than pores,
which are transported through the network by the flow and deposit on pore walls.

We use a continuum model for the particle (foulant) concentration within the
feed. To characterize particle transport on a network, we must describe the transport
on each edge, accomplished via an advection equation with an adsorptive sink [18, 11],
then impose conservation of particle flux at each vertex. For each edge eij = (vi, vj)
of length Aij , with Y a local coordinate measuring distance along the edge from vi
(positive in the direction of flux Qij), let Cij (Y, T ) be the particle concentration at
any point of the edge at time T , then

Qij
∂Cij

∂Y
= −ΛRijCij , 0 ≤ Y ≤ Aij ,(2.17a)

Cij (0, T ) = Ci (T ) , (vi, vj) ∈ E,(2.17b)

where Λ is a parameter (with dimensions of velocity) that captures the affinity between
the foulant and the pore wall. In practice this could change depending on whether
the pore wall is clean or already fouled by particle deposits; in this work we assume Λ
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is constant throughout the filtration. We denote by Ci (T ) the foulant concentration
at the vertex vi, which acts as a boundary condition for the foulant concentration Cij

flowing to downstream edges. The array of Ci (T ) values forms a vertex function C.
For vi ∈ Vtop, Ci (T ) is prescribed by imposing a constant boundary condition (the
concentration C0 in the feed solution), and conservation of particle flux is imposed to
determine the Ci (T ) for vi ∈ V \Vtop.

The system (2.17a), (2.17b) is simple, but once coupled to an evolution equation
for pore radii Rij(Y, T ) and solved on many different (large) graph realizations to
obtain reliable statistics, it is time-consuming to solve numerically. We therefore adopt
a convenient approximation (discussed further below), assuming that pore radius
does not change appreciably along individual pores, and may thus be considered
approximately independent of the coordinate Y . With this assumption, we observe
that the system (2.17a), (2.17b) has the analytical solution

Cij (Y, T ) = Ci (T ) exp

(
−ΛRij (T )

Qij
Y

)
, 0 ≤ Y ≤ Aij .(2.18)

We write C̃ij (T ) := Cij (Aij , T ) to represent the foulant concentration flowing from
vi into an adjacent vertex vj . Define

Bij (T ) := exp

(
−ΛRij (T )Aij

Qij

)
,(2.19)

as the multiplicative factor by which foulant concentration changes over the length
Aij of the edge. By conservation of particle flux at each vertex vi (suppressing the
temporal and spatial dependence for simplicity of notation),

0 = −

outgoing︷ ︸︸ ︷∑
vk:(vi,vk)∈E

QikCi +

incoming︷ ︸︸ ︷∑
vk:(vi,vk)∈E

QkiC̃ki, vi ∈ V \Vtop,(2.20)

= −Ci

∑
vk:(vi,vk)∈E

Qik +
∑

vk:(vi,vk)∈E

QkiC̃ki,

= −Ci

∑
vk:(vi,vk)∈E

Qki +
∑

vk:(vi,vk)∈E

QkiBkiCk,(2.21)

Ci (T ) = C0, vi ∈ Vtop, ∀T ≥ 0,(2.22)

where C0 is the constant foulant concentration in the feed solution. Note the conser-
vation of flux used here to derive (2.21) follows a revised definition of the flux matrix
Q (see (B.1) in Appendix B). The first term in (2.20) accounts for all outgoing parti-
cle flux from vertex vi, the second for all incoming flux. Conservation of flux at each
vi ∈ V \Vtop and the definition of C̃ij are applied in (2.21), which can be written more
compactly using Q as a weight matrix and the in-degree weighted graph Laplacian
Lin
Q : l2 (V \Vtop) → l2 (V \Vtop),

Lin
Q := DQT − (Q ◦B)

T
,(2.23)

where ◦ is the Hadamard product (elementwise matrix product). This operator is
similar to (2.11) but with a notion of directionality imparted by Q (also discussed
by Chapman and Mesbahi [4]). The term DQT is a QT-weighted degree matrix (per
(2.12)) that accounts for total incoming (upstream) flux of vi (thereby “in-degree”).
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The last term, which contributes to the off-diagonal entries of Lin
Q, displays the in-

coming flux reduced (multiplicatively) by the foulant deposition effect reflected in B.
Altogether, the transport equation for foulant concentration can be concisely written
as

Lin
QC = (Q ◦B)

T
C0, C ∈ l2 (V \Vtop) ∀T ≥ 0,(2.24)

C0 (T ) = (C0, . . . , C0, 0, . . . , 0)
T
,(2.25)

with boundary condition C0 specified for each v ∈ Vtop (the number of nonzero entries
C0 in C0 is equal to |Vtop|, per (2.22)). By solving this linear system, we obtain the
particle concentration Ci at each vertex vi ∈ V \Vtop.

We assume that the pore radius shrinkage due to adsorption follows a simple
model (used by Sanaei and Cummings [18], among others) such that its rate of change
is proportional to local particle concentration. With the approximation introduced
above, that pore radius Rij varies only modestly with distance Y along the pore, we
assume that its rate of shrinkage is determined by the foulant concentration at the
upstream1 vertex vi,

dRij

dT
= −ΛαCi, Rij (0) = Rij,0, (vi, vj) ∈ E,(2.26)

where α relates to foulant particle volume; see Appendix A. We also assume that all
radii initially take the same value, i.e., Rij,0 = R0. This final equation (2.26) closes
the membrane filtration model with adsorption.

