
PHYSICAL REVIEW E 90, 052203 (2014)

Evolution of force networks in dense particulate media
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We discuss sets of measures with the goal of describing dynamical properties of force networks in dense
particulate systems. The presented approach is based on persistent homology and allows for extracting precise,
quantitative measures that describe the evolution of geometric features of the interparticle forces, without
necessarily considering the details related to individual contacts between particles. The networks considered
emerge from discrete element simulations of two-dimensional particulate systems consisting of compressible
frictional circular disks. We quantify the evolution of the networks for slowly compressed systems undergoing
jamming transition. The main findings include uncovering significant but localized changes of force networks
for unjammed systems, global (systemwide) changes as the systems evolve through jamming, to be followed
by significantly less dramatic evolution for the jammed states. We consider both connected components, related
in a loose sense to force chains, and loops and find that both measures provide a significant insight into the
evolution of force networks. In addition to normal, we consider also tangential forces between the particles and
find that they evolve in the consistent manner. Consideration of both frictional and frictionless systems leads us
to the conclusion that friction plays a significant role in determining the dynamical properties of the considered
networks. We find that the proposed approach describes the considered networks in a precise yet tractable manner,
making it possible to identify features which could be difficult or impossible to describe using other approaches.
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I. INTRODUCTION

Particulate systems have been extensively studied through
the centuries due to their importance to our everyday life.
These systems appear everywhere, from nano to cosmic
scales, and may evolve either hard particles (such as sand)
or soft ones (emulsions, foams); see, e.g., [1–4]. As these
systems are exposed to some external (e.g., compression) or
internal (electric, magnetic, gravitational, etc.) influence, they
may compress, reaching a stage where the particles are in
more-or-less permanent contact. As the systems evolve in time
(for whatever reason), the contacts between them, in general,
evolve as well.

Formation of contact networks between the particles,
and their properties, have been extensively studied in many
different contexts and using a number of different tools,
including percolation and network-type approaches; see [5,6]
for overviews. In addition to contact networks, however, there
is an additional network of interactions, often called force
network in the literature related to granular materials. These
force networks are not simply slaved to contact networks,
due to indeterminacy of the interaction between particles. A
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simple example of this is the fact that multiple force networks
may be consistent with the condition of force and torque
balance in a system. These force networks include complete
information about a system and therefore is of significant
interest to describe and eventually understand their properties,
in particular since it is well known that the interparticle forces
play a key role in determining the mechanical properties of
static and dynamic systems; see, e.g., [6] for an extensive
review in the context of amorphous solids.

Physical systems of relevance typically consist of large
numbers of particles, and therefore the force networks may
become extremely complex. Due to this complexity, it is
necessary to develop techniques that lead to an understand-
ing of the important properties of these networks, without
necessarily considering all the details, since this would lead to
an intractable study. One obvious idea is to consider statistical
properties of these networks, and to ask, e.g., what is the
probability of having a force between two particles of a given
magnitude. Such studies have been carried out for granular and
other systems (see, e.g., [4,7,8]) and have led to a significant
new insight. Even on the statistical level, however, there
are still open questions; one example is a recent discussion
of the probability of presence of large forces in granular
systems [4,9].

Going beyond purely statistical description requires analyz-
ing in more detail the local properties of the force networks.
Such studies have been extensively utilized only recently,
but have already indicated the complexity of the problem.
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Examples include detailed discussion of the forces between
particles (see [10–12], and the references therein), where these
local properties were connected to global response of the
systems considered. Going beyond the statistical level, and
at the same time attempting to keep the focus on the global
structure of the interaction networks, requires implementation
of new techniques. Considered approaches include network-
type analyses [13–15]. These works provide a significant new
insight and confirm that the properties of force networks are
relevant in the context of propagation of acoustic signals [13],
fracture [14], and compression and shear [15]. A topology-
based approach has been also considered, with the focus on
the contact network topology in isotropically compressed [16]
and tapped granular media [17].

We have recently started employing algebraic topological
techniques for the purpose of quantifying forces in a manner
which is global in character, but at the same time includes
detailed information about the geometric structures of the
forces. In [18] we analyzed the number of components and
loops, measured by Betti numbers (see [19,20] for detailed
treatment of the Betti numbers), as a function of compression
(packing fraction) and the force level. That work considered
the force networks on the particle level: Essentially, a total
force on each particle was computed, and then the features of
this force field were considered by analyzing the number of
clusters (components), related in a broad sense to so-called
force chains, as well as the number of loops, related to force
chains’ connectivity.

Realizing that a more complete description of a system can
be reached by considering particle-particle interactions ex-
plicitly, we turned our attention to force networks whose basic
building blocks are the interaction forces at particle contacts.
Governed still by the idea of considering global properties, we
have employed the use of persistent homology [21]. The output
of persistent homology consists of persistence diagrams, PDs,
that provide a consistent identification of the force thresholds
at which geometric features made up of sets of interacting
particles appear and disappear. It is worth noting that the Betti
number information employed in [18] can be recovered from
the PDs. However, persistent homology has the additional
property that there exist natural metrics on the space of PDs.
In particular, as is discussed in Sec. III D, we can talk about
the distance between two PDs with the assurance that if the
physical systems are similar then the distance between the PDs
is small.

Persistence analysis has shown explicitly and on a global
level that (i) the geometry of the forces between particles has
different properties from the geometry of the contact networks
and (ii) the properties of these forces may depend strongly on
the material properties, such as friction or polydispersity, for
the specific case of granular particles [22].

