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Abstract

We establish a necessary condition for any importance sampling scheme to give bounded

relative error when estimating a performance measure of a highly reliable Markovian sys-

tem. Also, a class of importance sampling methods is defined for which we prove a necessary

and sufficient condition for bounded relative error for the performance measure estimator.

This class of probability measures includes all of the currently existing failure biasing meth-

ods in the literature. Similar conditions for derivative estimators are established.
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1 Introduction

There is an increasing demand for systems, such as computing systems or transaction process-

ing systems, to be highly reliable. A designer faced with developing such a system usually

constructs and evaluates a mathematical model of the system to determine if it will perform at

an acceptable level. Analytic methods for evaluating models are often impractical due to the

large state spaces that arise in reliability models, and frequently the designer must resort to

simulation. However, standard simulation without the use of any variance reduction techniques

is inefficient because of the rarity of system failures. Thus, variance reduction techniques must

be employed to obtain efficient estimators which yield acceptable confidence intervals.

Importance sampling is one such variance reduction technique and is the focus of our study.

The basic idea behind this method is to simulate the system under a modified probability

distribution that is chosen in a way so that the important events (in our case, system failures)

which are rare under the original probability measure occur more frequently. This technique is

known as a “change of measure.” By properly selecting the importance sampling probability

distribution, we can significantly reduce the variance of the estimator.

In the literature a number of importance sampling schemes have been proposed for sim-

ulating highly reliable Markovian systems. These include all of the failure biasing methods,

namely simple failure biasing (Lewis and Böhm [17], Conway and Goyal [4], Goyal et al. [11],

Shahabuddin [25], Nakayama [18]), bias2 failure biasing (Goyal et al. [11]), balanced failure

biasing (Shahabuddin [25], Goyal et al. [11]), and failure distance biasing (Carrasco [1, 2]).

Shahabuddin [25] developed the mathematical framework to study the asymptotic properties

of estimators obtained using importance sampling in simulations of highly reliable Markovian

systems. In particular, Shahabuddin introduced the notion of “bounded relative error” in this

problem setting. A simulation estimator of a performance measure has bounded relative error

if the ratio of the expected half width of its confidence interval over the expected point esti-

mate remains bounded as the component failure rates tend to zero and the repair rates remain

fixed. If an estimator enjoys this property, then only a fixed number of samples is needed to

obtain a confidence interval having a fixed expected relative width, independent of how rarely

system failures occur. Otherwise, the sample size must increase as system failures become less

frequent.

Previous theoretical work on importance sampling for highly reliable Markovian systems

mainly focused on the asymptotic properties of particular changes of measure. Shahabud-

din [25] developed a simple sufficient condition for certain importance sampling schemes to

yield bounded relative error and used it to establish that balanced failure biasing always yields

bounded relative error. It was also proved that if the system under consideration is “balanced”
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(i.e., the transition rates of all of the failure transitions are of the same order of magnitude),

then simple failure biasing produces estimators having bounded relative error. Moreover, Sha-

habuddin showed by example that if the system is not balanced, then simple failure biasing may

not give bounded relative error. Nakayama [18] later demonstrated that simple failure biasing

can yield bounded relative error for certain unbalanced systems, and a necessary and sufficient

condition for bounded relative error was established for this method. Nakayama [19, 18] also

examined the issue of bounded relative error for likelihood ratio derivative estimators obtained

using balanced failure biasing and simple failure biasing.

While much of the previous work focused on the asymptotic efficiencies of specific failure

biasing methods, the goal of this paper is to unify and generalize the existing theory by

establishing a number of conditions for bounded relative error for large classes of importance

sampling methods. To this end, we first establish a necessary condition for any importance

sampling scheme to produce a performance estimator having bounded relative error for a given

system. This result is quite general since the only required assumption is that the importance

sampling probability measure is a valid change of measure; no other conditions are imposed on

the structure of the distrubution. Thus, even though we are considering Markovian systems,

our theorem can be used to examine importance sampling methods which are non-Markovian.

One consequence of our necessary condition is the following. To determine if an importance

sampling estimator has bounded relative error for a given system, it may seem plausible that

it is sufficient to analyze the behavior of the estimator on only the most likely paths to system

failure. However, this is not the case. In fact, our result shows that in the context of highly

reliable Markovian systems, the probability under the new measure of every path to failure

must satisfy some condition for there to be bounded relative error. Nakayama [18] first noted

this need to examine paths which are not the most likely ones in an analysis of the simple failure

biasing method. Our current result generalizes this observation to any arbitrary importance

sampling scheme. It also clearly demonstrates in general the role that each path plays in

determining the relative error of an estimator. Moreover, as noted in Nakayama [18], this

feature, in some sense, illustrates the difference between importance sampling schemes for the

highly reliable systems considered here and those arising in the “large deviations” context.

Specifically, the optimal change of measure for large deviations problems is selected solely

with regard to the most likely path to failure; e.g., see Cottrell et al. [5] and Chang et al. [3].

However, our necessary condition shows that in the highly reliable Markovian system context,

it is not sufficient to consider only the most likely paths to failure.

To obtain a necessary and sufficient condition for bounded relative error, we must impose

additional structure on the importance sampling scheme considered. Thus, we define a certain
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broad class of importance sampling methods and prove a theorem which establishes a neces-

sary and sufficient condition for any importance sampling method in this class to give rise to

performance measure estimates having bounded relative error for a given system. The class

includes all of the failure biasing techniques currently in the literature. Our current result

generalizes the work of Nakayama [18], which established a necessary and sufficient condition

for bounded relative error for the special case of simple failure biasing.

