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Modelling spreading dynamics of nematic liquid
crystals in three spatial dimensions
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We study spreading dynamics of nematic liquid crystal droplets within the framework
of the long-wave approximation. A fourth-order nonlinear parabolic partial differential
equation governing the free surface evolution is derived. The influence of elastic
distortion energy and of imposed anchoring variations at the substrate are explored
through linear stability analysis and scaling arguments, which yield useful insight and
predictions for the behaviour of spreading droplets. This behaviour is captured by fully
nonlinear time-dependent simulations of three-dimensional droplets spreading in the
presence of anchoring variations that model simple defects in the nematic orientation
at the substrate.
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1. Introduction
Thin liquid films have surprisingly wide application in our daily life. From industrial

coating and painting processes to printing, many current technologies require an
understanding of fluid flows in which one spatial dimension (the film thickness) is
significantly smaller than the others (typically, the lateral scales over which film
thickness changes). Under such circumstances one can use systematic asymptotic
methods based on a small parameter (the representative aspect ratio of the film, which
characterizes the size of the free surface gradients) to simplify the full Navier–Stokes
governing equations. Expanding the dependent variables of interest, such as fluid
velocity, pressure, etc., in terms of this small parameter, one can obtain a much
more tractable system of reduced equations for the leading-order quantities. Despite its
simplicity, this approach has been used and experimentally tested many times, and has
been very successful in describing the real physics in a wide range of flows.

While plenty of work has been done with Newtonian fluids, this kind of systematic
asymptotic treatment of flowing thin complex fluids, in particular liquid crystals, is
still in its infancy (see Myers (2005), Blossey et al. (2006) and Münch et al.
(2006) for examples of work on non-Newtonian, but not liquid crystal, thin film
flows). Liquid crystals are anisotropic liquids, which typically consist of rod-like
molecules. In a nematic phase, the rod-like molecules have no positional order, but
they self-align to reach long range directional order. Therefore, to have a complete
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description of a nematic liquid crystal (NLC) flow, one needs to consider not only
the velocity field, but also the orientational director field. In experiments on spreading
nematic droplets, Poulard & Cazabat (2005) found that NLC droplets spreading on
a horizontal substrate exhibit a surprisingly rich range of instabilities, in the regimes
where Newtonian droplets would only spread stably (see also Delabre, Richard &
Cazabat 2009; Manyuhina, Cazabat & Ben Amar 2010).

With regards to asymptotic (long-wavelength) modelling of such flows, Ben Amar
& Cummings (2001) derived a model to describe the surface evolution of strongly
anchored, strongly elastic, NLCs, work that was extended by Cummings (2004) to the
weakly anchored case; while Carou et al. (2007) studied the model for blade coating
of NLCs in two-dimensional space in the limit of weak elastic effects. An alternative
approach based on energetic arguments was presented by Mechkov, Cazabat &
Oshanin (2009). However, these different approaches lead to different predictions for
the stability of a thin film; a discrepancy that was reconciled only very recently (Lin
et al. 2013). We refer the reader to that paper for more details, but briefly, Ben Amar
& Cummings (2001) and Cummings (2004) employ the same stress balance at the free
surface of the film as in standard Newtonian flow, balancing pressure with capillarity.
When this condition is modified to also include an elastic stress, results consistent with
the energy-based approach are obtained. Moreover, these consistent results indicate
that in the case of strong anchoring conditions at both, the solid substrate and the free
surface of the nematic film, such a film is never unstable (Lin et al. 2013). Note, that
in the weakly elastic limit of Carou et al. (2007) the effect does not appear at leading
order and no effect on stability is seen. To summarize: many questions remain to be
addressed regarding the instability mechanisms in free surface nematic flows. No fully
consistent ‘lubrication’ model for a three-dimensional (3D) situation that can account
for the weak anchoring effects that are crucial for instability has yet been proposed or
studied.

In this paper, we implement the long-wave approximation to derive a model
describing the 3D free surface evolution of a thin film of NLCs on a rigid substrate.
The model incorporates a novel weak anchoring surface energy formulation, and
shows satisfactory behaviour in the vicinity of a contact line. Simple linear stability
analysis (LSA) permits mechanistic insight into how the anchoring energy influences
the stability of a spreading NLC droplet.

2. Model derivation

The main dependent variables governing the dynamics of a liquid crystal in the
nematic phase are the velocity field v̄= (ū, v̄, w̄), and the director field n= (n1, n2, n3),
the unit vector describing the orientation of the anisotropic axis in the liquid crystal
(an idealized representation of the local preferred average direction of the rodlike
liquid crystal molecules). The director orientation is a function of space and time
which, in the limit that director relaxation is fast relative to the flow time scale (the
limit considered here) is determined by minimizing a suitably defined total energy.
Molecules like to align locally, a preference that is modelled by a bulk elastic (Frank)
energy W̄, which is minimized subject to boundary conditions. In general, a bounding
surface is associated with a given preferred direction for n; this preference is known
as surface anchoring, and is modelled by an appropriate choice of surface energy.
Anchoring can be tuned by appropriate treatment of a surface and may be either weak
or strong. The stress tensor for the NLC is a function of the director orientation, hence
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elastic effects can strongly influence the fluid flow, giving rise to behaviour that differs
markedly from the isotropic Newtonian case.