Due to the complexities involved in the studies of force
networks based on any of the approaches discussed so far,
most of the existing results have concentrated on analysis
of these networks for static systems, and there are very few
attempts to analyze dynamical aspects of the force networks
or even of time-dependent properties of the forces experienced
by particles; see e.g., [23], and the references therein. Clearly,
dynamical aspects are of significant importance, since many
of the systems of interest are time dependent, and one would

like to understand how the networks evolve in such a setting;
some recent examples in the literature where the evolution
of interaction networks is clearly of importance include wave
propagation through particulate systems [13] and impact [24].

There are many questions related to temporal evolution
of force networks that one could ask. What are the generic
features of the temporal evolution of force networks? Are
these features different for unjammed but dense systems
compared to the jammed ones? What happens as a system
goes through jamming transition? What is the influence of
friction on the evolution of force networks? We address some
of these questions in the present work. The tools that we use
involve the concept of “distance” between PDs, measuring (in
a manner that will be made precise) the amount of change in
force networks from one state to the next. To be specific, we
consider a particular system of inelastic frictional particles,
but the technique described is independent of the model
describing particle-particle interaction and could be equally
well applied to the systems of particles of different shapes
interacting by any other means. Also, in the present work we
focus on two-dimensional geometry and a simple evolution
protocol consisting of uniform compression, with the goal
of focusing on the results of the presented approach without
additional complexities of more realistic protocols such as
shear and additional issues that need to be considered in
three-dimensional systems.

The remainder of this paper is organized as follows. In
Sec. II we discuss the system to be studied. A brief introduction
to persistence is given in Sec. III; more in-depth analysis is
given in [19]. In this section we also introduce the concept of
distance between the PDs. In Sec. IV we present the results
of persistence analysis. Section V summarizes the results and
discusses possible future directions.

II. THE SYSTEMS TO BE STUDIED

We focus on the system of soft inelastic possibly frictional
disks in two spatial dimensions (2D), bound by inward moving
rough walls, similarly to our earlier works [18,22]. The
simulations are of the type utilized in [18]; for completeness, a
brief outline is given in the Appendix, and a short description
follows.

The inward motion of wall particles is slow (the rate
of change of the area, using the scales as defined in the
Appendix, is approximately 0.005 at t = 0). Therefore, the
energy provided by the walls’ motion is dissipated quickly
and compression waves or other type of large scale inhomo-
geneities are not present in the system: The packing fraction, ρ,
is essentially uniform, except possibly for lower ρ’s, which are
not the focus of this study. The particles are characterized by
the coefficient of Coulomb friction, μ, and polydisperse, with a
random distribution of diameters in the range 1 ± rp/2 scaled
by the average particle diameter, dave; we use rp = 0.4. The
initial size of the domain considered is L2, with L = 50dave.
The initial configuration is formed by placing particles on
the rectangular lattice and then giving them initial random
velocities. After this initially supplied energy is dissipated
(through friction and inelasticity), the system is compressed,
leading to ρ’s in the range [0.63:0.90]. Gravitational effects
are not considered.

052203-2



EVOLUTION OF FORCE NETWORKS IN DENSE . . . PHYSICAL REVIEW E 90, 052203 (2014)

0. 1. 2. 3. 4. 5.
F

0. 1. 2. 3. 4. 5.
F

0. 1. 2. 3. 4. 5.
F

0. 0.1 0.2 0.3 0.4
� F�

0. 0.1 0.2 0.3 0.4
� F�

(a) (b) (c)

(d) (e)

FIG. 1. (a)–(c) Snapshots of the simulated system (rp = 0.4,μ = 0.5) at three values of ρ close to 0.79. Every edge in the network
corresponds to the normal force acting between the particles and the grayscale encodes the magnitude of the normal force normalized by the
current value of the average normal force. (d) and (e) The absolute values of the differences between the normal forces shown in (a),(b) and
(a)–(c), respectively.

As the system is compressed, we extract the current
values of the forces between the particles at specified time
intervals. To provide a visual picture of the system that is
being analyzed, Figs. 1(a)–1(c) show the magnitude of the
normal forces acting between the particles for three nearby
values of ρ (animations of the evolution of the force network
as the system is compressed are available as Supplemental
Material of [22]). The forces are normalized by the average
normal force at the given time. Note that the figures appear
very similar, and additional inspection shows that both the
average contact number, Z, and the average force are almost
identical. Differences between the networks become visible
if we plot changes in the magnitude of the normal force.
Figures 1(d)–1(e) show these differences, and we can see that
the difference between (a) and (b) is localized, while the (a)
and (c) differences have more of a global character. The main
focus of this paper is to introduce and discuss a set of measures

that can be used to quantify these differences in a precise
manner.

III. METHODS

We start by describing force networks in the manner
that will allow us to use topological techniques for their
quantification. As we will see, important features of the force
network can be captured by using PDs that were already
introduced in our previous work [22] and discussed in depth
in [19]. A brief overview of persistence is given in Sec. III A,
followed by a couple of examples in Sec. III B and a discussion
of PDs for the simulation data in Sec. III C. Then, in Sec. III D
we discuss different types of metrics on the space of PDs. The
main feature of these metrics is different sensitivity to various
changes of the force network. This makes them useful for
distinguishing local and global changes, as we demonstrate by
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analyzing the networks shown in Fig. 1. The computations that
are outlined in this section and used for the rest of the paper
are based on publicly available open source software [25–27].