Our assumption that pore radius is spatially uniform is motivated by significant
computational cost savings; we have verified that the simulations reported later in the
manuscript are more than 100 times faster compared to those where this simplification
is not used. The price to pay for this saving is a slight overestimate of the membrane
resistance, and therefore an underestimate of the total throughput. To confirm that
the approximation introduced by the model has only a minor influence, we have
directly compared a subset of results obtained using this model with results obtained
using the full model that allows Rij(Y, T ), finding that the difference in throughput is
on average around 10% at maximum (and much smaller than 10% where the maximum
pore radius D is small compared to the membrane thickness W ). The differences in
computed values of the particle concentration are smaller still. We consider that this
is reasonable, in particular since the approximation allows us to perform efficiently
a large number of simulations and explore the influence of variability of results with
respect to the model parameters of interest.

In simulating filtration through a network we impose a stopping criterion that
membrane filtration ends when there exist no flow paths between any vertices in Vtop

and Vbot, due to pore closures (individually characterized by Rij = 0). The criterion
is checked by a pathfinding algorithm. We terminate the filtration at the earliest
time Tfinal that the criterion is satisfied. Note that in physical membranes, even when
adsorptive foulants have accumulated to the extent that the pore is essentially closed,
leakage through the pore may still take place; we have not included such effects in
the present model.

2.7. Measures of performance. Volumetric throughput of a membrane filter
over its operational lifetime is a commonly used measure of overall efficiency.

1This concentration is chosen because it will dictate, in practice, the fastest shrinkage rate at the
upstream end of the pore, and pore resistance is dominated by the narrowest pore radius.
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Definition 2.6. The volumetric throughput V (T ) through the filter is defined by

H (T ) =

∫ T

0

Qout (T
′) dT ′, Qout (T ) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

Qij (T ) ,

where Qout (T ) is the total flux exiting the filter.

In particular, we are interested in Hfinal := H (Tfinal), the total volume of filtrate
processed by the filter over its lifetime.

Another performance measure is the accumulated foulant concentration in the
filtrate, which captures the aggregate particle capture efficiency of the filter.

Definition 2.7. The accumulated foulant concentration is defined by

Cacm (T ) =

∫ T

0
Cout (T

′)Qout (T
′) dT ′∫ T

0
Qout (T ′) dT ′

,

where

Cout (T ) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

Cj (T )Qij (T )

Qout (T )
.

Of particular interest is Cacm (Tfinal), which provides a measure of the aggregate
particle capture efficiency of the filter over its lifetime.

3. Nondimensionalization. We nondimensionalize the model presented in sec-
tion 2 with the following scales:

P = P0p, X = Wx, Aij = Waij ,

(D,Dmin) = W (d, dmin) , Rij = Wrij , R0 = Wr0,

Qij =
πW 3P0

8µ
qij , Kij =

πW 3

8µ
kij , kij =

r4ij
aij

,

C = C0c, Y = Wy, Λ =
πWP0

8µ
λ, T =

W

ΛαC0
t, V =

W 3

αC0
v.

(3.1)

Under these scalings we derive dimensionless equations for pressure p and flux q,

Lkp = 0,(3.2a)

p (v) = 1 ∀v ∈ Vtop; p (v) = 0 ∀v ∈ Vbot,(3.2b)

qij = kij (p (vi)− p (vj)) ∀ (vi, vj) ∈ E,(3.2c)

where Lk is defined in (2.11); for foulant concentration c,

Lin
q c = (q ◦ b)T c0, Lin

q = DqT − (q ◦ b)T , c ∈ l2 (V \Vtop) ,(3.3a)

c0 = (1, . . . , 1, 0, . . . , 0)
T
, bij = exp

(
−λrijaij

qij

)
,(3.3b)

where Lin
q is given by (2.23); and for pore radius rij (for the pore eij = (vi, vj)),

drij
dt

= −ci, rij (0) = r0, ∀ (vi, vj) ∈ E.(3.4)D
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The dimensionless throughput is given by

h (t) =
1

λ

∫ t

0

qout (t
′) dt′, qout (t) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

qij (t) ,(3.5)

and hfinal := h (tfinal). The dimensionless accumulated foulant concentration is written
as

cacm (t) =

∫ t

0
cout (t

′) qout (t
′) dt′∫ t

0
qout (t′) dt′

,(3.6)

where

cout (t) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

cj (t)qij (t)

qout (t)
.

4. Algorithm. We summarize the network generation protocol and solution
technique for the proposed model equations in Algorithm 4.1. We refer the reader
to a worked example in Appendix C for a better visualization of how the governing
equations evolve on a very simple network and how our chosen performance metrics
depend on the model parameters.

Algorithm 4.1. Filtration with adsorption.

1. Initialization
(a) Generate uniformly Ntotal random points in box [0, 1]

2 × [−0.5, 1.5].
(b) Connect all points separated by a distance smaller than d but larger than

dmin using the metric χ (periodic or isolated). Discard isolated points.
(c) Truncate the box with cutting planes at x3 = 0 and x3 = 1; record points

with 0 < x3 < 1 as the set of interior points Vint; label intersections
between cutting planes and edges as inlets Vint for intersections at x3 = 0
and outlets Vout for those at x3 = 1. Set V = Vint ∪ Vtop ∪ Vbot.