2.1. Leslie–Ericksen equations
The flow of NLCs may be described by the Leslie–Ericksen equations (Leslie 1979).
Neglecting inertia, and using over-bars to denote dimensional variables (dimensionless
variables will be without bars), the flow is governed by

λn− ∂W̄

∂n
+ ∇̄ ·

(
∂W̄

∂∇̄n

)
+ Ḡ= 0, (2.1)

−∇̄ · Π̄ + (∇̄n) · Ḡ+ ∇̄ · t̄ = 0, (2.2)

∇̄ · v̄= 0, (2.3)

representing energy, momentum and mass conservation, respectively. Here, λ is a
Lagrange multiplier ensuring that the director n is a unit vector. The quantities W̄, Ḡ
and Π̄ are defined by

2W̄ = K[(∇̄ ·n)2 + |∇̄ × n|2], (2.4)

Ḡi =−γ1 N̄i − γ2 ēiknk, ēij = 1
2

(
∂v̄i

∂ x̄j
+ ∂v̄j

∂ x̄i

)
, (2.5)

N̄i = ṅi − ω̄ik nk, ω̄ij = 1
2

(
∂v̄i

∂ x̄j
− ∂v̄j

∂ x̄i

)
, (2.6)

Π̄ = p̄+ W̄ + ψ̄g, (2.7)

where K is an elastic constant (this form of W̄ (2.12) exploits the widely used one-
constant approximation (De Gennes & Prost 1995)), γ1 and γ2 are constant viscosities;
an over-dot denotes a material (total) time derivative, subscripts i, j and k denote
vector indices and the Einstein summation convention is used; p̄ is the pressure and ψ̄g

is the gravitational potential. Finally, t̄ is the viscous stress tensor with components

t̄ij = α1nknpēkpninj + α2N̄inj + α3N̄jni + α4ēij + α5ēiknknj + α6ējknkni, (2.8)

where αi are constant viscosities (related to γi in (2.5) by γ1 = α3 − α2, γ2 = α6 − α5,
and to each other by the Onsager relation, α2 + α3 = α6 − α5).

2.2. Non-dimensionalization
We employ long-wave scalings to non-dimensionalize the governing equations

(x̄, ȳ, z̄)= (Lx,Ly, δLz), (ū, v̄, w̄)= (Uu,Uv, δUw), (2.9)

t̄ = L

U
t, p̄= µU

δ2L
p, W̄ = K

δ2L2
W, (2.10)

where L is the length scale of typical variations parallel to the substrate, U is the
typical flow speed, δ = h0/L� 1 is the aspect ratio of typical variations of the film
height h0 (a small slope assumption) and µ = α4/2 is chosen as the representative
viscosity scaling in the pressure, since this corresponds to the usual viscosity in the
isotropic case. Our choices of L and U are discussed later in the text.

2.3. Energetics of director field
It has been shown (Ben Amar & Cummings 2001; Cummings 2004) that with
the above scalings, and provided the inverse Ericksen number K/(µUL) = O(1),
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the coupling terms in (2.1)–(2.3) between the energy and momentum equations,
represented by Ḡ, can be neglected. The energy equations then reduce to the
appropriate Euler–Lagrange equations for minimizing the free energy of the film
subject to the constraint n·n= 1, corresponding to the limit of instantaneous relaxation
of the director field. Imposing the constraint n · n= 1 directly we have a director field
that is a vector on the unit sphere characterized by two angles,

n= (sin θ cosφ, sin θ sinφ, cos θ), (2.11)

for some functions θ(x, y, z, t) and φ(x, y, z, t), which are the usual spherical polar
angles.

The leading-order bulk elastic energy, under the long-wave scaling, is given by

2W = θ 2
z + φ2

z sin2θ + O(δ). (2.12)

The surface energy at the free surface z= h(x, y, t) is denoted by G = G (θ̂) where θ̂ is
the conical director orientation at the free surface,

θ̂ = θ(x, y, h, t). (2.13)

The surface energy G takes its minimum when the director takes the preferred
orientation θ̂ = 0. Within the long-wave approximation this corresponds to a director
field perpendicular to the free surface: homeotropic surface anchoring. At the substrate
z = 0 we assume strong planar anchoring, θ(x, y, 0, t) = π/2, with φ specified. These
anchoring assumptions are consistent with the experiments of Poulard & Cazabat
(2005) (but not to all experimental spreading scenarios; in particular our model is not
applicable to the case of fully degenerate planar anchoring at the lower substrate).