A. Force networks

We encourage the reader to view the images shown in Fig. 1
as 2D landscapes with the altitude given by the normal force
magnitude at a particular spatial point. The goal of this section
is to briefly recall the basic elements of persistent homology
which we use to provide a concise characterization of the
geometry of these landscapes.

We begin by making precise the process by which we
obtain Figs. 1(a) and 1(c). Given a collection of par-
ticles {pi |i = 0, . . . ,N}, we define a simplicial complex
CNI called the interaction complex consisting of vertices
{vi |i = 0, . . . ,N} where each vertex vi is identified with
particle pi and all possible edges 〈vi,vj 〉. Now let ψi,j ∈
R denote the magnitude of the force experienced between
particles pi and pj ; then the function f is defined on the edges
by

f (〈vi,vj 〉) := ψi,j .

This function is extended to the vertices by

f (〈vi〉) = max
j=0,...,N

{f (〈vi,vj 〉)}.

Figures 1(a) and 1(c) indicate the value of f on all edges
〈vi,vj 〉 for which f (〈vi,vj 〉) > 0.

Observe that in these figures there are triangles made up
of three edges. These represent loops in the contact network
made up of three particles. Since in a perfect densely packed
crystalline structure made up of disks of the same size all loops
would be made up of exactly three particles, we refer to a loop
involving four or more particles as a defect. In the analysis
we perform in this paper we have chosen to focus on defects.
To avoid counting the three particle loops we extend CNI to
its flag complex CN�

I by adding all triangles 〈vi,vj ,vk〉 and
defining

f (〈vi,vj ,vk〉) = min{f (〈vi,vj 〉),f (〈vi,vk〉),f (〈vj ,vk〉)}.
Since our goal is to consider networks of contacts with

forces larger than a given force, we are interested in the
geometry of a part of the complex on which the forces exceed
a specified level. In particular, given a threshold θ � 0, define
the associated interaction force network

FNI (f,θ ) := {σ ∈ CN�
I |f (σ ) � θ}, (1)

which corresponds to the part of the contact network experi-
encing force larger than θ . Since we are working with finite
sets of particles, the function f can take on a finite set of
values � = {θn}. The interaction force network filtration is
the collection of interaction force networks {FNI (f,θ )|θ ∈ �}.
For simplicity we drop the adjective interaction and write force
network and force network filtration.

B. Persistent homology: An example

In the context of the 2D simulations that are studied in this
paper the simplest geometric structures that can be quantified
by persistent homology are connected components and loops.

We use the simple 2D example shown in Fig. 2 to provide some
intuition to what these measurements represent. The reader
is referred to [19] for a more complete description, along
with a simpler 1D example. Figure 2 shows two threshold
values, 85 (a) and 55 (b). The function (along with the
associated threshold level) for which persistent homology is
being computed is shown in the upper left hand corner of (a)
and (b). The upper right hand corners show the associated force
networks, FNI (f,85) and FNI (f,55). Each panel contains a β0

PD, denoted by PD0, which measures connected components,
and a β1 PD, denoted by PD1, which measures loops. Note
that the PDs in (a) and (b) are the same.

Since we are using superlevel sets to define the force
networks, we compute the PDs by descending through the
threshold levels. For the moment let us focus on Fig. 2(a)
associated with the threshold θ = 85. The force network
FNI (f,85) contains no loops. This can be seen in PD1 by
noting that there are no points in the diagram to the lower right
of (85,85). There are, however, four components and in the
β0 diagram to the lower right of (85,85) there are four points:
(128,−1), (119,74), (113,83), and (106,76). We remark (this
information is not contained in the PD1) that the point
(128,−1) corresponds to the lower component, (119,74) to the
upper right component, (113,83) to the upper left component,
and (106,76) to the middle component. These points contain
important information: The first (birth) coordinate indicates
the threshold at which the component appears and second
(death) coordinate indicates where the component merges with
another older component. In particular, we can now conclude
that the first point in the lower component appeared at threshold
level 128, the first point in the upper right component at
threshold level 119, etc.

To explain the comment about the “older component,” note
that the first component to appear appears at threshold level
128. Since this is the first component it is always the oldest
and thus never disappears. This is indicated by assigning a
death coordinate of −1. The death coordinate of the upper left
component is 83, which implies that at threshold 83 it merges
with another component. The geometry suggests that it does
not merge with the lower component at that threshold. Thus,
it can merge with the upper right component or the middle
component. However, the birth value of the middle component
is 106, which makes it younger than the upper left component.
The upper right component has birth value 119 which makes it
older. Thus, when the upper right component merges with the
upper left component at threshold 83, the upper left component
dies.

Turning to Fig. 2(b) associated with threshold θ = 55, we
note that to the lower right of (55,55) there are two points
in the PD0 and three points in the PD1, indicating that the
associated force network FNI (f,55) has two components and
three loops, respectively. Observe that the lower loop has just
formed and thus the associated birth coordinate is 55. The
death value occurs at the threshold where a loop is filled in.

The convention that the younger feature dies has an
important implication. Let (θb,θd ) be a point in a PD. The
number θb − θd is called the life span of the geometric feature
associated with (θb,θd ). Observe that features with a longer
life span persist over a longer range of values and hence are
more robust. Conversely, features with very short life spans are
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FIG. 2. (Color online) 2D example illustrating PDs for a function of two variables. For each threshold level we show the 3D view as well as
the top view where only superlevel sets are visible. The dashed lines in the PDs for β0 (components) and β1 (holes) show the current threshold
level. A complete animation can be found in the Supplemental Material [28].

often regarded as noise, since they persist only over a small
range of force values and thus can be introduced by small
perturbations.