(d) Initialize radii rij,0 for (rij)(vi,vj)∈E .

2. Fluid flow
(a) Find pressures p and fluxes q by solving (3.2a)–(3.2c).

3. Foulant concentration
(a) Initialize concentrations c0 (per (3.3b)) for vi ∈ Vtop.
(b) Find foulant concentration c by solving (3.3a)–(3.3b).

4. Adsorption
(a) Evolve each pore radius rij via (3.4) until it decreases to 0 and stays at

0 for the rest of the filtration.
5. Check stopping criterion. Stop if satisfied.
6. Compute throughput using (3.5).
7. Update conductance k and weighted graph Laplacian Lk.
8. Increment time t → t+ dt and return to (2).

5. Results. In this section, we present numerical results on how filter perfor-
mance metrics, such as total throughput and accumulative foulant concentration (in-
troduced in subsection 2.7), depend on filter geometry, characterized by three main
geometric network parameters detailed below. For each metric/parameter pair consid-
ered we first describe the observed trends and compare the results between the isolated
and periodic network configurations. Then, we discuss how the findings are related,
with a focus on identifying universal parameters that describe filter performance.

D
ow

nl
oa

de
d 

06
/1

6/
22

 to
 1

28
.2

35
.1

2.
25

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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5.1. Geometric network parameters. To investigate different network archi-
tectures, we introduce three geometric parameters. The first is the average number
of neighbors for interior vertices/junctions,

N :=
|E|
|Vint|

.

This parameter provides one way to characterize the connectivity strength of a net-
work. We compute N only over interior vertices, as any inlet or outlet has exactly one
neighbor due to our network generation protocol. Second, the initial void volume,

Vol0 =
π

2

∑
(vi,vj)∈E

aijr
2
ij (t = 0) =

πr20
2

∑
(vi,vj)∈E

aij ,(5.1)

provides an estimate of how much fluid the filter can process initially, and how much
surface area is available for foulant adsorption (since the initial pore radius is the
same for all pores, the initial total pore surface area is given by 2Vol0/r0). Since
the representative membrane volume we consider is a unit cube in our dimensionless
framework, Vol0 is exactly the initial membrane porosity. Last, we consider tortuosity
τ , defined by the average length of paths (defined with respect to flow paths) that
connect the top and bottom membrane surface through the network, normalized by
the membrane thickness (the shortest possible path). A rigorous definition of τ is
given in the appendix (Definition B.2 and (B.4)).

Our input parameters (d,Ntotal) (see Algorithm 4.1) are chosen so that the vol-
ume and area constraints (initial total pore volume should not exceed that of the
representative unit membrane cube, and total pore cross-sectional area on membrane
top and bottom surfaces should not exceed the area of the unit square; see section
2.2) are not violated, and so that the generated graphs are nontrivially connected
from top to bottom surfaces. The ranges of d and Ntotal are [0.1, 0.45] and [100, 5000],
respectively. In all simulations we fix r0 = 0.01, dmin = 0.06, λ = 5 × 10−7 and
produce data curves for each chosen d-value (represented by the same marker) by
varying Ntotal.

Due to the random nature of our network generation, we compute the average
of quantities of interest over a number of realizations. For simplicity, we do not use
additional notation to indicate such averaged quantities. For all results below, each
data point is obtained by averaging over 500 simulations, i.e., 500 realizations of a
random graph with parameter pair (d,Ntotal). We histogram these 500 realizations
in the supplement for each pair (d,Ntotal), to demonstrate that their variance is
influenced only by geometric parameters, justifying the sufficiency of this number of
realizations. All results are shown for the two cases in which the underlying random
graphs are generated with isolated and periodic boundary conditions, with results
(data points in blue and red, respectively) compared side-by-side.

5.2. Initial void volume and average number of neighbors. In this section,
we present results showing the dependence of performance metrics on two geometric
parameters: initial void volume Vol0 and average number of neighbors N .

Figure 3 shows total throughput hfinal against initial void volume Vol0 on a loglog
scale, for various d-values. Both quantities are increasing functions of the initially
specified number of random points, Ntotal, for each d. In both isolated and periodic
cases we see a power law relationship emerge for sufficiently large Vol0, with good
collapse of the data for Vol0 ≳ 0.2, d ≳ 0.2 onto a single line, hinting at a universal
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Fig. 3. Total throughput hfinal versus initial void volume Vol0 (loglog scales). (a) Isolated
network setup; (b) periodic setup. Line of best fit for d = 0.45 is in black, with gradient m given in
legend (with R2 = 0.99989 and 0.99993, respectively). Distribution of error for each data point is
given in the histograms in the supplement (M142474SupMat.pdf [local/web 497KB]).

law. The fact that hfinal is an increasing function of Vol0 makes sense because the
larger the initial pore volume, the more filtrate can be processed. In both setups,
the data curves for smaller d-values begin to deviate from the universal power law
for Vol0 ≲ 0.3, which enables us to observe some hierarchy. For similar Vol0-values,
corresponding to similar total length of edges per (5.1), we see that larger d-values
lead to larger total throughput hfinal. We attribute this to the fact that networks
with larger d-values induce more inlets on the upstream (and downstream) membrane
surfaces, allowing more filtrate to pass through. The differences between the isolated
and periodic setups in Figure 3 are minor.