The necessary and sufficient condition may be difficult to apply in practice, and so we

provide some simple sufficient conditions for bounded relative error of the performance measure

estimators. The first condition is due to Shahabuddin [25] and was used in [25] to show that

balanced failure biasing always gives bounded relative error and that simple failure biasing does

so when the system is balanced. We prove a theorem which demonstrates that a large class

of importance sampling methods satisfy Shahabuddin’s sufficient condition when the system

is balanced. The class includes all of the currently existing failure biasing schemes.

We apply our results to study each of the failure biasing methods which are currently in

the literature. In particular, we show that of all these techniques, only balanced failure biasing

is guaranteed to always give bounded relative error. However, as Nakayama [18] showed by

example, for a given model, the simple failure biasing method may yield estimators with smaller

constants for the leading term in the asymptotic expansion of the variance. These constants

are important in practice since they play an important role in determining the actual width of

the resulting confidence interval. Thus, although balanced failure biasing is the most robust

of the existing methods, it still may be more appropriate to use one of the other schemes for

a particular model.

We also perform a similar analysis to determine when a given importance sampling method

will give rise to likelihood ratio derivative estimators having bounded relative error for a given

model. First, we establish a necessary condition for any importance sampling scheme to yield

derivative estimators having bounded relative error. Then, we prove a necessary and sufficient

condition for the class of importance sampling measures described above. Finally, we provide

simple sufficient conditions for the derivative estimators to have bounded relative error. (For

other work on derivative estimation which are not necessarily in the setting of highly reliable

systems, see [6, 7, 16, 19, 20, 24, 27] and references therein.)

In addition to the previous work cited on importance sampling for highly reliable systems,

others also have studied this problem. Shahabuddin [26] and Shahabuddin and Nakayama [27]

analyzed the asymptotic properties of importance sampling estimators of transient perfor-

mance measures and their derivatives for Markovian systems. Also, several importance sam-

pling schemes have been proposed for highly reliable non-Markovian systems. Nicola et al. [21]
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proposed an algorithm in which some of the clocks (i.e., future events in the event list) are

rescheduled after certain events, and the technique was studied empirically. Nicola et al. [22]

developed another method for estimating the system reliability based on the idea of uniformiza-

tion and a concept which they call “exponential transform,” and Heidelberger et al. [14] estab-

lished under certain conditions that the method yields estimates with bounded relative error.

Heidelberger et al. [13] and Nicola et al. [23] also studied the method in various settings.

The rest of the paper is organized as follows. In Section 2 we present the mathematical

model of highly reliable Markovian systems developed by Shahabuddin [25]. We examine the

asymptotic behavior of performance measure estimators obtained using importance sampling

in Section 3. In Section 3.1, we establish our necessary condition for any importance sampling

scheme to yield performance measure estimates with bounded relative error. Then, in Sec-

tion 3.2 we define our class of importance sampling methods for which we prove the necessary

and sufficient condition for bounded relative error of the performance measure estimate. Sec-

tion 3.3 contains some sufficient conditions for bounded relative error. We apply our results

to study each of the existing failure biasing methods in Section 3.4. Section 4 establishes re-

sults analogous to those in Section 3 but for derivative estimators. In Section 5 we state our

conclusions and give some directions for future research. Finally, an appendix contains one of

the longer proofs.

2 Mathematical Model

We now describe the mathematical model of highly reliable Markovian systems with which we

will work. The model was originally developed by Shahabuddin [25] to study the asymptotic

behavior of performance measure estimators and later was modified by Nakayama [19] to

analyze likelihood ratio derivative estimators.

Our system consists of C, 0 < C < ∞, different types of components, where there are ni,

0 < ni < ∞, components of type i. We let

N =
C∑

j=1

nj

be the total number of components in the system. The components are subject to random

failures and, when failed, are sent to a repair facility having some number of repairpersons.

The queueing discipline at the repair center is arbitrary.

We will model the evolution of the system as a continuous time Markov chain (CTMC) {Yt :

t ≥ 0} having some state space S, where we assume that |S| < ∞. Our analysis will be

independent of the exact form of the state space. Note that any state x ∈ S is an encoding of
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the number of failed components of each type along with any information about the queueing

at the repair facility. Let ni(x) be the number components of type i that are operational in

state x. We decompose the state space as S = U ∪ F , where U is the set of operational (or

up) states and F is the set of failed (or down) states. We assume that if x ∈ U and y ∈ E

with ni(y) ≥ ni(x) for all components types i, then y ∈ U . We also assume that the system

initially starts in state 0, the state with all components operational, and 0 ∈ U .

We allow for the possibility of failure propagation; i.e., the failure of one component causes

other components to simultaneously fail with some probability. For example, consider a com-

puter system with a processor and a power supply, and the failure of a power supply creates

a power surge which causes the processor to fail. We model this in the following manner.

Consider some component type i and state x ∈ S, and define Si(x) = {y ∈ S : nj(y) ≤
nj(x) for all j 	= i, ni(y) < ni(x)}, which is the set of states y in which there is at least one

more component of type i failed than in state x and every other component type has at least

as many failed components as in state x. Also, let p( · ;x, i) be some probability mass function

on Si(x). Suppose that the system is in a state x with ni(x) > 0 and a component of type i

fails. Then the system immediately enters state y ∈ Si(x) with probability p(y;x, i). In this

situation, nj(x) − nj(y) components of type j, 1 ≤ j ≤ C, failed on the transition caused by

the failure of the component of type i, and we say that the failure of the component of type i

triggered the transition (x, y).

Similarly, we allow for the possibility of a repairperson to complete the repair of more than

one component at a time. For example, this may happen if some component consists of a

number of subcomponents, and the repairperson replaces the entire unit when enough of the

subcomponents have failed. However, we do not allow for a single transition to consist of a

number of components failing and others completing repair. This may occur, for example,

if a repairperson fixes some component but breaks another one when replacing the repaired

component.