Viewing the complete animation of Fig. 2 provided in the
Supplemental Material [28] should convince the reader that
persistent homology provides a concise encoding of the domi-
nant geometric features of a function. The fact that it is concise
implies that information is lost and thus two distinct functions
can have the same PD. Of course, if two functions have distinct
PDs, then they must exhibit distinct geometric features.

C. Persistence diagrams for simulation data

Having discussed the simple example of the previous
section, we are now equipped to consider PDs resulting from
DES. Figure 3 shows the PD0 and PD1 diagrams for the
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FIG. 3. (Color online) Persistence diagrams for the interaction
networks shown in Fig. 1(a). The diagrams corresponding to Figs. 1(b)
and 1(c) visually appear very similar (not shown).

force network defined on the flag complexes corresponding
to Fig. 1(a) [the diagrams corresponding to Figs. 1(b) and 1(c)
visually appear very similar and are not shown since they
do not provide any additional information]. Not surprisingly,
these are more complex than those of Fig. 2. We begin our
analysis with some simple observations (see [22] and [19] for
a more detailed discussion).

(i) The PD0 shows a “cloud” of points in the [0:3] birth
range, meaning that most of the features (force chains, loosely
speaking) start appearing at the force level which is about
3 times the average force and disappear by [0.8:1], suggesting
that at a force level slightly smaller than the average force,
most features disappear (merge).

(ii) Careful inspection of PD0 shows two points with a
death value of −1 level; one born at high force threshold θ ≈ 3,
and the other at the zeroth force level. The interpretation of
the former one follows from the convention discussed in the
previous section that the component that is born first dies last;
the latter is due to the presence of isolated particles (rattlers) or
particles that experience only contacts with zero force. Rattlers
can be detected because only the higher dimensional simplicies
for which the function f is positive are used in the persistent
homology computations. Hence, the rattlers create separate
connected components at the zero force level.

(iii) Note that for PD1s a death level of θd = −1 implies
the existence of a defect. If θd > 0, then the hole is filled in,
and θd indicates the weakest magnitude of interacting forces
within the region enclosed by the loop. The PD1 in Fig. 3(b)
suggests that the birth value θb of most of the loops are less
than about 1.5 times the average force. That the birth values
of the PD1 is lower than that of the PD0 is not surprising; the
birth of a loop corresponds to the lowest magnitude of the
normal forces acting along the contacts forming the loop. It is
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FIG. 4. (Color online) (a) Two scalar fields f (solid blue line)
and g (dashed red line). The function g is a noisy perturbation
of f . (b) Associated PDs along with pairing of persistence points.
The Euclidean distances between these points are used to compute
corresponding distances between the PDs as explained in the text.

also worth noting that most of the loops are associated with
defects.

While these observations about individual PDs are of
interest, it is clear that a more systematic approach is needed
to quantify and interpret the available information. This is
especially true in the context of comparing time-dependent
systems, where each time step can produce a distinct PD.
To make this comparison precise requires the introduction of
appropriate metrics to measure the difference between PDs.

D. Distance between persistence diagrams

At a minimum, an appropriate metric for PDs must satisfy
the property that if two functions are similar, then the distance
between the associated PDs must be small. It was shown
in [21] that such metrics exist. Explicit formulas and a detailed
discussion in the context of dense granular media is presented
in [19, Definition 7.1]. However, since the precise definitions
are somewhat technical, we limit ourselves to a heuristic
presentation. Consider Fig. 4(a), where one can consider the
function g as a noisy perturbation of f . To understand the
metrics we recall two observations from Secs. III B and III C:
(1) If the points in two PDs lie in the similar regions, then the
PDs should be close; and (2) short life spans, i.e., persistence
points near the diagonal, are related to small perturbations.
This suggests that, given two PDs, one attempts to match
points from one diagram with points in the other diagram
or points on the diagonal in such a way as to minimize
distances between the matched points. Figure 4(a) suggests
such a minimizing matching. Let γ : PDn(f ) → PDn(g),
denote such a matching between two PDs. The bottleneck
distance is denoted by dB(PDn(f ),PDn(g)) and is defined
by supp∈PDn(f ) ‖p − γ (p)‖∞, while the degree-q Wasserstein
distance is denoted by dWq (PDn(f ),PDn(g)) and is defined by
(
∑

p∈PDn(f ) ‖p − γ (p)‖q
∞)1/q , where in both cases γ is chosen

to minimize these quantities.
In this paper we restrict ourselves to the bottleneck distance

dB and the Wasserstein distances dWq , q = 1,2. Observe
that the bottleneck distance reports only the single largest
difference between PDs, while dWq includes all differences
between the diagrams. Thus, it is always true that

dB � dWq .

x
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FIG. 5. (Color online) (a) Two scalar fields f (solid blue line) and
g (dashed red line). (b) PDs for both scalar fields. The red open dot
at (θ1,θ0) has multiplicity seven because there are seven geometric
features corresponding to the oscillations of g. The double arrows
show the pairing corresponding to the bijection γ for which the
bottleneck and Wasserstein distance dW1 are obtained.

Sensitivity of the Wasserstein distances to small differences
(possibly due to noise) can be modulated by the choice of the
value of q; i.e., dW 2 is less sensitive to small changes than dW 1 .