In Figures 4(a) and 4(b), we plot total throughput hfinal against average number
of neighbors N (the average number of pores entering or leaving each vertex) for
various values of the search radius d, using a log scale for both axes. Each data point
shown corresponds to a different choice of Ntotal and, as discussed above, represents
results averaged over 500 individual random graph realizations. Several features are
common to both plots: first, hfinal is an increasing function of N for each d-value and,
in particular, obeys a power law for sufficiently large N . For fixed N , the smaller
the search radius d, the larger the average throughput hfinal. This suggests that the
number of pore junctions plays an important role in controlling and predicting total
throughput. Second, the slopes for each d-value at large N are very similar for both
isolated and periodic setups, suggesting a common power law relating hfinal and N for
each d (see d = 0.45 in Figure 4(a), (b) with slope ≈ 2 in both cases). Moreover, as
d increases the curves in Figure 4(a), (b) become more closely spaced in both setups,
demonstrating that filters with sufficiently large search radius perform similarly in
terms of total throughput. In both cases the quantities N and hfinal are increasing
functions of Ntotal for each d.

We also highlight the differences between the two compared network connection
metrics in Figures 4(a) and 4(b). First, for small d (e.g., d = 0.1, 0.15), the isolated
and periodic networks give similar throughputs since random graph generations under
the two metrics do not differ greatly; however, as d increases, the periodic metric
generates more edges than the isolated one (for the same value of Ntotal), hence the
periodic setup yields higher throughput. By the same reasoning, for fixed hfinal, N
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Fig. 4. Total throughput hfinal versus average number of neighbors N (loglog scales). (a)
Isolated network setup; (b) periodic setup. Line of best fit for d = 0.45 is in black, with gradient m
given in legend. Distribution of error for each data point is given in the histograms in the supplement
(M142474SupMat.pdf [local/web 497KB]). Same setup for (c) and (d) with hfinal/Vol0 as vertical
axis (loglog scales).

is much larger in the periodic setup than in the isolated one for each d ≳ 0.3 (the
data curves in the isolated setup are seen to be more closely spaced than those in the
periodic setup as d increases). In other words, though N is an increasing function of
d in each setup, it increases at a higher rate under the periodic metric.

Motivated by the strong relationship between total throughput and volume found
in Figure 3, we also plot volume-scaled total throughput, hfinal/Vol0, against average
number of neighbors N for both connection metrics in Figures 4(c) and 4(d). This
volume-scaled total throughput can be understood as a measure of efficiency of the
membrane filter in terms of filtrate production capability. In Figure 4(c), we observe
a good collapse of data in the nonperiodic setup, which suggests that the average
number of neighbors is a good predictor for total throughput scaled by volume. We
see a similar trend in Figure 4(d) for the periodic setup, though the collapse is less
strong. We further note that in both nonperiodic and periodic setups, data for d = 0.1
are slightly separated from the rest. This is consistent with the deviation of data for
d = 0.1 in Figure 3 from the universal power law relating total throughput and volume.

Figure 5 shows final accumulated foulant concentration in the filtrate, cacm (tfinal),
versus initial void volume, Vol0, on a loglog scale, as d is varied. Both quantities are
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Fig. 5. Final accumulated foulant concentration cacm(tfinal) versus initial void volume Vol0
(loglog scales). (a) Isolated network setup; (b) periodic setup. Distribution of error for each data
point is given in the histograms in the supplement (M142474SupMat.pdf [local/web 497KB]).

increasing functions of Ntotal for each d. The plots for both isolated and periodic
network metrics show that cacm (tfinal) increases as search radius d increases for fixed
Vol0. This is because with similar initial pore volume and thus similar initial total
edge length, networks with larger d have fewer edges to which foulants can adhere.
Combining this finding with the result in Figure 3 for a fixed volume further confirms
the intuition that networks producing larger throughput (larger d) also have worse
foulant control. A second trait shared by both network setups is that for larger d (for
example, d = 0.4, 0.45), cacm (tfinal) is relatively insensitive to changes in Vol0, while
for smaller d (say, d = 0.1, 0.15), the change in cacm (tfinal) with Vol0 is much more
dramatic. This says that in membrane networks with longer pores, final accumulated
foulant concentration depends less on initial void volume than in networks with shorter
pores. We further observe that for a given Vol0, for small d, the values of cacm (tfinal)
are similar for both isolated and periodic configurations. However, as d increases, the
isolated case incurs larger cacm (tfinal) and thereby exhibits worse foulant control than
the periodic case. We defer further discussion of this observation to subsection 5.3.
Last, we find that in practice, when a tolerance level of contaminant concentration in
the filtrate is specified in Figure 5, networks with smaller d-values have larger initial
pore volume, which corresponds to larger total throughput via the strong relationship
observed in Figure 3 (e.g., if a threshold of cacm (tfinal) = 0.06 is set, filters with
d = 0.1 are preferable as they have larger initial pore volume and thus larger total
throughput).

5.3. Tortuosity. We now examine the dependence of our performance metrics
on initial network tortuosity τ , the average distance traveled by a fluid particle from
the top membrane surface to the bottom, before any fouling has occurred. A full
characterization of τ is given by Definition B.2 and (B.4) in the appendix.