We carry out the free energy minimization directly using a variational principle. The
total free energy, J, consists of bulk and surface contributions. We write

J =
∫ h

0

∫
Ω

˜N W dS dz+
∫
Ω

G dS, (2.14)

where Ω is the domain occupied by the liquid crystal sample in the x–y plane and
˜N = K/(µUL) is the inverse Ericksen number. We consider the variations induced in

J by small variations in the fields θ and φ. The first variations must both vanish at
an extremum and the sign of the second variations tells us whether or not we have an
energy minimum. After an integration by parts, the vanishing of the bulk terms in the
first variations of J leads to

θzz = φ
2
z

2
sin 2θ in Ω ∪ {0< z< h}, (2.15)

(φzsin2θ)z = 0 in Ω ∪ {0< z< h}. (2.16)

At the free surface, the surface energy G is independent of the azimuthal angle φ
(conical anchoring), hence a natural boundary condition on φ emerges from the surface
contribution to the first variation of J with respect to φ: φzsin2θ = 0 on z = h. The
angle φ is thus independent of z; and with our assumption of strong anchoring at the
substrate, we then have

φ = φ(x, y) (2.17)
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determined by the imposed substrate anchoring pattern. For θ , (2.15) reduces to
θzz = 0, and the strong planar anchoring condition is imposed on z= 0. We then have

θ = a(x, y, t)z+ π
2
, (2.18)

where a is determined by the condition that the surface contribution in the first
variation vanish,

dG

dθ̂
+ ˜N a= 0. (2.19)

2.3.1. Surface energy
For relatively thick films, the director angle θ can easily adjust to the preferred

values at each surface. As the film gets thin, and in particular near precursor layers
or contact lines, there is a very large energy penalty to pay for bending between two
fixed angles across a very short distance h. In this paper we assume the existence of
a thin precursor film ahead of a bulk droplet, of thickness 0 < b� 1 (this is also the
case in the experiments of Poulard & Cazabat (2005)). To avoid a near-singularity in
the director orientation within the precursor, we allow the anchoring to be relaxed as
h→ b.

To capture these two limiting behaviours for thick and very thin films, we propose
that the change in director angle across the fluid layer, ah, approaches a prescribed
value Θ (the difference in the preferred angles at the free surface and solid substrate)
as h→∞; and approaches zero as the film thickness h→ b. Similar to the approach
of Cummings, Lin & Kondic (2011), we introduce an ad hoc anchoring condition
based on specifying this change in director angle by

ah=Θm(h), (2.20)

where m(h) is a monotone increasing function of h with m(b) = 0 and m(∞) = 1.
With our assumption of homeotropic alignment at the free surface (and with the
assumed lubrication scalings), Θ =−π/2.

Although we have not yet explicitly given the surface energy G , it is implicitly
imposed and easily recovered. Based on the above, the director angle θ is given by
θ = (π/2)(1 − zm(h)/h), so that the angle θ̂ at the free surface, defined by (2.13), is
given as a function of h by

θ̂ = π
2
(1− m(h)). (2.21)

The surface energy must satisfy (2.19). Since (2.21) is not trivially inverted to give
h(θ̂), we use the chain rule to obtain

dG

dh
= dG

dθ̂

dθ̂
dh
=−N

m(h)m′(h)
h

, (2.22)

where N = Θ2 ˜N . Equation (2.22) defines the surface energy G in terms of the film
height h. The expression in terms of director angle at the free surface, θ̂ , may be
recovered by use of (2.21).

Note that (2.18) and (2.20) also imply that the bulk elastic energy in (2.12) becomes

W = Θ
2

2
m2

h2
. (2.23)
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As a result we have the contribution of nematic elasticity to the free energy as

J =
∫
Ω

[
N

2
m2

h
+ G

]
dS. (2.24)

2.4. Momentum equation

For the momentum equations (2.2), balancing dominant terms gives

∂Π

∂x
∼ ∂t13

∂z
,

∂Π

∂y
∼ ∂t23

∂z
,

in dimensionless form. Based on the long-wave scalings, to leading order we have

t13 = (A1 + A2 cos 2φ)uz + A2 sin 2φvz, t23 = A2 sin 2φuz + (A1 − A2 cos 2φ)vz, (2.25)

where A1 = 1+(α5−α2)cos2θ+ α1sin2θcos2θ+((α3+α6)/2)sin2θ , A2 = α1sin2θcos2θ+
((α3 + α6)/2)sin2θ , and the αi are normalized by µ = α4/2. As a result, the leading-
order equations are

∂p

∂x
+ ˜N θzθzx = ∂

∂z
{(A1 + A2 cos 2φ)uz + A2 sin 2φvz} , (2.26)

∂p

∂y
+ ˜N θzθzy = ∂

∂z
{A2 sin 2φuz + (A1 − A2 cos 2φ)vz} , (2.27)

∂p

∂z
=−B, (2.28)

where B = δ3ρgL2/µU is the Bond number.
We assume that the normal component of the stress at the free surface balances

surface tension (the isotropic component of the surface energy, γ ) times curvature,
and that the in-plane component of the stress is balanced by surface tension (surface
energy) gradients in the plane of the surface. This yields the leading-order boundary
conditions:

p+ ˜N θ 2
z =−C∇2h, (2.29)

− ˜N (θxθz + θ 2
z hx)+ (A1 + A2 cos 2φ)uz + A2 sin 2φvz = ˜N Gx, (2.30)

− ˜N (θyθz + θ 2
z hy)+ A2 sin 2φuz + (A1 − A2 cos 2φ)vz = ˜N Gy, (2.31)

where C = δ3γ /µU is an inverse capillary number. Furthermore, using (2.19)–(2.21),
the equations of the tangential stress balances (2.30)–(2.31) reduce to uz = 0 and
vz = 0.

