LP Geometry and Solution

The intuition provided by the geometric solution of two-variable LP’s
serves well for problems in higher dimensions. This note offers a quick review of
the terminology of LP graphical solution, verbally translating the elements of the
solution techniques from two to three to “n” dimensions. To get the most out of
the note, we suggest that as you read it, you look at illustrative slides from the
lectures or “draw along.”

The number of decision variables in an LP determines the problem’s
dimensionality. Two-variable problems can be represented in a space of two
dimensions by drawing a set of two axes, one perpendicular to the other. Three-
variable problems can be represented in a 3-D space with a set of three mutually
perpendicular axes. n-variable problems can be represented by n-dimension
spaces based on a set of n mutually perpendicular axes. While most of us can
picture two- and three-dimensional problems in our minds, the visualization of
more dimensions is beyond our capabilities. Nevertheless, the geometric
intuition carries through and it often suffices to think of higher-dimensional
problems as “more complicated” three-dimensional problems.

Each inequality constraint (< or >) divides the problem space into two
parts, called half-spaces. All of the points in one of the half-spaces satisfy the
constraint, and none of the points in the other satisfy the constraint. The points
on the boundary of the two half-spaces define the equality constraint ( = ) which
corresponds to the inequality. Thus, in two dimensions an inequality constraint
divides the 2-D plane into two parts, while an equality constraint is satisfied only
on a line. In three dimensions, an inequality divides volumetric space into two,
and an equality is satisfied only on a plane. (In higher dimensions, equality
constraints define n-dimensional hyperplanes!)

The feasible solution of an LP must simultaneously satisfy all of the
problem’s constraints. If the problem has only inequality constraints, the set of
feasible solutions is, therefore, the intersection of the half-spaces define by the
problem’s constraints.

The problem’s constraints may even have no common intersection so that
the set of feasible points is empty. In this case the problem is infeasible (which
may mean that the problem is formulated incorrectly).

If we increase the right-hand side of a ‘<’ constraint or decrease the right
hand side of a >’ inequality, we relax the constraint and enlarge the feasible
region to include additional points that simultaneously satisfy all of the LP
constraints. This action can only make the optimal Objective Function Value
improve or stay the same. That is, the inclusion of new points in the feasible
region does not remove any of the original feasible points—including the original
optimal solution. In addition, one of the new feasible points may even obtain an



OFV that improves upon the old optimal solution’s. Therefore, the new optimal
OFV must be at least as “good” as the original. (The opposite actions tighten
constraints, reduce the set of points included in the feasible region, and can only
make the optimal OFV deteriorate or stay the same.)

If the underlying problem space has n dimensions then every corner point,
or vertex, of the feasible region can be defined by exactly n constraints.” Thus,
the vertices of 2-D problems can be defined by two constraints, and the vertices
of 3-D problems can be defined by three constraints (For example, think of the
corners of a cube.) It may also be that more than n constraints pass through a
vertex in n-space, in which case the vertex is said to be degenerate. For a such a
degenerate vertex any subset of n distinct constraints from the original set is
sufficient to define the vertex. By “distinct” we mean to exclude different versions
of the same constraint. For example, 4 x1+6 x2>5and 8 x1 + 12 x> 10 look
different from each other but are satisfied by the same feasible regions.

For every feasible problem there exists an optimal solution which is
located at a vertex of the feasible region.? A constraint is binding if it passes
through this optimal vertex, and nonbinding if it does not. If the constraint is
binding these actions will most often change the optimal solution and OFV. In
general, as the RHS of the binding constraint is changed, the optimal vertex
“slides along” the intersection of changing constraint, and as the optimal vertex
moves, the optimal OFV changes. An exception exists, however, when the
optimal vertex is degenerate. In this case the vertex may or may not move;
whether or not it does depends on the specific position of the vertices (> n)
binding constraints and is problem-specific.

If a constraint is not binding, then tightening it (a bit) or relaxing it (as
much as you please) will not change the optimal solution or the optimal OFV. In
particular, the slack of a nonbinding ‘<’ constraint is defined to be the difference
between its right hand side and the value of its left hand side at the optimal
vertex. Formally it's defined as

slack = RHS - LHS.