Our main result is that tortuosity is an important universal parameter that pre-
dicts accumulated foulant concentration independently of input parameters (d,Ntotal).
Figures 6(a) and 6(b) plot accumulated foulant concentration in the filtrate,
cacm (tfinal), versus tortuosity, τ , for various values of the search radius d. We readily
observe the similar collapse of data points in both cases, particularly strongly in the
isolated case. We find that cacm (tfinal) decays exponentially with τ , with a negative
exponent, which implies that networks with more winding flow paths make much
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Fig. 6. Final accumulated foulant concentration cacm (tfinal) versus tortuosity τ (semilog plot).
(a) Isolated network setup; (b) periodic setup. The line of best fit is in black in each plot, with
gradient m given in the legend (with R2 = 0.99838 and 0.9961, respectively). The blue and red boxes
at top left are shown as zooms in (c) and (d), respectively, for small tortuosity values (same data
as (a) and (b), respectively). Distribution of error for each data point is given in the histograms in
the supplement (M142474SupMat.pdf [local/web 497KB]).

better filters in terms of foulant control. This is because the extent of deposition
(per (2.18)) increases as distance traveled by the fluid increases. We also observe two
further details: within the regime where the fit (solid black line) is strongest in the
plots, the data for the isolated setup (Figure 6(a)) has a larger (negative) slope than
that in the periodic setup (Figure 6(b)); and, for fixed τ , filters in the periodic setup
have slightly higher accumulated foulant concentration.

Figures 6(c) and 6(d) show zoomed plots of the data from Figures 6(a) and 6(b),
respectively, to probe the details of the low tortuosity regime, where accumulated
foulant concentration is highest. To facilitate the discussion below, note that for
each d, a larger value of Ntotal corresponds to a smaller tortuosity τ (i.e., adding more
vertices to the network decreases average path length). Figure 6(d) shows that for the
periodic pore network we see an emergent nonlinear trend, breaking the exponential
relation between cacm(tfinal) and τ as Ntotal is increased. Although the isolated setup
in Figure 6(c) appears to persist in its linear (exponential relationship) trend, we note
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that for yet larger values of Ntotal this trend must break down due to the existence of
a lower bound, τmin, on tortuosity. While there is a trivial lower bound, τmin ≥ 1 for
each setup, in Appendix B we show that bounds can be tightened to approximately
1.128 for the isolated setup and 1.304 for the periodic one. The bound is larger for the
periodic case because, for a fixed set of vertices, the additional paths obtained from the
periodic setup are on average longer, as they can penetrate through the boundaries;
see Appendix B. Our simulations cannot access the breakdown in the power law for
the isolated case because, for the large values of Ntotal required to access this regime,
we increasingly often violate the volume constraint for individual realizations of the
random network.

Figure 7 shows total throughput hfinal versus tortuosity τ for various d-values,
on a semilog scale. We note that hfinal decreases as τ increases for each d because
if the feed solution traverses longer paths (on average) through the filter, then it
deposits more foulant and thus pores close faster. Second, for fixed hfinal, larger d
corresponds to smaller τ . Combining this finding with the results in Figure 6, we
reach the following conclusion: between two membrane networks that produce the
same total throughput, the one with shorter characteristic pore length (smaller d) is
favored since it also has larger tortuosity and thus better foulant control. Last, in
both Figures 7(a) and 7(b), we see again the clear evidence of a limiting tortuosity
τmin > 1: in the data curves for each d ≥ 0.35, τ does not vary greatly as we vary
Ntotal.

Now, we highlight the differences in Figure 7: first, for a fixed tortuosity τ (at a
given d-value), hfinal in the isolated setup (Figure 7(a)) is lower than in the periodic
one (Figure 7(b)), because the periodic boundary conditions give rise to more edges
and hence a larger initial void volume Vol0. We confirm this reasoning by plotting
Vol0 against τ in Figure 8. There, when we fix τ for each value of d, we observe a
higher initial volume for the periodic case than the isolated one. This observation
also explains why accumulated foulant concentration is higher in the periodic case
for a fixed τ (per Figure 6) because networks with periodic boundary conditions, by
having larger initial volume, process more filtrate (larger throughput), which leads
to a greater quantity of foulant escaping the filter. This reasoning also explains the
difference between cacm (tfinal) in Figures 5(a) and 5(b) by fixing Vol0 for each d.

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

0.002

0.006
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0.02

0.03

0.04

0.05

(a)

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

0.002

0.006

0.01

0.02

0.03

0.04

0.05

(b)

Fig. 7. Total throughput hfinal versus tortuosity τ (semilog plot). (a) Isolated setup; (b) periodic
setup. Error distribution for each data point is provided in the supplement (M142474SupMat.pdf
[local/web 497KB]). Same scale for hfinal as in Figure 3.
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1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
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(a)

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

10-1

(b)

Fig. 8. Initial void volume versus tortuosity (semilog plot). (a) Isolated setup; (b) periodic
setup. Error distribution for each data point is provided in the supplement (M142474SupMat.pdf
[local/web 497KB]).

6. Conclusions. We here summarize our findings on the connections between
performance metrics of the network/filter and each characteristic geometric network
parameter, and highlight areas for future work. We first collect our main findings:

1. Initial void volume Vol0 is a good predictor of total throughput hfinal, par-
ticularly when Vol0 > 0.5, when there appears to be a power law relation
between the two quantities (per Figure 3). Average number of neighbors N
is also correlated with hfinal but is a weaker predictor in this respect than
Vol0 (per Figure 4).