We define a transition (x, y) to be a failure transition, which we denote by y � x, if

nj(y) ≤ nj(x) for all 1 ≤ j ≤ C with ni(y) < ni(x) for some type i. Similarly, we define (x, y)

to be a repair transition, which we denote by y ≺ x, if nj(y) ≥ nj(x) for all 1 ≤ j ≤ C with

ni(y) > ni(x) for some type i.

We let the behavior of a component depend on the state of the system. Thus, when the

system is in state x ∈ S, we assume that the failure rate of components of type i is λi(x) ≥ 0

and the rate of some repair transition (x, y) is µ(x, y) ≥ 0. Using this approach, we can

allow for the operation of one component depend on other components being operational. For

example, this may occur when a processor in a computer has a power supply, and the processor
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is inoperational if the power supply is failed. Similarly, the repairperson may not be able to

fix the processor until the power supply is repaired.

The infinitesimal generator matrix Q = {q(x, y) : x, y ∈ S} of Y is given by

q(x, y) =




∑C
k=1 nk(x)λk(x)p(y;x, k) if y � x

µ(x, y) if y ≺ x

0 otherwise

(1)

for x 	= y, and q(x, x) = −∑
y �=x q(x, y). We let

q(x) = −q(x, x)

be the total transition rate out of state x.

We let X = {Xn : n ≥ 0} denote the embedded discrete time Markov chain (DTMC) of Y .

The transition matrix of X is given by P = {P(x, y) : x, y ∈ S}, where P(x, y) = q(x, y)/q(x)

for x 	= y, and P(x, x) = 0. We define Γ = {(x, y) : x, y ∈ S,P(x, y) > 0}, which is the set of

possible transitions the system can make.

We assume that the system is composed of highly reliable components (i.e., the component

failure rates are much smaller than the repair rates). (High reliability for the system can also

be achieved by having high redundancies.) We model this by introducing a parameter ε and

assume that the failure rate of the components of type i, 1 ≤ i ≤ C, is

λi(x, ε) = λ̃i(x)εbi(x),

where λ̃i(x) ≥ 0 and bi(x) ≥ 1 are independent of ε, and bi(x) is integer-valued. We also let

p( · ;x, i) depend on ε; i.e., for all (x, y) ∈ Γ such that y � x,

p(y;x, i) = pε(y;x, i) = ci(x, y)εdi(x,y)

where di(x, y) ≥ 0 is integer-valued, ci(x, y) ≥ 0, and
∑

y∈Si(x) pε(y;x, i) = 1. We assume that

the repair rates µ(x, y) are independent of ε. We will examine the behavior of the system as

ε → 0.

For some constant d, a function f is said to be o(εd) if f(ε)/εd → 0 as ε → 0. Similarly,

f(ε) = O(εd) if |f(ε)| ≤ c1ε
d for some constant c1 > 0 for all ε sufficiently small. Also,

f(ε) = O(εd) if |f(ε)| ≥ c2ε
d for some constant c2 > 0 for all ε sufficiently small. Finally,

f(ε) = Θ(εd) if f(ε) = O(εd) and f(ε) = O(εd).

We define b0 to be

b0 ≡ min
1≤i≤C

bi(0),
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and so q(0) = Θ(εb0). For any (x, y) ∈ Γ, we define

b(x, y) =


 min{bi(x) + di(x, y) : 1 ≤ i ≤ C, ni(x)λ̃i(x)pε(y;x, i) > 0} if y � x

0 if y ≺ x
, (2)

which is the exponent of the order of magnitude of the rate of a transition (x, y). Thus, for

any (x, y) ∈ Γ, b(x, y) = d if q(x, y) = Θ(εd), and b(x, y) ≥ 1 if y � x.

We say that the system is balanced if the transition rates of all of the failure transitions

are of the same order of magnitude (i.e., if for all (x, y) ∈ Γ with y � x, b(x, y) = b for some

b ≥ 1) and all of the pε(y;x, i) are independent of ε. In this situation, we may assume without

loss of generality that b = 1. If the system is not balanced, then it is said to be unbalanced.

We will assume the following:

A1 The DTMC X is irreducible over the state space S.

A2 For each state x ∈ S with x 	= 0, there exists a state y ∈ S such that (x, y) ∈ Γ and y ≺ x.

A3 For each state z ∈ F such that (0, z) ∈ Γ, q(0, z) = o(εb0).

Assumption A2 states that there is at least one repair transition possible from every state x 	= 0.

This will be satisfied as long as a repairperson is busy whenever there are any components

failed. If this is the case, then for x 	= 0, q(x) = c(x)+o(1), where c(x) > 0, which implies that

all failure transitions (x, y) with x 	= 0 have transition probability P(x, y) = Θ(εb(x,y)). The

assumption does not hold if there are deferred repairs; i.e., a repairperson does not start fixing

a failed component until some number (greater than one) of components are failed. In this last

situation Juneja and Shahabuddin [15] showed that the standard failure biasing techniques will

not yield estimators having bounded relative error.

Assumption A3 stipulates that all transitions which take the system from the original

state 0 immediately to a failed state must have transition rates which are much smaller than

the largest transition rates from state 0. This ensures that system failures are rare events for

the embedded DTMC when ε is small.

Our assumptions imply that the elements of the transition matrix have the following form.