We solve (2.28)–(2.29) for p

p=B(h− z)− ˜N a2 − C∇2h, (2.32)

and substitute in (2.26)–(2.27) to obtain uz and vz using the boundary conditions
derived above:

D uz = [(A1 − A2 cos 2φ)(px + ˜N aax)− A2 sin 2φ(py + ˜N aay)](z− h), (2.33)

D vz = [(A1 + A2 cos 2φ)(py + ˜N aay)− A2 sin 2φ(px + ˜N aax)](z− h), (2.34)
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where D= A2
1 − A2

2. Finally, using conservation of mass together with the relations∫ h

0
u dz=

∫ h

0
uz(h− z) dz,

∫ h

0
v dz=

∫ h

0
vz(h− z) dz, (2.35)

we obtain a partial differential equation (PDE) governing the evolution of the film
height:

ht +∇ ·
[{

f1 I + f2

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

]}
·∇

(
C∇2h−Bh+

˜N

2
a2

)]
= 0, (2.36)

where I is the identity matrix and

f1 =
∫ h

0

A1

A2
1 − A2

2

(h− z)2 dz, f2 =
∫ h

0

−A2

A2
1 − A2

2

(h− z)2 dz. (2.37)

Equations (2.36)–(2.37) represent a formidable analytical challenge. We simplify by
approximating the integral expressions using the two-point trapezoidal rule, as

f1 = λh3, f2 = νh3, λ= 2+ α3 + α6

4(1+ α3 + α6)
, ν =− α3 + α6

4(1+ α3 + α6)
. (2.38)

For −1 < α3 + α6 < 0 (which is the case for all common NLCs), we have λ > ν > 0.
By including these quantities and our chosen surface energy G from § 2.3.1, the
equation can be rewritten as

ht +∇ ·
[
h3
∇̃
(
C∇2h−Bh

)+N
(
mm′h− m2

)
∇̃h
]
= 0, (2.39)

where N =Θ2K/µUL and

∇̃ =
(
λI + ν

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

])
·∇. (2.40)

2.5. Model summary

Our final model consists of the PDE (2.39), where ∇̃ is defined in (2.40), with
the anchoring condition at the free surface, m(h), and the anchoring pattern at the
substrate, φ(x, y), to be specified. We have five dimensionless positive parameters,
λ, ν, C , B and N , giving a solution space that is potentially very large. In the
following analysis and simulations, we assume a balance between surface tension
and gravity, setting C =B = 1, meaning physically that the typical length scale L
considered is the capillary length,

√
γ /ρg. Clearly, alternative choices can be made if

a different balance, or different length scales, are to be considered.
On the other hand, it has been shown (Lin et al. 2013) that the evolution equation

for a NLC film in the limit of strong anchoring can be written in a variational or
gradient dynamics form in line with such formulations for films of simple liquids (see,
e.g., Mitlin 1993; Thiele 2010), films of mixtures (Thiele 2011) and surfactant-covered
films (Thiele, Archer & Plapp 2012). We would like to point out that this is also true
for the current model. In such a formulation, the evolution of the film thickness h
follows a dissipative gradient dynamics governed by the equation

ht =∇ ·
[

Q(h)∇̃

(
δF

δh

)]
, (2.41)
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where Q(h) is the mobility function and F is the free energy functional written as

F[h] =
∫
Ω

[
C

(
1+ (∇h)2

2

)
+ B

2
h2

]
dS+ J. (2.42)

The contribution of nematic elasticity to the free energy functional, J, is given in
(2.24). By introducing F into (2.41) and noting that the surface energy G is coupled
with the film thickness through (2.22), we obtain the evolution equation

ht =∇ ·
[

Q(h)∇̃

(
−C∇2h+Bh− N

2
m2

h2

)]
. (2.43)

One should note that (2.39) and (2.43) are identical when Q(h)= h3.

3. Analysis and results
In this section we investigate some limiting cases of the model analytically, and

carry out additional simulations for spreading nematic films and droplets in selected
flow configurations. The time-dependent simulations that we report below are based
on an alternative-direction-implicit (ADI) method (as outlined by Witelski & Bowen
(2003)) with variable time stepping based on a Crank–Nicolson scheme; see Lin,
Kondic & Filippov (2012b) for further details.

3.1. Influence of anchoring patterns at the substrate
To gain some insight into our model we first compare two different unidirectional
substrate anchoring patterns, in the simple case where flow is independent of y, and
the fluid spreads uniformly in the x direction. Assuming φ = 0 (director orientation at
the substrate parallel to the fluid flow direction), equation (2.39) becomes

ht + (λ+ ν)∂x

[
h3(hxxx − hx)+N

(
mm′h− m2

)
hx

]= 0. (3.1)

If, on the other hand, we assume φ = π/2, so that the substrate director orientation is
perpendicular to the fluid flow (but still in the plane of the substrate), equation (2.39)
becomes

ht + (λ− ν)∂x

[
h3(hxxx − hx)+N

(
mm′h− m2

)
hx

]= 0. (3.2)

Equations (3.1) and (3.2) are identical once time is rescaled by a constant. In this
simple example, the substrate pattern only affects the flow time scale, effectively
making the fluid viscosity φ-dependent. The NLC flows faster when the anchoring
pattern is parallel to the flow direction (effective viscosity is smaller), and slower when
it is perpendicular (effective viscosity is larger).