Example shown in Fig. 5(a) demonstrates the differences
between dB and dW1. Let PD0(f ) and PD0(g) be the
PD0s corresponding to the functions f and g, respectively.
Figure 5(b) shows that the PD0(f ) consists of a single
point (5,−1). The PD0(g) is more complicated. There is
one copy of (3,−1) corresponding to the dominant fea-
ture of g and seven copies of (1,0) representing seven
smaller features. Since the bottleneck distance considers
only the largest feature, dB(PD0(f ),PD0(g)) = 2. On the
other hand, dW 1 (PD0(f ),PD0(g)) = 5.5 since the contribu-
tion of every small feature to the dW 1 distance is 0.5
and dW 2 (PD0(f ),PD0(g)) ≈ 2.6. Thus, the different metrics
distances provide complementary information about the differ-
ences between two functions (or two landscapes). In particular,
the fact that the dW 2 distance is closer to dB than dW 1 suggests
that the geometric difference between f and g lies in the noise
as opposed to the dominant features.

We now apply these different distances to the analysis
of the forces shown in Figs. 1(a)–1(c). Let PDa, PDb, and
PDc denote the corresponding PDs [Fig. 3 shows the ones
corresponding to the part (a)]. Table I gives the numerical
values for the considered distances. Observe that dB (PDa

i ,PDb
i )

and dB(PDa
i ,PDc

i ), i = 0,1, are small (less than 10% and
15% of the average force, respectively). Thus, there is no
single dramatic change in the geometries between these
landscapes. Note that this does not imply that there are no
significant pointwise differences between the force landscapes.
In fact, the range of Figs. 1(d) and 1(e), which measures the

TABLE I. Distances between the PDs for the force networks
corresponding to Figs. 1(a)–1(c).

β0 β1

dB dW 1 dW 2 dB dW 1 dW 2

(PDa,PDb) 0.089 4.18 0.50 0.081 3.8 0.57
(PDa,PDc) 0.12 14.0 0.89 0.15 19.2 0.99
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TABLE II. Distances between the PDs for the different parts of
the force networks corresponding to Figs. 1(a) and 1(b).

β0 β1

(PDa,PDb) dB dW1 dW2 dB dW1 dW2

Bottom left 0.12 3.6 0.50 0.16 3.66 0.95
Bottom right 0.014 0.40 0.070 0.014 0.43 0.037
Top right 0.0046 0.58 0.35 0.0055 0.29 0.024
Top left 0.0076 0.56 0.31 0.0045 0.23 0.019

pointwise difference, extends to 0.4 (40% of the average force).
Combining these two observations suggests that the pointwise
locations of the strong and weak particle interactions have
shifted, but their relative geometries have remained similar.

As is to be expected, the values of the Wasserstein
distances are larger than those of the bottleneck. What is worth
noting is that the relative difference between dW 1 (PDa

i ,PDc
i )

and dW 1 (PDa
i ,PDb

i ) is significantly larger than the relative
difference between dW 2 (PDa

i ,PDc
i ) and dW 2 (PDa

i ,PDb
i ). This

suggests that the force landscape of Fig. 1(c) differs from the
one of Fig. 1(a) via many more small geometric changes than
the force landscape of Fig. 1(b) differs from that of Fig. 1(a).
This is consistent with the difference plots of Figs. 1(d) and 1(e)
which show that in general the values of Fig. 1(e) are higher
than those of Fig. 1(d) and spread over a broader range of the
domain.

So far, we have shown that the various distances can be used
not only to quantify the differences between force networks,
but also to distinguish between local and global differences;
we use these findings to analyze the results of DES in the rest
of this paper.

Before concluding this section, we illustrate that the
distances can be also used to isolate a part of the domain
where dominant differences are present, although we do not
use this approach in the rest of the paper.

Consider again the networks shown in Figs. 1(a)–1(c).
Divide each domain into four equal blocks: bottom left, bottom
right, top right, and top left. Table II gives the distances
between corresponding blocks for the PDs in panels (a) and
(b). We see that the distances between the bottom left blocks
are always larger than the distances between the other three
blocks. Hence, we can conclude that differences between the
networks FNa

I and FNb
I are concentrated in the bottom left

corner. Table III shows the distances between the four blocks
for the networks FNa

I and FNc
I . Here the values are very similar

for all the blocks. This finding indicates that the changes are
distributed evenly over the entire domain.

TABLE III. Distances between the PD for the different parts of
the force networks corresponding to Figs. 1(a) and 1(c).

β0 β1

(PDa,PDc) dB dW1 dW2 dB dW1 dW2

Bottom left 0.16 4.1 0.53 0.13 5.8 0.59
Bottom right 0.18 5.2 0.67 0.14 5.6 0.50
Top right 0.10 5.1 0.69 0.12 5.5 0.51
Top left 0.11 4.3 0.53 0.087 5.1 0.87

So far, we have applied the distance concept to discuss
the differences between a small number of force networks.
Now we proceed to analyze a large number of force networks
describing states of the systems as they are evolve through the
jamming transition.

IV. RESULTS

In the DES that we have carried out, we slowly compress the
system through a range of packing fractions ρ = [0.63 : 0.90]
as discussed in Sec. II. While the system is being compressed,
we output the force information at approximately fixed time
intervals. In the present work we focus on results obtained by
extracting approximately 100 samples and averaged over 20
realizations for the purpose of obtaining statistically significant
results. We note that in our earlier work [18] that focused
on computing Betti numbers using the same protocol, we
considered the influence of system size and found scaling of
the results with the systems dimensions. In present work, for
simplicity we consider just a single system size corresponding
to N = 2000 particles and defer to future work the discussion
of the influence of system size and related quantities, such as
compression rate.