2. Tortuosity τ fully characterizes final accumulated foulant concentration cacm
(tfinal) in the filtrate by a negative exponential relationship. See Figure 6.

3. When a minimum concentration requirement is imposed, membrane filters
with small characteristic pore length should be considered since they have
larger void volume and thus process more filtrate. See Figure 5.

4. When two membrane networks produce the same final throughput hfinal, the
one with shorter characteristic pore length should be favored, since it will
have higher tortuosity and thus better foulant control. See Figure 8.

Griffiths et al. [10] showed that the particle removal efficiency, corresponding equiva-
lently to 1− cacm (tfinal) in our setup, increases as tortuosity increases, a trend consis-
tent with our conclusion here regarding the negative exponential relationship between
accumulated foulant concentration and tortuosity, though the exact relationship in
both approaches is different (negative subexponential in that work [10]). Such dif-
ferences may originate from the different graph generation protocols used in the two
works.

We also find that the choice of network connection metric (isolated versus peri-
odic) may significantly affect how the network functions as a filter. With identical
input parameters Ntotal (representing the number of initial random points generated)
and d (the search radius, or maximum edge length), the periodic setup yields larger
average number of neighbors and thus higher connectivity. This is important, since
the periodic setup provides a more realistic representation of a (large) membrane.

In recent years, many modern imaging techniques to study material properties
have been developed which, in turn, provide fertile ground for graphical modeling ap-
proaches to membrane filtration and analysis of membrane performance. For example,
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Jimenez-Martinez and Negre [14] have outlined a topological algorithm (Figure 1 in
their paper) that translates a 2D image of a membrane cross section into a pore net-
work. The idea is to take an original binary image where black and white represent
membrane void and materials (resp.), and then construct a distance-to-nearest-object
function (the DNO function) that computes the distance between a pixel to its near-
est object (membrane material). Then, the location of pore junctions is determined
by the local maxima of the DNO function, while the width of the edges connecting
the junctions is determined by the minimal distance normal to the edge. For other
techniques, see Sun et al. [20] and Sundaramoorthi et al. [21].

In future work, as well as utilizing some of the image analysis methods outlined
above to generate more realistic networks, we plan to consider network models of mem-
brane filters that include pore size variations, providing a more accurate representation
of real membrane filters, due to inevitable manufacturing defects/inhomogeneities.
We plan also to incorporate other fouling modes, such as blocking or sieving by large
particles that may occlude pores, unaccounted for in this work. Including such large-
particle blocking will add new dimensions of stochastic complexity to our modeling.
In particular, a model that includes both extensions listed above may exhibit internal
blockage at an earlier stage than the closure of top inlets (as always observed in our
work here) when pore size variations are sufficiently large, leading to much more com-
plex flow and fouling behavior. Our graphical description of the problem will allow
us to investigate problems of this type in a systematic and computationally efficient
manner.

Appendix A. Justification for pore radius evolution model. In this
section, we justify the form of the pore radius evolution equation (2.26) using the
(exact) solution for the foulant concentration model, (2.18), to relate the rate of
change of particle volume accretion inside a single pore to pore radius shrinkage. In
the following derivation, we drop the indices ij for notational simplicity and assume
that the radius R is spatially constant at each time T (though the arguments can be
adapted to the variable radius case with a suitable bound on ∂R/∂Y ).

Let Vp be the particle volume. In a single pore (assumed circularly cylindrical),
we consider an infinitesimally thin circular disk at distance Y from the pore inlet,
with thickness dY . The particle flux difference across this disk is

(C (Y + dY, T )− C (Y, T ))Q (T ) ≈ ∂C

∂Y
(Y, T )Q (T ) dY,(A.1)

i.e., the number of particles per time deposited in the disk. The total particle volume
adsorped in this pore is Vp times this quantity. We integrate (A.1) over the length of
the pore to obtain the total volume of deposited particles per time in the pore,

VpQ (T )

∫ A

0

∂C

∂Y
(Y, T ) dY = VpQ (T ) [C (A, T )− C (0, T )](A.2a)

= VpQ (T )C (T )

(
exp

(
−ΛR (T )A

Q (T )

)
− 1

)
(A.2b)

≈ −VpC (T ) ΛR (T )A,(A.2c)

where we used the analytical expression (2.18) for C (Y, T ) in the second equality.
The final approximate Taylor expansion (A.2c) is justified for sufficiently small values
of the exponent, that is (using the scales in section 3), provided

q (t) ≫ λr0d,(A.3)

where d is the largest pore length (see (2.1)).
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As foulant particle volume accumulates at the rate given in (A.2c), pore volume
Vol (T ) also changes at this rate via

dVol (T )

dT
= −VpC (T ) ΛR (T )A.(A.4)

At the same time, we relate the volume of the pore to its radius Vol (T ) = πR2 (T )A
and obtain

dVol (T )

dT
= 2πR (T )

dR

dT
A.(A.5)

Equating (A.4) and (A.5), we arrive at the form of (2.26) with α =
Vp

2π .

Appendix B. Tortuosity. In this section, we define tortuosity of a graph
representing a membrane filter pore network and provide an explicit formula using
the geometric and initial flow information from the network (found in section 2). In all
of our investigations we restrict attention to the tortuosity of the initial pore network,
with no regard for how it subsequently evolves under fouling, hence in the following
discussion it should be understood that we consider properties of the network at time
t = 0.