To focus more on the influence of the anchoring patterns at the substrate, we next
consider a weak conical free surface anchoring on θ so that the director orientation is
mainly determined by the strong planar anchoring at the substrate, i.e. θ ≡ π/2 and
m(h)≡ 0. The contribution of nematic bending elasticity then disappears. In particular,
the integral expressions in (2.37) can now be evaluated exactly; there is no need to
approximate them as was done to obtain (2.39). The resulting equation is

ht +∇ ·
[

2h3

3
∇̃
(∇2h− h

)]= 0. (3.3)

Figure 1 shows the solution of (3.3) computed using ADI-based simulations of a
configuration where the anchoring imposed at the substrate appears as a striped pattern,
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FIGURE 1. (Colour online) Spreading NLC film on a stripe-patterned substrate (λ = 1,
ν = 0.5, N = 0). (a) The dashed (black) lines indicate the anchoring at the substrate. The
solid (shown in red online) curves show the front position at 1t = 10 time intervals between
successive curves. The initial front position is shown as a straight (shown in red online) line
at y≈ 10. (b–c) Surface contour plot of the film at t = 0, 50, respectively. (d) Cross-section of
the film, h(x= 0, y, t = 50).

as shown in figure 1(a): φ = π/2 for x ∈ (4n − 1, 4n + 1), n = 0, ±1 and ±2; and
φ = 0 otherwise. The initial film profile, shown as a surface contour plot in figure 1(b),
is taken as

h(x, y, 0)= 0.45 tanh(−5(y− 10))+ 0.55, (3.4)

with the front position being a straight line parallel to the x-axis, and spreading in the
+y direction. The computational domain is defined by −Lx 6 x 6 Lx and 0 6 y 6 Ly,
with Lx = 10 and Ly = 20. The implemented boundary conditions are hx(±Lx, y, t) =
hy(x, 0, t) = hy(x,Ly, t) = hxxx(±Lx, y, t) = hyyy(x, 0, t) = 0, h(x,Ly, t) = b, where b is
the thickness of the prewetting layer (precursor film) used to remove the contact line
singularity. In the simulation scenarios that follow (in both this and the following
section), the exact value given to b was found to have only a weak influence on
spreading (with faster spreading for larger b), but no influence of the exact value of
b on the stability of the flow has been found. We use b = 0.1 here, and on uniform
computational grids specified by the grid spacing δx= δy= 0.1; these values are found
to be sufficient to guarantee numerical convergence.

Figure 1(a) shows the evolution of the spreading fluid front. The anchoring pattern
at the substrate clearly influences the spreading: as figure 1(a) shows, in line with
the observations discussed above, the front moves fastest when the fluid motion is
parallel to the anchoring pattern, and slowest when flow is perpendicular to anchoring.
As the anchoring changes periodically, the speed of the front transitions between the
two extremes, giving rise to a sawtooth pattern. It should be noted that although
(3.1) and (3.2) are indicative of different wavespeeds for an isolated moving front,
the amplitude of the front perturbation does not increase linearly in time, as seen
in figure 1(a). Instead, the amplitude approaches a constant value. This constant
amplitude is determined by the balance between different effective viscosities and
surface tension effects.

Figure 1(c) shows a surface contour plot of the profile at a late time, t = 50,
and figure 1(d) shows its cross-section at x = 0. Note the absence of a capillary
ridge behind the front, indicating the stability of the underlying flow. The sawtooth
pattern that develops in the spreading front here, although reminiscent of a fingering
instability, is no such thing: it is simply the result of the anchoring inhomogeneity
imposed at the substrate.
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3.2. Influence of anchoring condition at the free surface

We now analyse the effect of free surface anchoring on the director angle, θ . We begin
by reviewing the LSA of a simple flat film of height h = h0 in the two-dimensional
case in which variations with respect to the y coordinate are neglected, so that both
director field and flow are confined to the (x, z)-plane (Cummings et al. 2011). This
analysis is found in practice to give a remarkably good indication regarding stability
of spreading 3D droplets, considered in § 3.3 below. In that section we present several
simulations of stable/unstable 3D droplet evolution of a chosen surface anchoring
function to illustrate the kind of behaviour that our model can reproduce in the
presence of some simple substrate anchoring patterns.

3.2.1. LSA of a flat film
With the director confined to the (x, z) plane, φ ≡ 0, and no y-dependence, equation

(2.39) reduces to (3.1). Assuming h= h0 + ξ and |ξ | � h0 in this equation, we find

ξt + (λ+ ν)h3
0

[
ξxxxx − ξxx +N M(h0)ξxx

]= 0, (3.5)

where

M(h)= m(h)m′(h)h− m(h)2

h3
. (3.6)

By setting ξ ∝ exp(ikx+ ωt), we obtain the dispersion relation

ω =−(λ+ ν)h3
0

[
k4 + (1−N M(h0))k

2
]
. (3.7)

The flat film is thus unstable to sufficiently long-wavelength perturbations if
N M(h0) > 1. When this is the case, perturbations with wavenumbers k ∈ (0, kc) are
unstable, where kc =

√
N M(h0)− 1 is the critical wavenumber. The fastest-growing

wavenumber (for which the growth rate is the largest) is km = kc/
√

2, corresponding to
the wavelength

lm = 2π
km
= 2π√

(N M(h0)− 1)/2
, (3.8)

and the growth rate ωm = (λ+ ν)h3
0(N M(h0)− 1)2/4.