We compute the distance between PDs computed using
the force information from consecutive samples. Since the
PDs provide information about the geometry of the forces, it
is useful to consider the plots presented in this section as a
measure of the rate of change of the geometry of the forces.

In what follows, we focus first on the normal forces in a
polydisperse frictional system (rp = 0.4,μ = 0.5) and then
proceed to discuss the tangential forces in this system, as
well as a polydisperse frictionless system (rp = 0.4,μ = 0).
The influence of the polydispersity and friction on PDs was
discussed in some detail in our earlier work [22].

A. A polydisperse frictional system

Figure 6 shows various distances between the PDs for
consecutive (normal) force networks, averaged over 20 realiza-
tions for a frictional polydisperse system (rp = 0.4,μ = 0.5).
We also plot the average number of contacts per particle, Z.
The most pronounced feature is the dramatic change around
the jamming point, ρJ , loosely defined as the ρ at which
Z ≈ 3 [18]. Each distance, however, behaves differently as
the system is compressed; as demonstrated below, these
differences provide us with additional insight regarding the
evolution of forces as the system goes through the jamming
transition.

Before comparing individual distances, let us put their
values into a context. Recall that the normal force used for
computing PDs is normalized by the current average value.
This average is small for ρ < ρJ and increases (approximately
linearly) after the jamming transition. Using the landscape
analogy, there are at least two ways in which to interpret
dB = 1. The first is that a geometric feature with life span
equal to average force has either appeared or disappeared. The
second is that the length of the life span of a single geometric
feature has changed by the average force.

We begin our analysis by considering the evolution of
the forces prior to jamming, ρ < ρJ . Figure 6(a) gives the
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FIG. 6. (Color online) The distances between PDs for polydis-
perse frictional systems (rp = 0.4,μ = 0.5). The normal forces
between particles are considered. The Z curve shows the average
number of contacts per particle. The results are obtained by averaging
over 20 realizations.

distances between consecutive PD0s, therefore showing the
rate of evolution of connected components (force chains in
the loose sense). The reported rate clearly depends on the
metric being used. The relatively large values (dB is an order
of magnitude greater than one for most of this regime) suggest
rapid changes in the structure of the forces. There are at least
two types of events that are monitored; since there is still
considerable room for particles to move, we are observing the
collisions of particles that create large spikes in the forces, and
we are observing changes in the connectivity of the system as
particles come together, create a larger connected component
with relatively strong force interactions inside this component,
and then separate again. The dB metric is capturing the single
largest of these events while dWq , q = 1,2, are measuring
changes of the forces globally. Figure 7 plots the relative
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FIG. 7. (Color online) The ratios between the rates of change as
measured by different metrics for polydisperse frictional systems
(rp = 0.4,μ = 0.5).

rates of change dB/dW 1 and dB/dW 2 . These relative rates
of change are roughly constant for ρ < 0.75. Furthermore,
dB/dW 2 ≈ 0.75 and dB/dW 1 ≈ 0.2, suggesting that from frame
to frame there is a single large event and a number of smaller
events that contribute to the change in geometries.

At ρ ≈ 0.75, the behavior of the system begins to change.
The rate of change as measured by dB decreases dramatically,
suggesting an absence of collisions characterized by large
relative velocity of the particles or of large changes in
connectivity of the system accompanied by an increase of
the forces acting between the colliding components. For
0.75 < ρ < ρJ the ratio of dB/dW 2 continues to be roughly
constant until just before the jamming when it plunges. This
suggests that there continues to be a single large event.
However, over this same range the rate of change as measured
by dW 1 dramatically increases [Fig. 6(a)] and, hence, the
ratio of dB/dW 1 decreases, suggesting that the number of
small events is growing. The physical interpretation is that
as one approaches the jamming transition, there is a rapid
reorganization of the structure of the forces, taking place
globally through many small rearrangements.

Visual inspection of Figs. 6(a) and 6(b) shows that there
is a significant difference between the rate of change in the
geometries as measured by PD0 and PD1. For ρ 	 ρJ , this
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is not surprising. The particles have room to move around.
Thus, the number of loops is small and, furthermore, since it is
unlikely that all the forces between the particles forming loops
are strong, the points in the PD1 tend to appear for smaller
forces and have a shorter life span.

With this in mind, it is perhaps not surprising that before
jamming the rate of change of the loop structure generally
increases as a function of ρ. At ρ ≈ 0.77 the dB distance starts
decreasing. We interpret this to mean that if the system is
sufficiently packed, then it becomes difficult to support the
appearance or disappearance of loops with large life spans or
for which the maximal or minimal forces change dramatically.
It should be noted, however, that while the size of the individual
changes becomes constrained, the locations at which changes
can occur do not. As can be seen from Fig. 7(b), both ratios,
dB/dW 2 and dB/dW 1 , begin to decrease at ρ ≈ 0.76. The fact
that dB/dW 2 decreases suggests that multiple large changes
in the loop structures are occurring, along with the increase
in the number of small changes, as indicated by dB/dW 1 . We
conclude, therefore, that during the jamming transition there
is a significant global reorganization of the loop structure with
a variety of local changes of the magnitude comparable to the
largest one.