We define tortuosity as the average distance travelled by a fluid particle through
the membrane via the network, relative to the thickness of membrane W . Now, given
a path from any inlet to any outlet, we can associate it with its total initial flux, which
we use as a weight for the path. This is equivalent to having the fluid particle perform
a discrete random walk on the graph G directed by fluid flux at each junction. More
precisely, the transition matrix P of this random walk is defined as follows. We omit
the argument of t = 0 for notational simplicity.

We first enforce nonnegativity of the flux matrix via the following modification.
Consider Q+ and Q−, the positive and negative parts of Q, respectively, such that
Q = Q+ +Q−. Owing to the skew-symmetry of Q, we construct

Q̃ = Q+ −QT
−,(B.1)

which preserves the flow information (direction and magnitude) while enforcing non-
negativity.

Definition B.1 (transition matrix). Given modified flux matrix Q̃ in (B.1), the
transition matrix P is determined by rescaling Q̃ by its row sum:

Pij =



Q̃ij∑
vj :(vi,vj)∈E

Q̃ij

, (vi, vj) ∈ E, vi ∈ Vtop ∪ Vint,

1, vi ∈ Vbot, j = i,

0 otherwise.

(B.2)

For vertices in the bottom surface, fluid particles are absorbed, i.e., once they reach
any v ∈ Vbot, they stay there with probability one.

Let Xn be a random walk with transition P, i.e., Xn is the vertex after the fluid
particle has taken n steps on V . Let P be the induced probability measure. This
random walk has a natural initial distribution (a column vector of length |V |),
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π0i = P {X0 = vi} :=



∑
vj :(vi,vj)∈E

Q̃ij∑
vi∈Vtop

∑
vj :(vi,vj)∈E

Q̃ij

, vi ∈ Vtop,

0 otherwise,

(B.3)

namely, the probability of going to each inlet on the top surface is determined by the
proportion of flux going through that inlet, relative to total flux.

Definition B.2 (tortuosity). Let ln be the total path length after the random
walk has taken n steps. Tortuosity of the graph G is defined by E [τ ] where τ := lm

W
and m is the (deterministic) number of steps of the longest path from any inlet on the
top surface to any outlet in the bottom surface.

The integer m can be understood as a graph diameter where the notion of graph
distance for m is encoded in the unweighted adjacency matrix W (entries are indi-
cators of the existence of an edge). m is trivially bounded above by |Vint| + 2 (one
step from Vtop to Vint and Vint to Vbot, respectively, and traverse all of Vint at worst),
which we use here. Although this bound can be tightened by connectivity measures
such as the smallest number of vertices that must be removed to disconnect a graph
(see Coll et al. [5], for example), our algorithm (discussed after proving the formula
(B.4)) for E [τ ] does not incur significant computational cost from the size of m.

One may estimate this expected value by sending a large number of particles
through the network and computing the average of path lengths. We here provide
an explicit formula for E [τ ] that depends on the transition matrix P and a distance
weight matrix WE , whose entries are

WE,ij =

{
χ (vi, vj) , (vi, vj) ∈ E,

0 otherwise,

where χ (vi, vj) is the distance between vertices vi and vj via the metric χ defined in
(2.2). Using this formula directly obviates the use of large-number-of-particle simu-
lations and thus reduces computational load significantly.

Proposition B.3 (tortuosity formula).

E [τ ] =
1

W
E [lm] =

πT
0

W

(
m∑

n=1

Pn−1

)
diag (PWE) ,(B.4)

where diag (A) is a column vector that lists the diagonal elements of a matrix A.

Proof. We compute E [lm]. Denote the conditional probability and expectation

P [· | X0 = i] = Pi [·] , E [· | X0 = i] = Ei [·] .

First, we observe by the law of total expectation that

E [lm] =

|V |∑
i=1

E [lm | X0 = i]P {X0 = i} =

|V |∑
i=1

Ei [lm]π0i := πT
0 U ,

where π0 is given by (B.3) and U := (Ei [lm])vi∈V . We now focus on an arbitrary
element of U . Noting that Ei [L0] = 0, and using linearity of expectation, the law of
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total expectation, the Markov property of the random walk and symmetry of WE , we
have

Ei [lm] = Ei

[
m∑

n=1

(ln − ln−1)

]
=

m∑
n=1

Ei (ln − ln−1)

=

m∑
n=1

∑
j∈V

Ei (ln − ln−1 | Xn−1 = j)Pi (Xn−1 = j)

=

m∑
n=1

∑
j∈V

(∑
k∈V

WE,jkPjk

)
P

(n−1)
ij =

m∑
n=1

∑
j∈V

P
(n−1)
ij (PWE)jj ,

where P
(k)
ij is the kth iterate of P. Thus, in matrix form,

U =

m∑
n=1

∑
j∈V


P

(n−1)
1j

.

.

.

P
(n−1)
|V |j

 (PWE)jj =

(
m∑

n=1

Pn−1

)
diag (PWE) ,

using the fact that P(n−1) = Pn−1, completing the proof.