3.2.2. Strong surface anchoring
We consider firstly a strong homeotropic anchoring, given by m ≡ 1. In this limit,

the evolution equation becomes

ht +∇ ·
[
h3
∇̃
(
C∇2h−Bh

)−N ∇̃h
]
= 0, (3.9)

Note that, the elastic contributions to the governing equation are purely diffusive. A
version of this limit was derived via alternative energetic considerations by Mechkov
et al. (2009) (see also Lin et al. (2013) for a more in-depth discussion of the
strong anchoring case). Although the director field corresponding to strong anchoring
becomes singular as the film height h→ 0, the PDE governing the film height in this
limit is well-behaved and will never exhibit an instability. This observation suggests
that the weak free surface anchoring, necessary on physical grounds for the director to
be non-singular as the film height goes to zero, is key for the instability mechanism.
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FIGURE 2. (Colour online) (a) The anchoring condition, m(h), as defined in (3.10) with
α = β = 1 and b = 0.1,w = 0.05. (b) N M(h) − 1 as a function of h where M(h) is defined
in (3.6). The solid (shown in blue online) curve is for N = 1 and the dashed (black) curve for
N = 0.2. The circles (shown in red online) indicate the critical values where N M(h)−1= 0.

3.2.3. Weak surface anchoring
For a weak surface anchoring, there are many possible forms for m(h) that satisfy

our basic requirement m(b)= 0, m(∞)= 1. Here, as an example, we take

m(h)= f (h; b)
(

hα

hα + βα
)

(3.10)

where α and β are positive constants that tune the relaxation of the anchoring for
film heights larger than the precursor, and f (h; b) provides the ‘cutoff’ behaviour as
the precursor is approached. In the simulations presented in this paper we choose
f (h; b) = [tanh((h − 2b)/w) + 1]/2, where w fixes the size of the h-range over which
m(h) is turned off as h→ b (w→ 0 gives a simple discontinuous switch; we assign a
small positive value, w= 0.05, to smooth this behaviour). This choice for m(h) ensures
that the director field for thin films, roughly less than b, lies in the plane θ = π/2, with
φ dictated by the substrate anchoring conditions. We note that the exact functional
form given to m(h) does not influence the results to any significant degree, as long as
m(h) changes sufficiently rapidly for h∼ b.

Figure 2(a) shows the anchoring condition at the free surface, (3.10), with α = β = 1
and b = 0.1. It can be seen that the anchoring condition approaches 0 for thin films
and increasingly approaches 1 when the film thickness gets thicker. Figure 2(b) shows
the function N m(h) − 1 for N = 0.2 (dashed (black) curve) and for N = 1 (solid
(shown in blue) curve). As demonstrated in § 3.2.1, (3.7), the flat film with thickness
h0 is unstable if N m(h0)− 1> 0. One can see that for N = 0.2, flat films are always
stable while for N = 1, there exists a range of film thicknesses (the critical values are
marked by circles (shown in red online) in figure 2b) that exhibit instabilities.

3.3. Numerical results
In this section we present several simulations of 3D spreading nematic droplets,
in which the influence of the anchoring condition at the substrate can be directly
investigated. In particular, as test cases we consider spreading on substrate anchoring
patterns that mimic the director structure near different types of nematic defects, in
order to analyse the influence of local director structure on spreading (see Lin, Kondic
& Cummings (2012a) for a related analysis of strictly two-dimensional ‘defects’).
Such defects are classified according to their topological winding number s: as a small
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FIGURE 3. (Colour online) Spreading NLC droplet for N = 0.2 and s = −1/2. (a) The
anchoring condition at the substrate, φ(x, y), as defined in (3.11). (b) The initial condition at
t = 0. (c) The droplet evolution at t = 10 000.

planar circuit around the defect is traversed exactly once, the director field rotates
through an angle 2πs. Specifically, we have

φ(x, y)= stan−1
(y

x

)
. (3.11)

While this description cannot capture the true physics very close to the defect centre
(the director field notion breaks down there and one has to introduce a tensorial
order parameter for a detailed description; see e.g. De Gennes & Prost (1995) for a
discussion) we suggest that it may provide a reasonable description of the macroscopic
free surface evolution in the presence of a pinned defect. More importantly, for
different choices of s, equation (3.11) provides examples of generic surface anchoring
patterns that provide useful demonstrations of our model behaviour.