For any (x, y) ∈ Γ,

P(x, y) =


 Θ(εb(x,y)) if x 	= 0

Θ(εb(x,y)−b0) if x = 0
, (3)

as ε → 0, where b(x, y) is defined in (2). Note that since b(x, y) = 0 whenever y ≺ x, all repair

transitions have transition probabilities which are Θ(1).
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We concentrate on estimating γ ≡ P{τF < τ0}, where τA denotes the hitting time of the

DTMC X to some set of states A; i.e., τA = inf{n > 0 : Xn ∈ A}. This performance measure

is of interest for several reasons. First, the mean time to failure can be expressed as

MTTF =
ξ

γ
, (4)

where ξ = E[
∑τmin−1

k=0 1/q(Xk)] and τmin = min{n > 0 : Xn ∈ {0, F}}; e.g., see Goyal et al. [11].
Also, consider the unreliability of the system at time t; i.e., U(t) = P{TF < t}, where TF is the

hitting time of the CTMC Y to the set F ; i.e., TF = inf{t > 0 : Yt ∈ F}. Then, Shahabuddin
and Nakayama [27] established that (1 − e−q(0)γt)/U(t) → 1 as ε → 0 when t = Θ(ε−rt) with

rt > 0.

Shahabuddin [25] showed that if Assumptions A1–A3 hold, then there exists some con-

stant r ≥ 1 (which depends on the model being considered) such that

γ = Θ(εr). (5)

We define

∆ = { (x0, . . . , xn) : n ≥ 1, x0 = 0, xn ∈ F, xi 	∈ {0, F} for 1 ≤ i < n,

(xi, xi+1) ∈ Γ for 0 ≤ i < n },

which is the set of sample paths of the embedded DTMC for which τF < τ0. Furthermore, let

∆m = {(x0, . . . , xn) ∈ ∆ : n ≥ 1, P{(X0, . . . , XτF ) = (x0, . . . , xn)} = Θ(εm)}

be the set of sample paths for which τF < τ0 and have probability (under the original measure)

of the order εm. Note that ∆ = ∪∞
m=r∆m, where r is defined in (5).

3 Estimating the Performance Measure Using Importance Sam-

pling

3.1 A General Necessary Condition For Bounded Relative Error

Since we will only consider the performance measure γ = P{τF < τ0}, we can concentrate

solely on the embedded DTMC X and do not have to work directly with the CTMC Y . Thus,

we can define our sample space Ω as

Ω = { (x0, . . . , xn) : n ≥ 1, x0 = 0, xn ∈ {0, F}, xi 	∈ {0, F} for 1 ≤ i < n },

which is the set of state sequences which start in state 0 and end in either 0 or F . Let (Ω,F)

denote the probability space on which X is defined, and let P be the probability measure on

(Ω,F) induced by the Q-matrix given in (1).

8



Consider estimating γ = E[1{τF < τ0}] using standard simulation. We accomplish this

by generating i.i.d. samples Î1, . . . , În of 1{τF < τ0} using the original probability measure P .

The point estimate of γ is given by

γ̂(n) =
1
n

n∑
k=1

Îk,

and the variance of 1{τF < τ0} under the measure P is

σ2 = γ − γ2 = Θ(εr)−Θ(ε2r) = Θ(εr)

as ε → 0. We define the relative error of our estimator to be the expected relative half-width

of the resulting confidence interval for a fixed number of samples n and a given confidence

level 1− δ. Letting zδ denote the 1− δ/2 quantile of a standard normal distribution, we have

that the relative error is

RE = zδ

√
σ2/n

γ
=

zδ√
n

Θ(εr/2)
Θ(εr)

=
zδ√
n
Θ(ε−r/2) → ∞

as ε → 0. Thus, the difficulty of estimating γ using standard simulation increases as system

failures become rarer.

Importance sampling, which we describe below, is a technique which can be used to obtain

more efficient estimators (when used properly). Recalling that ∆ is the set of sample paths for

which τF < τ0, we define the following class of probability measures.

Definition 1 I is the class of probability measures P ′ defined on (Ω,F) such that P ′{(X0, . . . , XτF ) =

(x0, . . . , xn)} > 0 for all (x0, . . . , xn) ∈ ∆.

The class I is the set of valid importance sampling probability measures for estimating γ.

Hence, for any P ′ ∈ I,

γ = E[1{τF < τ0}] =
∑

(x0,...,xn)∈∆

P{(X0, . . . , XτF ) = (x0, . . . , xn)}

=
∑

(x0,...,xn)∈∆

P{(X0, . . . , XτF ) = (x0, . . . , xn)}
P ′{(X0, . . . , XτF ) = (x0, . . . , xn)}P

′{(X0, . . . , XτF ) = (x0, . . . , xn)}

=
∑

(x0,...,xn)∈∆

L(x0, . . . , xn)P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = E′[1{τF < τ0}L],

where E′ is the expectation operator induced by the measure P ′ and

L(x0, . . . , xn) =
P{(X0, . . . , XτF ) = (x0, . . . , xn)}
P ′{(X0, . . . , XτF ) = (x0, . . . , xn)}

is the Radon-Nikodym derivative of P with respect to P ′, or simply the likelihood ratio. See

Hammersley and Handscomb [12] or Glynn and Iglehart [8] for further details.
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Actually, I is a generalization of the “standard” class of legitimate importance sam-

pling distributions since there may exist some (x0, . . . , xn) 	∈ ∆, (x0, . . . , xn) ∈ Ω such that

P{(X0, . . . , Xτmin) = (x0, . . . , xn)} > 0 and P ′{(X0, . . . , Xτmin) = (x0, . . . , xn)} = 0. However,

Definition 1 ensures that the new probability measure is positive over the part of the sample

space that matters (i.e., {τF < τ0}), which is sufficient; see Glynn and Iglehart [8].