The analysis past the jamming transition, ρ > ρJ , is
simpler; the rate of change of the forces of the system slows
dramatically. This is not surprising. A large part of the contact
network is fixed; thus, the particles cannot make and brake
contacts, nor can the magnitudes of the normal forces change
dramatically. Thus, for example, the rate of change measured
by dB must be small. What is more interesting to note is that
the ratios of dB/dW 2 and dB/dW 1 remain essentially constant
throughout this regime and are roughly one and three orders
of magnitude smaller, respectively, than before the jamming
transition. This implies that even though the large events as
measured by dB are getting smaller, they are also becoming
more broadly distributed (dB/dW 2 smaller by one order of
magnitude) and there are many more small events (dB/dW 2

smaller by three orders of magnitude).

B. Tangential forces

While in the research related to force networks the focus
is usually on normal forces, it is appropriate to ask whether
evolution of tangential forces provides any additional infor-
mation. Figure 8 shows the corresponding results, where now
the forces are normalized with the average tangential force (as
expected, the tangential force average is significantly smaller
than the normal one). Perhaps the most interesting feature of
the results shown in Fig. 8 is how similar they are to the results
obtained for normal forces, shown in Fig. 6 (except perhaps
very close to ρJ ). This finding suggests that, both for ρ < ρJ

and for ρ > ρJ , the evolution of tangential forces to a large
degree follows the evolution of normal forces, both regarding
the connected components and the loops. For ρ ≈ ρJ , we
see larger deviations between normal and tangential forces,
with a particular feature that the distances that include all
the differences between the networks, such as dW 1 and dW 2 ,
are significantly smaller for tangential forces, suggesting a
less dramatic evolution of these forces as the system goes
through jamming transition. The bottleneck distances, dB ,
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FIG. 8. (Color online) The distances between PDs for polydis-
perse frictional systems (rp = 0.4,μ = 0.5). The tangential forces
between particles are considered.

show, however, similar features and magnitudes for the normal
and tangential forces throughout the evolution, including
ρ ≈ ρJ , suggesting that the largest change in the tangential
forces is slaved to the largest change in the normal ones.

C. A polydisperse frictionless system

Finally, we discuss briefly the normal force network
for a polydisperse frictionless (μ = 0) system. In earlier
work [22], we discussed the information that can be obtained
by considering the PDs, and found, based on the number of
generators, that the force networks for μ = 0 systems appeared
to be extreme, in the sense that the number of generators for
frictionless system was significantly larger (see Fig. 6 in [22]),
compared to frictional systems. By considering the distances
between the states of the systems, we can now discuss how
friction influences the evolution of force networks.
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FIG. 9. (Color online) The distances between PDs for polydis-
perse frictionless systems (rp = 0.4,μ = 0).

Figure 9 shows the corresponding distances and the
Z curve. Note that the jamming transition is shifted to larger ρ’s
for μ = 0 systems [22]. Considering connected components
[Fig. 9(a)], we make two observations.

(i) For ρ < 0.65 the rate of change for μ = 0 systems,
as measured by db and dW2, is roughly the same as for μ 
=
0 systems. However, dW1 is approximately 40% smaller for
μ = 0. In fact, as is seen by comparing Fig. 10(a) and Fig. 7(a)
over the entire range of ρ adjusted for ρJ , the ratio dB/dW 1

is consistently larger for the μ = 0 system while dB/dW 2 is
roughly the same. This suggests that friction plays a role in the
appearance of small events.

(ii) Initially, as ρ increases, the rates of change increases
more rapidly in the frictional system. However, both dB and
dW 2 begin slowing down at a much lower ρ relative to ρJ

in the frictional system, suggesting that as the particles come
in closer contact, friction limits the magnitude of the largest
changes in the geometry.
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FIG. 10. (Color online) The ratios between the rates of change
as measured by different metrics for polydisperse frictional systems
(rp = 0.4,μ = 0).

As indicated above, there are more points in the PD1 for
μ = 0 than for μ = 0.5. Thus, the fact that for ρ significantly
less than ρJ , the rate of change is much less as measured by
dB and dW 2 in the μ = 0 system, as opposed to the μ = 0.5
system [compare Fig. 9(b) and Fig. 6(b)], strongly suggests
that friction plays an important role in creation, destruction,
and deformation of the loops when the system is compressed
but not yet jammed. Observe that, close to jamming, the rate
at which the loop structure changes for the μ = 0 systems is
significantly more dramatic, both regarding the largest change,
measured by dB , and regarding overall changes, measured by
dW1 and dW2. Even after jamming, for ρ > ρJ , the rate of
change of the μ = 0 systems is approximately twice that of
the μ = 0.5 systems. It is interesting that the influence of
friction for ρ > ρJ is much more obvious for loops than for
connected components. Further research is needed to better
understand this finding.

V. CONCLUSIONS

The evolution of force networks in dense particulate
systems presents a complicated problem that is difficult to
analyze using conventional techniques. In this paper we show
that computational homology can be used to address many
aspects of the problem. In particular, it provides a unique
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set of precise and well defined measures of the evolution of
the geometry of the interparticle forces. The main findings
that apply to frictional and frictionless systems, to normal and
tangential forces, to both connected components (force chains)
and loops, and to all different distances between the considered
states, are as follows.

(i) The comparison of considered measures describing the
evolution of force networks shows that for unjammed systems,
large changes of the considered force networks are possible,
but these changes typically consist of local, isolated events.
However, as the system goes through the jamming transition,
the measures that we have implemented suggest large changes
of the force networks on global, systemwide scale.