We solve numerically (2.39) on such an anchoring pattern, our choice of parameters
is guided by the LSA results presented in § 3.2.1 above. The computational domain in
all cases is chosen as −Lx 6 x 6 Lx and −Ly 6 y 6 Ly with Lx = Ly = 20, and with the
boundary conditions

h(x,±Ly, t)= h(±Lx, y, t)= b, hy(x,±Ly, t)= hx(±Lx, y, t)= 0. (3.12)

For our first set of simulations we take as initial condition a smoothed cylinder of
radius 10 and height h0 = 0.2, with a precursor film of thickness b = 0.05 covering
the rest of the domain. While the exact functional form for h(x, y, 0) only weakly
influences the subsequent evolution, we give it here for definiteness:

h(x, y, 0)= h0 − b

2
tanh

(
−
(√

x2 + y2 − 10
))
+ h0 + b

2
. (3.13)

Finally, the parameters appearing in (2.40), (3.10) are chosen as α = 1, β = 1, λ = 1
and ν = 1/2. The value of N is given in each figure caption.

Figure 3(b,c) shows the evolution of a stably spreading nematic droplet, for
N = 0.2. The anchoring at the substrate mimics the director structure near a defect of
type s = −1/2, shown in figure 3(a). Owing to the non-uniformity of this pattern in
the radial direction, the droplet spreads asymmetrically, but in the manner that might
be expected for the prescribed anchoring pattern. Consistent with the results of our
LSA in § 3.2.1 we do not observe any free surface instabilities: the corresponding flat
film is stable for the chosen parameters.
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FIGURE 4. (Colour online) Spreading NLC droplet for N = 1 and s = −1. The initial
condition is the same as in figure 3(b). The anchoring condition at the substrate is shown in
(a). The droplet evolution at t = 500 and t = 1000 are shown in (b,c), respectively.

Figure 4 shows the evolution of a spreading nematic droplet, for N = 1. The
anchoring at the substrate mimics the four-fold symmetric director structure near a
defect of type s = −1, shown in figure 4(a). Again, due to the non-uniformity of
this pattern in the radial direction, the droplet spreads in the manner that might be
expected for the prescribed anchoring pattern. In addition, we observe rich pattern
formation on the droplet surface, as illustrated by figure 4(b–c).

By the analysis of § 3.2.1, a flat film of the same thickness h0 = 0.2 is unstable for
N = 1. The most unstable wavelength for this case is lm ≈ 2π, predicting that there
will be ∼3 humps on the droplet surface for the chosen initial condition. We find that
the results of simulations are consistent with these predictions, see, e.g. figure 4(b).
The cross-section in the radial direction of this figure shows three hump-like structures,
specified by (in three dimensions) one raised ring with one spherical hump at the
centre.

In order to confirm that this comparison between the LSA and nonlinear simulations
extends to other parameter values, we next consider N = 10. Here, the LSA predicts
that the most unstable wavelength is lm ≈ 1.6 and the number of humps for the drop
considered should be ∼12. Figure 5 shows this case, for a droplet spreading on
an anchoring pattern given by (3.11) with s = 1/2. We again find remarkably good
agreement between the LSA prediction for the flat film, and the observed simulation
for the cylindrical droplet. Figure 5(b), for example, shows that there are 6 rings
that form, corresponding in the cross-section to 12 humps. Also note that the time
scale for instability development is much shorter for N = 10. Here, the unstable
pattern has developed already at t = 5, see figure 5(b), while for N = 1 we have to
wait until t = 500, as shown in figure 4(b). This finding is also consistent with the
LSA predictions. We remark also that the type of structures seen in figure 5(c) are
reminiscent of certain free surface structures seen in the experiments of Poulard &
Cazabat (2005) (albeit within a much more complicated setting in those experiments).

Finally, in figure 6 we show a spreading NLC droplet on a radially symmetric
anchoring pattern, which mimics the director structure near a defect of type s= 1. The
parameter N is set to unity. Instead of using a cylindrical cap as the initial condition,
here we choose one that is closer to a spherical cap, shown as the solid (black) curve
in figure 6(b), a configuration for which our LSA is not applicable. Nonetheless we
note that, taking h0 in the LSA to be the mean initial droplet height, one might
anticipate instability for these parameter values. As the droplet spreads, the front
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FIGURE 5. (Colour online) Spreading NLC droplet for N = 10 and s = 1/2. The initial
condition is the same as in figure 3(b). The anchoring condition at the substrate is shown in
(a). The droplet evolution at t = 5 and 30 is shown in (b,c).
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FIGURE 6. (Colour online) Spreading NLC droplet for N = 1 and s = 1. The anchoring
condition at the substrate is shown in (a). The cross-sections of the droplet, h(x, y = 0, t), are
shown in (b) for t = 0 (solid (black) curve), t = 300 (dotted (shown in blue online) curve) and
t = 600 (dashed (shown in red online) curve). The contour of the droplet at t = 0, t = 300 and
t = 600 are shown in (c–e), respectively.

remains circular for all time, while the surface exhibits radially symmetric instabilities,
as anticipated. The instabilities appear as a ring (two humps in the cross-section),
which eventually closes up into a single central hump for long times.
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4. Conclusions
We have presented a new model that describes 3D spreading of thin films and

droplets of NLC. To the best of the authors’ knowledge this is the first model of this
kind to account for the effect of director variation in three dimensions on the shape
of the overlying free surface. The stripe pattern of nematic films in a 3D setting was
already analysed by Lavrentovich & Pergamenshchik (1994), Sparavigna, Lavrentovich
& Strigazzi (1994) and Manyuhina & Ben Amar (2013) assuming the film remains
a flat film. There the predicted instability mechanisms depend on the ratio of the
various elastic constants while here the presented mechanism results from the coupling
of free surface modulations and director orientation as described by the one-constant
approximation.