It may also be that more than n constraints pass through a vertex in n-space, in which case
the vertex is said to be degenerate. For a such a degenerate vertex any subset of n distinct
constraints from the original set is sufficient to define the vertex. By “distinct” we mean to
exclude different versions of the same constraint. For example, 4 x4+ 6 x,>5and 8 x + 12
x 2> 10 look different from each other but are satisfied by the same feasible regions.

This is a fact which we hope the geometric solutions presented in class have convinced you
is true. For those who are interested, a formal analytical explanation can be found in an
advanced text on LP.



Similarly, the surplus associated with a nonbinding >’ constraint is the extra (i.e.
surplus) value which may be reduced from the constraint’s left-hand-side function
before the constraint becomes binding and the LHS equals the RHS. Its formal
definition is

surplus = LHS - RHS.

Note that by definition slack and surplus are always greater than zero.

Within an allowable range, change of an objective function coefficient will
not change the vertex at which the optimal solution is found. In two dimensions,
for example, changing one of the objective function coefficients causes the
objective function line to rotate (around the solution vertex). If the change is large
enough, the line will become parallel to one of the binding constraints, and the LP
will have multiple optimal solutions. If the change in the coefficient is larger still,
the optimal solution “jumps” to another vertex.

Changes to objective function coefficients do, however, change the
optimal OFV.

Sensitivity Analysis

One benefit of using an LP model is that a table of sensitivity analysis, an
analysis of the sensitivity of the model’s solution to changes in the problem’s
assumptions, is provided to you “for free” every time you run an LP. This part of
the note reviews the definitions of the terms included in most LP sensitivity
reports, as well as the geometric concepts that behind the definitions. We begin
with a recapitulation of some definitions.

Preliminaries for Sensitivity Analysis

It is important to distinguish between the optimal solution, i.e., the values
of the decision variables at optimality (often denoted as x1, X2, X3, etc., where
the asterisk (*) indicates the optimal x), and the optimal objective function value
(OFV), which is simply the value of the objective function when evaluated at the
optimal solution.

We say that a constraint is relaxed or loosened when, for a < constraint,
the right-hand side (RHS) is increased, or when, for a > constraint, the RHS is
decreased. A change in the opposite direction is called a tightening or restriction
of the constraint. We say that an objective function value is improved when
increased in a maximization problem (e.g., increasing profit is an improvement)
or reduced in a minimization problem (e.g., reducing cost is an improvement).

A reliable intuition is that the relaxation of a constraint can only improve
the OFV or leave it unchanged. Conversely, the tightening of a constraint can



only worsen the OFV or leave it unchanged. This intuition is valuable, and
contributes to straightforward interpretations of complex problems.

Shadow Prices and Allowable Ranges for the RHS

A natural economic interpretation of the degree to which the change in the
right hand side of a constraint affects the optimal OFV is that of marginal cost or
marginal benefit. We call this degree of change the shadow price of the
constraint, and more formally define shadow price to be the amount of
improvement in the optimal OFV that is obtained by relaxing the right hand side
by one unit> Equivalently, the shadow price is the rate of deterioration in the
OFV obtained by restricting that constraint. Note that a nonbinding constraint
always has a shadow price of zero, since a change in its RHS does not affect the
optimal solution or OFV at all.

The shadow price of a constraint is defined for a “one unit” change in the
constraint. This “one unit” idea not only tells us that the shadow price is the rate
of change of the OFV with respect to changes in the constraint, but also indicates
that this shadow price is only locally accurate; if we make dramatic changes in
the constraint, naively multiplying the shadow price by the magnitude of the
change may mislead us. In particular, the shadow price reported by the
spreadsheet holds only within an allowable range of changes to the constraintis
right-hand side; outside of this allowable range the shadow price may change.
This allowable range is composed of two components. The allowable increase is
the amount by which the RHS may be increased before the shadow price can
change; similarly, the allowable decrease is the corresponding reduction that
may applied to the RHS before a change in the shadow price can take place.?
(Whether this increase or decrease corresponds to a tightening or a relaxation of
the constraint depends on the direction of the constraintis inequality.)