We apply importance sampling as follows. Generate i.i.d. samples (Ĩ1, L̃1), . . . , (Ĩn, L̃n) of

(1{τF < τ0}, L) using the probability measure P ′. We form the new point estimate

γ̃(n) =
1
n

n∑
k=1

ĨkL̃,

and the variance of 1{τF < τ0}L under the measure P ′ is

σ′2 = E′[1{τF < τ0}L2]− γ2.

Note that

E′[1{τF < τ0}L2] =
∑

(x0,...,xn)∈∆

L2(x0, . . . , xn)P ′{(X0, . . . , XτF ) = (x0, . . . , xn)}

=
∑

(x0,...,xn)∈∆

L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

= E[1{τF < τ0}L], (6)

and so we can compute the second moment under importance sampling in terms of the original

probability measure. We define the relative error of the importance sampling estimator to be

RE′ = zδ

√
σ′2/n
γ

.

The goal of importance sampling is to choose a P ′ ∈ I such that E[1{τF < τ0}L] < γ, thereby

reducing the variance over standard simulation. In fact, if we can select a P ′ ∈ I such that

σ′2 = O(ε2r), then

RE′ =
zδ√
n

√
O(ε2r)
Θ(εr)

=
zδ√
n
O(1),

which remains bounded (and possibly goes to zero) as ε → 0. Thus, we can obtain a good

estimate of γ independently of how rare system failures are. If an estimator satisfies this

property, we say that it has bounded relative error, a notion introduced by Shahabuddin [25].

To determine if an importance sampling estimator of a performance measure has bounded

relative error for a given system, it might seem plausible that it is sufficient to analyze the

behavior of the estimator on only the most likely paths to system failure (i.e., (x0, . . . , xn) ∈
∆r). However, the following result shows that this is not the case.
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Theorem 1 Consider any system satisfying Assumptions A1–A3. Also, consider any P ′ ∈ I,
and let RE′ denote the relative error of the estimator of γ obtained using P ′. Suppose γ = Θ(εr)

for some r ≥ 1. If RE′ remains bounded as ε → 0, then for all (x0, . . . , xn) ∈ ∆m, m ≥ r,

P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r).

Proof. Suppose there exists some path (y0, . . . , yk) ∈ ∆m,m ≥ r, such that P ′{(X0, . . . , XτF ) =

(y0, . . . , yk)} = O(ε2m−2r+1). Using (6), we obtain

E′[1{τF < τ0}L2] =
∑

(x0,...,xn)∈∆
n>0

L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

≥ L(y0, . . . , yk)P{(X0, . . . , XτF ) = (y0, . . . , yk)}
=

Θ(εm)
O(ε2m−2r+1)

Θ(εm) = O(ε2r−1).

Hence, since γ = Θ(εr),

RE′ = zδ

√
σ′2/n
γ

≥ zδ√
n

√
O(ε2r−1)
Θ(εr)

=
zδ√
n
O(ε−1/2) → ∞

as ε → 0.

Theorem 1 shows that we cannot solely concentrate on the most likely paths to failure when

designing an importance sampling scheme for simulating highly reliable Markovian systems. In

a study of the simple failure biasing method, Nakayama [18] first noted the need to examine the

secondary paths to failure (i.e., (x0, . . . , xn) ∈ ∆−∆r) to determine if the resulting estimator

will have bounded relative error. However, Theorem 1 clearly illustrates in general how the

behavior of every path to failure affects the relative error of the estimator. Also, it is interesting

to note that Theorem 1 implies that if the performance measure estimator has bounded relative

error, then each of the most likely paths to failure must have probability of Θ(1) under the

new measure P ′.

Furthermore, Theorem 1 made no assumptions about the structure of P ′ other than it

must be a valid importance sampling measure. In particular, it was not assumed that the

importance sampling scheme is Markovian, even though the original measure P is.

3.2 A Necessary and Sufficient Condition For Bounded Relative Error

To obtain a condition that is both necessary and sufficient, we need to assume that the impor-

tance sampling methodology has more structure. Hence, we make the following definition.

Definition 2 J is the class of probability measures P ′ defined on (Ω,F) which satisfy the

following properties:

11



(i) P ′ is Markovian with some transition matrix P′;

(ii) For any (w, y) ∈ Γ, if P(w, y) = Θ(εd), then P′(w, y) = O(εd).

It is easy to show that J ⊂ I, and so any P ′ ∈ J is a valid importance sampling measure.

Part (ii) of Definition 2 states that the probability of a transition under the new measure

is never significantly smaller than the probability under the original measure. Furthermore,

as we shall see later, the class J contains all of the failure biasing methods currently in

the literature. The following theorem establishes a necessary and sufficient condition for any

probability measure in J to give bounded relative error for the performance measure estimate.

Theorem 2 Consider any system satisfying Assumptions A1–A3. Also, consider any P ′ ∈ J ,

and let RE′ denote the relative error of the estimator of γ obtained using P ′. Suppose γ = Θ(εr)

for some r ≥ 1. Then, RE′ remains bounded as ε → 0 if and only if for all (x0, . . . , xn) ∈ ∆m,

r ≤ m ≤ 2r − 1, P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r).

Before proving the theorem, we first make some remarks about it. Theorem 2 can be

potentially difficult to apply in practice because of the number of sample paths that must be

examined. However, our result clearly shows that secondary paths to failure play an important

role in determining the variance of an estimator obtained using some importance sampling

method. (Later, we will state a simple sufficient condition due to Shahabuddin [25] for the

performance measure estimator to have bounded relative error.)