Strong anchoring boundary conditions on the director at both boundaries are not
suitable to describe a very thin spreading film (the director polar angle θ becomes
singular at a contact line, leading to a strong diffusion, which is always stabilizing).
Instead, we impose weak conical surface anchoring on the polar angle θ , with the
anchoring energy given by (2.22). The anchoring at the substrate z = 0 is taken
to be strong and planar, with the azimuthal director angle φ(x, y, 0) specified. Our
formulation preserves the property of strong anchoring when the film is thick, while
allowing the director to relax to a state of planar alignment (although with anisotropy
entering through non-uniform azimuthal patterning) when the film is very thin. The
resulting equation for the film or droplet evolution is a fourth-order nonlinear parabolic
PDE, (2.39).

A simple LSA of (2.39) in the case of purely two-dimensional flow predicts that a
flat film may be unstable under certain conditions. The strong anchoring limit leads to
a purely diffusive contribution from the elastic effects that always acts in a stabilizing
manner; but weak anchoring can lead to instability. The physical mechanism is based
on a coupling of the degrees of freedom of director orientation within the film and at
its surfaces and the shape of the free surface itself. Even in the limit of instantaneous
director relaxation considered here this coupling gives rise to an instability mechanism
active in the film thickness range where anchoring and bulk elastic energies compete.
A second mechanism that can lead to patterned spreading (which might be viewed
as an instability in the advancing front) is that the anchoring condition on the
azimuthal angle (φ) at the solid substrate affects the speed of spreading. A drop
spreads faster/slower when the substrate anchoring is parallel/perpendicular to the flow.
For a substrate characterized by non-uniform anchoring conditions, the fluid front
advances non-uniformly, in line with the prescribed anchoring patterns. This behaviour
is exemplified by the analysis of a film spreading over a substrate with a striped
anchoring pattern, leading to evolution with a sawtooth pattern in the advancing front,
shown in figure 1.

We carried out numerical simulations of 3D spreading droplets for a variety
of substrate anchoring patterns, focusing particularly on patterns that mimic the
director structure near topological defects. Our simulations (including more than are
reproduced here) indicate that: (i) the flat film stability analysis serves as a remarkably
good indicator of the stability of more complex spreading droplets, provided that
the initial ‘droplet height’ is well characterized; and (ii) although substrate anchoring
clearly affects spreading speed and the shape of the spreading front, it does not appear
to influence the global free surface stability of spreading droplets.

Although simplified, the proposed model and the reported simulations provide
valuable insight into the dynamics of spreading nematic droplets and films as
observed experimentally by Poulard & Cazabat (2005), Delabre et al. (2009) and
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Manyuhina et al. (2010). The model as given by (2.39) is rather general, relying
only on the validity of the lubrication scaling (which in turn relies only on the
droplet aspect ratio), the strong anchoring condition at the substrate and the two-
point trapezium rule approximation for the integral expressions appearing in (2.36).
Note that we propose and use a particular reasonable form for the anchoring
function m(h) only where it is necessary to carry out simulations or to demonstrate
possible (in)stability regions. Thus, whenever the anchoring function m(h) is obtained
experimentally (as an empirical function to be fitted), equation (2.39) is applicable and
its predictions for the stability of a suitably thin flat film should be valid.

However, there is still much to be done in order to elicit the full story in all
of its complexity. The results presented here, in particular regarding the influence
of substrate anchoring patterns, clearly represent only a small subset of the possible
spreading behaviour. Only very simple spreading scenarios and anchoring conditions
are studied here, and it would clearly be of interest to simulate droplets spreading over
more complex substrate patterning; for example, droplets spreading over several model
defects as might be relevant in physical experiments. Our suggestion that the proposed
substrate anchoring patterns may be thought of as idealized representations of defects
in physical flows may of course also be questioned: it is known that the continuum
nematic description used here breaks down in a small (nanometre) region around any
defect, so our model cannot give an accurate description within such a defect core.
Nonetheless, our simulations give some useful insight as to the effect that patterned
planar anchoring can have on droplet evolution, and the similarity of figure 5(c) to
parts of figure 2(c) in Poulard & Cazabat (2005) is intriguing.

While qualitatively illuminating, some aspects of our model are undoubtedly overly
simplistic: our contact line regularization may not adequately model the true physics
as the ultra-thin precursor film is approached and molecular effects such as van der
Waals’ interactions become important; and indeed it may well not capture the true
behaviour of the anchoring conditions. The effect of finite surface anchoring energy
at the substrate may also need to be taken into consideration: the relative anchoring
strengths at two bounding surfaces were found to be important in the transition
behaviour of the director field (albeit in the presence of an applied electric field)
by Barbero & Berberi (1983) (see also citing works). In future work we plan to
introduce improved models for these aspects of the problem.
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