In practice, to avoid taking large matrix powers when evaluating (B.4), we have
devised a fast algorithm in evaluating the geometric series

∑m
n=1 P

n−1, by appealing
to a geometric sum formula on matrices involving matrix inversions. We utilize the
block upper triangular structure of P by block partitioning into components (known
as a divide and conquer–type scheme) including the identity block in its southeast
corner, to ease the computational load of inversions. Naive evaluation of the series
is of complexity O(m|V |3) (cubic term from matrix multiplication and m additions),
while our algorithm is O(|V |3).

We argue that the constant initial radius assumption on the pores deems τ a geo-
metric parameter independent of fluid flow, even though its definition requires initial
flow information and geometric information such as a distance weighted adjacency
(see (B.4)). In essence, we claim that τ does not vary too much until the filtration
stopping criterion. First, foulant concentration is monotonically decreasing along each
edge, and thus the radii of all inlets, under the influence of foulant concentration in
the feed solution (see (3.3b)), go to zero earlier than all other downstream channels.
Thus, adjacencies of the network do not change until the filter top surface is clogged.
Second, though outflowing flux from an arbitrary junction changes over time as the
filter fouls, the relative contribution from each outgoing edge does not vary greatly.
Altogether, we believe that tortuosity does not depend heavily on the time of filtra-
tion but only on the initial geometry of the network. This feature makes tortuosity a
universal parameter for foulant concentration.

Last, we note that a theoretical limit exists for tortuosity for both setups. As
Ntotal → ∞ (so that the membrane interior and top and bottom surfaces are uniformly
densely packed with pore junctions), we can provide a simple lower bound for the limit
in the following sense. Consider an arbitrary inlet-outlet pair. They will be connected
by a path with vertical component 1. For the isolated setup, the horizontal component
can be estimated as the average distance between two uniformly random points in
two dimensions in a unit square and is about 0.521 (length of Y K in Figure 9(a)).
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(a) (b)

Fig. 9. Tortuosity limit: (a) Isolated setup (unit cube); (b) periodic setup (unit cube and a
square of side length 2 containing the bottom surface of the unit cube). X (blue) and Y (red) are
uniformly sampled from the top and bottom membrane surfaces, respectively. K (black) in both
figures is the projection of X onto the bottom surface; XK in both figures has length 1.

Together, these numbers provide a lower bound for the limiting tortuosity τmin of
around 1.128 =

√
12 + 0.5212 for the isolated case. The argument for the periodic

case is slightly more elaborate—while the vertical component of an average path is
still 1, the horizontal component now is the average distance between two random
points uniformly sampled from the squares [0.5, 1.5]

2
and [0, 2]

2
, respectively (found

to be 0.838, the length of Y K in Figure 9(b)); thus an average path length is about
1.304. The difference arises because with the periodic metric, any inlet uniformly
sampled from a unit square can potentially connect to outlets that are outside the
unit square (bottom surface) but within 0.5 distance to the boundary (due to the
constraint that search radius d < 0.5). These arguments provide some justification
for the observations that the tortuosity in the periodic case may be larger than the
isolated case. The numerical values given above are obtained by standard probabilistic
calculations and numerical integration. We look forward to a more theoretical study
of how tortuosity is affected by the initial number of points, the search radius, and
the underlying metric.

Appendix C. Worked example. In this section, we provide an example of
a simple network (see Figure 10) to illustrate how the governing equations described
in subsections 2.3–2.6 depend on the model parameters. The network is a reflected
Y-shape, with two inlets and outlets of length 1/2 and one interior edge of length 1/3.

Each edge has conductance kij (t) per (3.1). For this network, the conductance-
weighted graph Laplacian, acting on the pressures at interior vertices, yields the graph
Laplace equation (2.15),

Lkp (t) =

[
k13 (t) + k23 (t) + k34 (t) −k34 (t)

−k34 (t) k34 (t) + k45 (t) + k46 (t)

] [
p2 (t)
p3 (t)

]
(C.1)

=

[
k13 (t) + k23 (t)

0

]
,

where the final equality incorporates the boundary conditions (3.2b). Then, the fluxes
qij satisfy

q13 (t) = k13 (t) (1− p3 (t)) ,

q23 (t) = k23 (t) (1− p3 (t)) ,
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Fig. 10. 2D schematic of a reflected-Y network with labeled physical quantities presented in
section 3.

q34 (t) = k34 (t) (p3 (t)− p4 (t)) ,

q45 (t) = k45 (t) p4 (t) ,

q46 (t) = k46 (t) p4 (t) .

To proceed, we then solve (3.3a) (the advection graph Laplace equation) to find the
foulant concentration at each vertex,

(C.2) Lin
q c =


q13 + q23 0 0 0
−q34b34 q34 0 0

0 −q45b45 q45 0
0 −q46b46 q46




c3 (t)
c4 (t)
c5 (t)
c6 (t)



= (q ◦ b)T c0 =


q13b13 q23b23

0 0
0 0
0 0

[ 1
1

]
=


q13b13 + q23b23

0
0
0

 ,

where the third equality uses the boundary condition (3.3b).
After obtaining the concentrations ci (t) for each vertex, we evolve edge radius

via (3.4).
By appealing to the symmetry of this network, one may reduce the system for the

dynamics of network evolution to a system of two nonautonomous nonlinear ordinary
differential equations, describing the radius evolution r34 (t) and r45 (t) (which by
symmetry is equal to r46(t)), with a closed solution for the linear shrinkage rate of
r13(t) = r23(t). Since our principal concern here is the end state of the network, we
do not present or study this system here.
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