We now compare Theorems 1 and 2. Consider (x0, . . . , xn) ∈ ∆m for some m ≥ r. To apply

Theorem 1, we must consider all m ≥ r, whereas in Theorem 2, we only need to examine

r ≤ m ≤ 2r − 1. To see why this is true, note that from Definition 2(ii), if P ′ ∈ J , then

P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(εm) for all (x0, . . . , xn) ∈ ∆m for any m ≥ r. Hence,

the condition that P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r) is automatically satisfied

when m ≥ 2r and P ′ ∈ J . On the other hand, we cannot make the same conclusion for P ′ ∈ I
since not enough structure was imposed on the class I.

Theorem 2 generalizes a result established in Nakayama [18] which provided a necessary and

sufficient condition for the special case of when simple failure biasing yields bounded relative

error for the estimator of γ. However, Theorem 2 is more general since it applies to a broad

class of measures J and not only to a specific method.

Now we proceed with the proof of Theorem 2. To establish the result, we will use the

following lemma.

Lemma 1 Consider any system satisfying Assumptions A1–A3. Consider (x0, . . . , xn) ∈ ∆m,

where n > 0 and m ≥ r. Then

12



(i) n ≤ (m+ 1)N ;

(ii) |∆m| ≤ |S|(m+1)N ;

(iii) P{(X0, . . . , XτF ) = (x0, . . . , xn)} = Θ(εm) and P{(X0, . . . , XτF ) = (x0, . . . , xn)} ≤
αβmεm for all ε > 0 sufficiently small, where α and β are constants which are inde-

pendent of (x0, . . . , xn) and m.

Furthermore, suppose P ′ ∈ J , and let L denote the Radon-Nikodym derivative of P with respect

to P ′. Then

(iv) L(x0, . . . , xn) ≤ ηm+1 for all ε > 0 sufficiently small, where η is a constant which is

independent of (x0, . . . , xn), m, and ε.

Proof. The first part of (iii) is immediate from the definition of ∆m. Parts (i) and (ii) and

the upper bound of part (iii) are slight generalizations of results previously established in the

proof of Theorem 1 of Nakayama [19], and so we omit their proofs.

To prove the validity of part (iv), first note that for any P ′ ∈ J and any (x0, . . . , xn) ∈ ∆m,

P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} =
n−1∏
k=0

P′(xk, xk+1)

by part (i) of Definition 2. Thus,

L(x0, . . . , xn) =
n−1∏
k=0

P(xk, xk+1)
P′(xk, xk+1)

.

By part (ii) of Definition 2, for any (x, y) ∈ Γ, there exists some ζ(x, y) > 0 which is independent

of ε such that

P′(x, y) ≥ ζ(x, y)P(x, y)

for all ε sufficiently small. Define ζ ′ = min{ζ(x, y) : (x, y) ∈ Γ} and ζ∗ = min{1, ζ ′}. Note that
ζ∗ > 0 since |S| < ∞. Thus, for all sufficiently small ε > 0,

L(x0, . . . , xn) ≤
n−1∏
k=0

1
ζ∗

≤ 1

ζ
(m+1)N
∗

by part (i). The proof is completed by letting η = 1/ζN∗ .

Now we establish Theorem 2.

Proof of Theorem 2. Suppose that P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r) for

all (x0, . . . , xn) ∈ ∆m, r ≤ m ≤ 2r. Since γ = Θ(εr), we need to establish that E′[1{τF <

τ0}L2] = O(ε2r).
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From (6), we have that

E′[1{τF < τ0}L2] =
∞∑

m=r

∑
(x0,...,xn)∈∆m

n>0

L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}.

Now consider some (x0, . . . , xn) ∈ ∆m with r ≤ m ≤ 2r − 1. By assumption,

L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)} = Θ(εm)
O(ε2m−2r)

Θ(εm) = O(ε2r).

Thus, since |∆m| < ∞ for all m by Lemma 1(ii),

2r−1∑
m=r

∑
(x0,...,xn)∈∆m

n>0

L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2r). (7)

Also, using Lemma 1, we obtain

∞∑
m=2r

∑
(x0,...,xn)∈∆m

n>0

L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

≤
∞∑

m=2r

∑
(x0,...,xn)∈∆m

n>0

ηm+1αβmεm ≤
∞∑

m=2r

|S|(m+1)Nηm+1αβmεm

= αη|S|N
∞∑

m=2r

(
βη|S|N ε

)m
= Θ(ε2r) (8)

as ε → 0. Hence, it follows from (7) and (8) that E′[1{τF < τ0}L2] = O(ε2r), and so RE′

remains bounded as ε → 0.

Also, since J ⊂ I, it follows from Theorem 1 that if there exists some path (y0, . . . , yk) ∈
∆m, r ≤ m ≤ 2r − 1, such that P ′(y0, . . . , yk) = O(ε2m−2r+1), then RE′ → ∞ as ε → 0

3.3 Sufficient Conditions For Bounded Relative Error

The conditions of Theorem 2 can be potentially difficult to verify in practice because of the

large number of sample paths that must be examined. However, the following result due to

Shahabuddin [25] is a simple sufficient condition for bounded relative error.

Proposition 1 Consider any system satisfying Assumptions A1–A3. Also, consider any P ′ ∈
J , and let RE′ denote the relative error of the estimator of γ obtained using P ′. If P′(x, y) =

Θ(1) for all (x, y) ∈ Γ with x ∈ U , then RE′ remains bounded as ε → 0.

Using a matrix-analytic approach of analysis, Shahabuddin [25] established the previous

result. We now provide a simple proof using Theorem 2.
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Proof. It is easy to see that if P′(x, y) = Θ(1) for all (x, y) ∈ Γ with x ∈ U , then

P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = Θ(1) for all (x0, . . . , xn) ∈ ∆. Thus, Theorem 2 im-

plies that RE′ remains bounded as ε → 0.