For a binding constraint, the geometric intuition behind these definitions is
as follows. By changing the RHS of a constraint, we change the optimal solution
as it islidesi along the other binding constraints. Within the allowable range of
changes to the RHS, the optimal vertex slides in a straight line, and the optimal
OFV changes at a constant rate. Once the RHS hits the limit of its allowable
increase or decrease, however, the optimal vertexis slide changes. The vertex
may turn a corner, continuing its straight-line slide in a new direction, in which

®  The Excel spreadsheet package defines the shadow price to be the increase in the optimal

OFV that is obtained from a unit increase in the RHS of the constraint (irrespective of the
direction of the constraint or of whether the objective function maximizes or minimizes). It
may therefore attach a minus sign to the shadow price. In such a case, we must use the
heuristic of “relax and improve” to determine the meaning of the minus sign. If a lower OFV
(e.g., cost) is better, a negative shadow price might be attached to a > constraint on
production quantity. Relaxing the production requirement improves the OFV.

Note that the OFV may change even though we stay within the allowable increase or
decrease; it's the shadow price which is guaranteed to stay constant.



case the optimal OFV changes at a new, constant rate. Or the constraint whose
RHS is altered may become non-binding so that its shadow price drops to zero.
Or, by tightening the constraint, the problem may become infeasible, in which
case the shadow price is not even well defined!

For a nonbinding constraint (which, we remember, will always have a
shadow price of zero), we make these observations: Further relaxation of the
constraint will never make the constraint binding. One of the allowable limits will
thus be infinite—the shadow price will remain zero no matter how much we relax
the constraint. There always exists, however, an allowable limit on the tightening
of the constraint beyond which the constraint becomes binding and its shadow
price becomes non-zero.

Reduced Costs and Allowable Ranges for Objective Function Coefficients

The reduced cost of a decision variable is defined as the amount by which
the objective function coefficient of that variable must be improved for that
decision variable to take a positive value in the optimal solution. Equivalently,
reduced cost represents the amount by which the optimal OFV will deteriorate if
a unit of that variable (currently at zero) were to be forced into the solution.

An intuitive way to think about reduced costs is as follows. If the optimal
solution to an LP indicates that the optimal level of a particular decision variable
is zero®, it must be because the objective function coefficient of this variable
(e.g., its unit contribution to profits or unit cost) is not “attractive” enough to justify
its “inclusion” in the decision. The reduced cost of that decision variable tells us
the amount by which the objective function coefficients must improve for the
decision variable to become “attractive enough to include”—and take on a non-
zero value in the optimal solution. Hence the reduced costs of all decision
variables that take non-zero values® in the optimal solution are, by definition,
zero—no further enhancement to their attractiveness is needed to get us to use
them, as they’re already “included.”

When the reduced cost of a decision variable is non-zero (implying that
the value of that decision variable is zero in the optimal solution), the reduced
cost is also reflected in the allowable range of its objective coefficient. In this
case, one of the allowable limits is always infinite (because making the objective
coefficient “less attractive” will never cause the optimal solution to include the
decision variable in the optimal solution); and the other limit, by definition, is the
reduced cost (for it is the amount by which the objective coefficient must
“improve” before the optimal solution changes).

®  More generally, at its lower or upper limit as specified in the constraints.

®  More generally, values strictly between their upper and lower limits.



If the objective function coefficients are changed—one at a time—within
their respective allowable ranges, the optimal solution does not change. (In 2-
dimensional LPs, the objective function line rotates at the same vertex.)
However, any change in the objective coefficient of a decision variable that has a
nonzero optimal value changes the OFV, since we’re directly changing the
weights on the solution variables without changing the values of these variables.’
Note that changing the weights is enough to change the OFV). Changing an
objective coefficient beyond the allowable range causes the optimal solution to
jump to another vertex.

If we change the coefficient on a variable has a zero optimal value (i.e., one which has a

nonzero reduced cost) by an amount inside its allowable range, our change will not have
made the variable attractive enough to include—an application of the interaction between
reduced cost and the allowable range.