(ii) The evolution of force networks is considerably differ-
ent between unjammed, but dense, systems and the jammed
ones. For jammed systems, the evolution of the networks
is significantly less dramatic, in the sense that the distances
between the consecutive states of the system are significantly
smaller.

In addition to these general findings, we also list the
main findings that focus on the specific forces or systems
or distances.

(i) The evolution of tangential forces is similar in its
main features to the evolution of the normal ones, with some
differences particularly close to ρJ , where jamming occurs.

(ii) There are significant differences in the evolution of
force networks for frictionless versus frictional systems. With
regard to the component structure of the force network (recall
that this is related in a broad sense to so-called force chains),
the peak rates of evolution before jamming are 20%–40%
higher for the frictional system than for the frictionless system,
but become quite similar after jamming. The differences are
even more pronounced when the evolution of loop structures
is considered. For ρ 	 ρJ , the rate of evolution measured by
dB and dW 2 is larger for the frictional system. For ρ � ρJ ,
the relative rates change and thereafter the difference between
the considered states are significantly more pronounced in
frictionless systems.

In this work, we have concentrated on describing the
concept of distance between the PDs in the context of force
networks and have analyzed a particular set of systems
(2D polydisperse circular particles with or without frictional
effects) exposed to a slow compression and sampled with
prescribed sample rate. Furthermore, we have focused on
the generic, averaged features of the differences between
considered force networks. In future work, we will consider in
more detail what is the influence of system size, particle shape,
sampling rate, and the protocol used to evolve the considered
particulate system, as well as analyze more precisely the
evolution of networks in single realizations.

Before closing, we note that one particular strength of
the computational homology approach is that it is system-
independent and can be applied to any particulate system,
independent of the physical properties of the considered
system, such as the type of interaction between the particles, or
dimensions of the physical space in which they live. Therefore,
the natural next step is to consider particulate systems char-
acterized by different physical properties (cohesion, shape) or
different geometry (2D versus 3D). We note that the definition
of the interaction force network does not depend on the fact

that the system is 2D. Algorithms for computing persistent
homology do not depend on dimension either. The β0 and β1

PDs describe the connected components and loops (tunnels) as
before. For a 3D system, there is an extra β2 PD, describing the
structure of the cavities (2D voids). Also, one could envision
using the presented approach to consider systems exposed
to more complex protocols, such as shear, where spatial
inhomogeneities may be present, or where stick-slip motion
is relevant; one important question is to understand how force
networks evolve in such systems. Furthermore, the approach
can be as well applied to experimental systems, such as those
built from photoelastic particles, where detailed information
about the force networks is available. Analyses of such systems
will be the subject of our future works.
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APPENDIX: DISCRETE ELEMENT SIMULATIONS (DESs)

In the simulations, circular grains are confined to a square
domain with rough walls composed of monodisperse particles.
The walls move inward at constant speed, vc. No annealing of
the system is carried out, and gravity is neglected. The particle-
particle (and particle-wall) interactions include normal and
tangential components. The normal force between particles i

and j is

Fn
i,j = knxn − γnm̄vn

i,j , (A1)

where ri,j = |ri,j |, ri,j = ri − rj , n = ri,j /ri,j , and vn
i,j is

the relative normal velocity. The amount of compression
is x = di,j − ri,j , where di,j = (di + dj )/2 and di and dj

are the diameters of the particles i and j , respectively. All
quantities are expressed using the average particle diameter,
dave, as the length scale, the binary particle collision time
τc = π

√
dave/(2gkn) as the time scale, and the average particle

mass, m, as the mass scale. m̄ is the reduced mass, kn (in
units of mg/dave) is the spring constant set to a value that
corresponds to that for photoelastic disks [29], and γn is the
damping coefficient [30]. The parameters entering the linear
force model can be connected to physical properties (Young
modulus, Poisson ratio) as described, e.g., in [30].

We implement the commonly used Cundall-Strack model
for static friction [31], where a tangential spring is introduced
between particles for each new contact that forms at time
t = t0. Due to the relative motion of the particles, the spring
length, ξ , evolves as

ξ =
∫ t

t0

vt
i,j (t ′)dt ′, (A2)

where vt
i,j = vi,j − vn

i,j . For long lasting contacts, ξ may not
remain parallel to the current tangential direction defined by
t = vt

i,j/|vt
i,j| (see, e.g., [32]); we therefore define the corrected

ξ ′ = ξ − n(n · ξ ) (A3)
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and introduce the test force

Ft∗ = −ktξ
′ − γt m̄vt

i,j , (A4)

where γt is the coefficient of viscous damping in the tangential
direction (with γt = γn). To ensure that the magnitude of the
tangential force remains below the Coulomb threshold, we
constrain the tangential force as

Ft = min(μs |Fn|,|Ft∗|)Ft∗/|Ft∗|, (A5)

and redefine ξ if appropriate.

For the initial configuration, particles are placed on a
square lattice and given random initial velocities; we have
verified that the results are independent of the distribution
and magnitude of these initial velocities. The wall particles
move at a uniform (small) inward velocity vc = 2.5×10−5. We
integrate Newton’s equations of motion for both the translation
and the rotational degrees of freedom using a fourth-order
predictor-corrector method with time step �t = 1/50. In this
work, we consider systems with N = 2000 particles with
kn = 4×103, en = 0.5, μs = 0.5, and kt = 0.8kn.
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