Shahabuddin [25] used Proposition 1 to prove that balanced failure biasing always yields

performance measure estimators having bounded relative error and simple failure biasing does

so when the system is balanced. We will now show that a large variety of importance sam-

pling schemes satisfy the sufficient condition established in Proposition 1 when the system is

balanced. To see this, we will define some additional classes of importance sampling methods.

Before doing so, we make some definitions. For any state x ∈ S, let

F (x) = {(x, y) ∈ Γ : y � x},

which is the set of failure transitions from x, and we let

R(x) = {(x, y) ∈ Γ : y ≺ x},

which is the set of repair transitions from x. Finally, we define

H = {x ∈ U : F (x) 	= ∅, R(x) 	= ∅},

which is the set of operational states from which there are both failure and repair transitions

possible. Then we define the following class of probability measures.

Definition 3 B is the class of probability measures P ′ which satisfy the following properties:

(i) P ′ is Markovian with some transition matrix P′;

(ii) For any state x ∈ H,

(a)
∑

(x,y)∈F (x)P
′(x, y) = ρ0(x), where ρ0(x) = Θ(1);

(b)
∑

(x,y)∈R(x)P
′(x, y) = 1− ρ0(x);

(iii) For any (w, y) ∈ Γ, if P(w, y) = Θ(εd), then P′(w, y) = O(εd).

Note that B ⊂ J , and we call any P ′ ∈ B a failure biasing method. Our definition captures

the underlying principle of all of the existing failure biasing techniques, which we now describe.

Under the original measure P , the probability of any failure transition from some state x ∈ U ,

x 	= 0, is O(ε) and the probability of a repair transition is Θ(1), as was shown in (2) and (3).

The fundamental idea behind each failure biasing method is to increase the total probability to

ρ0(x) of a failure transition from x, where ρ0(x) = Θ(1) with ρ0(x) < 1, Also, we decrease the
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total probability of a repair transition from state x to 1−ρ0(x). The various methods differ in

the way they allocate the ρ0(x) and 1 − ρ0(x) to the individual failure and repair transitions

from a state x, but they all do so in such a way that the probability of a transition under

the new measure is never significantly smaller than its probability under the original measure.

(This is part (iii) of Definition 3.) Also, the probabilities of transitions from states z ∈ F

are unaltered. Extensive empirical work shows that good results can be obtained by taking

ρ0(x) = ρ0 for all x with 0.5 ≤ ρ0 ≤ 0.9; see Lewis and Böhm [17] and Goyal et al. [11] for

further details. We describe each failure biasing method later.

In Definition 3 we have assumed that all failure biasing methods are Markovian. However,

when estimating the steady-state unavailability, Conway and Goyal [4] suggest that the failure

biasing should be turned off once a failed state is hit. From this point, the original probability

measure is used until the system returns to the regenerative state, at which time the sample

ends and we begin a new sample with the failure biasing enabled again. This technique is

known as dynamic importance sampling since the importance sampling scheme depends on

the sample path (and is therefore not Markovian). Because we are estimating γ in this paper,

a sample ends once either a failed state or state 0 is hit. Thus, we do not use dynamic failure

biasing.

We now examine what happens when certain failure biasing methods are used to estimate

our performance measure when the system is balanced; i.e., b(x, y) = 1 for all (x, y) ∈ Γ with

y � x. To do this, we define the following class of importance sampling methods.

Definition 4 P is the class of probability measures P ′ ∈ B which satisfy the following prop-

erties:

(i) For all x ∈ U , there exist sets Fk(x) ⊂ F (x), Fk 	= ∅, k = 1, . . . ,m(x), such that

F (x) = ∪m(x)
k=1 Fk(x) and Fj(x) ∩ Fk(x) = ∅ for all j 	= k.

(ii) If x ∈ U and (x, y) ∈ Fk(x), then

P′(x, y) = ξk(x)
P(x, y)∑

(x,z)∈Fk(x)P(x, z)
,

where ξk(x) = Θ(1) with
∑m(x)

k=1 ξk(x) = ρ0(x) if x ∈ H and
∑m(x)

k=1 ξk(x) = 1 if x ∈ U−H.

In part (i) of Definition 4, the set of failure transitions from some opertional state x is

decomposed into a number of subsets, where the number of subsets depends on the state x

and the importance sampling method used. Then in part (ii), the transition probability of

any failure transition under importance sampling is assigned proportionally to its original

transition probability relative to some set. Thus, we call any P ′ ∈ P a proportional failure

16



biasing method. As we shall see in Section 3.4, the class P includes all of the exisiting failure

biasing methods.

The following result shows that if we apply any proportional failure biasing method to a

balanced system, then the resulting performance measure estimator will have bounded relative

error. This result demonstrates that a large variety of importance sampling schemes satisfy

the sufficient condition established in Proposition 1 when the system is balanced.

Theorem 3 Consider any system satisfying Assumptions A1–A3. Also, consider any P ′ ∈ P
and let RE′ denote the relative error of the estimator of γ obtained using P ′. If the system is

balanced, then P′(x, y) = Θ(1) for all (x, y) ∈ Γ with x ∈ U , and so RE′ remains bounded as

ε → 0.

Proof. Suppose γ = Θ(εr) for some r ≥ 1. Since the system is balanced, b(x, y) = 1 for all

(x, y) ∈ Γ with y � x. Thus, P(0, y) = Θ(1) for all (0, y) ∈ Γ by (2) and (3). Furthermore,

P(x, y) = Θ(ε) for all (x, y) ∈ F (x) with x 	= 0 by (3). Now consider any (x, y) ∈ F (x)

with x ∈ U , and suppose (x, y) ∈ Fk(x). Because all transitions (x, z) ∈ Fk(x) must have

probabilities of the same ε-order under the original measure,

P(x, y)∑
(x,z)∈Fk(x)P(x, z)

= Θ(1),

which implies that P′(x, y) = Θ(1) since ξk(x) = Θ(1). Also, all transitions (x, y) ∈ R(x),

x ∈ U , satisfy P′(x, y) = Θ(1) by part (iii) of Definition 3. Hence, Proposition 1 implies that

RE′ remains bounded as ε → 0.

3.4 Examples of Failure Biasing Methods

To demonstrate the usefulness of our results, we will apply them to study a number of im-

portance sampling schemes currently in the literature that were developed to simulate highly

reliable Markovian systems. Specifically, we will examine examples of failure biasing methods.

For all of these techniques, ρ0(x) = ρ0 for all states x.

3.4.1 Balanced Failure Biasing

Shahabuddin [25] developed the balanced failure biasing method, which we now describe.

Consider any x ∈ U . From any state x ∈ H, balanced failure biasing gives probability ρ0/|F (x)|
to the individual failure transitions (x, y) ∈ F (x) and allocates the 1 − ρ0 to the individual

repair transitions (x, y) ∈ R(x) in proportion to their original transition probabilities. Also,

for any state x for which R(x) = ∅, balanced failure biasing assigns probability 1/|F (x)| to the
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individual failure transitions (x, y) ∈ F (x). It does not alter the transition probabilities from

any states x ∈ F . A more precise description is given by Shahabuddin [25].

It is easy to see that balanced failure biasing is a member of the class B. Moreover, it is an

element of P since we can decompose F (x) by taking each of the Fk(x) to consist of exactly

one failure transition from x and then setting ξk(x) = ρ0/|F (x)| for all k. Thus, Theorem 3

implies that balanced failure biasing will yield performance measure estimators having bounded

relative error when the system is balanced.

Shahabuddin [25] proved that balanced failure biasing always gives rise to bounded relative

error for the performance measure estimator. However, let us now observe how we can use

Theorem 2 to analyze this method. From the description of the transition matrix P′ under

balanced failure biasing, we see that P′(x, y) = Θ(1) for all transitions (x, y) ∈ Γ with x ∈ U .

Thus, for any (x0, . . . , xn) ∈ ∆,

P ′{(X0, . . . , Xτ ) = (x0, . . . , xn)} = Θ(1) (9)

as ε → 0, where the exact probability depends on the path (x0, . . . , xn). Note that (9) holds no

matter what the probability of the path is under the original measure P . Hence, balanced fail-

ure biasing satisfies the necessary and sufficient condition for bounded relative error established

in Theorem 2.

To illustrate how balanced failure biasing works, we consider the following example. (We

will return to this example when examining the other failure biasing methods.)

Example 1 Consider a system which has three types of components (i.e., C = 3), where

the first two component types have a redundancy of two (i.e., n1 = n2 = 2), and the third

type of component has a redundancy of one (i.e., n3 = 1). Also, the components of type 1

and 2 have failure rate ε (i.e., b1 = b2 = 1), and the component of type 3 has failure rate ε2

(i.e., b3 = 2). Thus, b0 = 1 and the system is unbalanced. There is a single repairperson

who repairs components at rate 1 using a processor sharing discipline. For this problem, it

is sufficient to define the state of the system to be x = 〈x1, x2, x3〉, where xi is the number

of failed components of type i. Initially, all components are operational, and the system is

considered to be failed if and only if there is at least one component of each type failed. Thus,

F = {〈1, 1, 1〉, 〈1, 2, 1〉, 〈2, 1, 1〉, 〈2, 2, 1〉}. We assume there is no failure propagation. Figure 1

is a state diagram of this model with the arcs having the original transition probabilities, and

Figure 2 is the same when using balanced failure biasing.

It is easy to show that

γ = 6ε3 + o(ε3),
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Figure 1: Transition diagram for Example 1 with original transition probabilities
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Figure 2: Transition diagram for Example 1 under balanced failure biasing
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and so r = 3. By Theorem 2 we only need to check the paths in ∆m, 3 ≤ m ≤ 5, to determine

if γ can be estimated with bounded relative error using balanced failure biasing. As we noted

above in (9), all paths to failure have probability Θ(1) under balanced failure biasing. Hence,

we can estimate γ with bounded relative error. In fact, we can show (after a lot of algebra)

that when using balanced failure biasing,

σ′2 =
(
114
ρ2
0

− 36
)
ε6 + o(ε6)

and so

RE′ =

√
114/ρ2

0 − 36

6
+ o(1),

which remains bounded as ε → 0. •
3.4.2 Simple Failure Biasing

Lewis and Böhm [17] originally developed the simple failure biasing method, and Goyal et al. [9]

and Shahabuddin et al. [28] later modified it. We now describe the method. From any state x ∈
H, we allocate the ρ0 and 1− ρ0 to the individual failure and repair transitions, respectively,

in proportion to their original probabilities. We do not alter the transition probabilities from

state 0 or from any state x ∈ F . In some sense the simple failure biasing method is a natural

way of implementing importance sampling since it preserves the underlying structure of the

system. A more precise description of simple failure biasing is given in Shahabuddin [25] and

Nakayama [18].

Simple failure biasing is a member of the class B. Moreover, it is an element of P since

for each x ∈ U , we can let m(x) = 1 and F1(x) = F (x). Thus, Theorem 3 implies that simple

failure biasing yields performance measure estimators having bounded relative error when the

system is balanced. This result was previously established by Shahabuddin [25].

Shahabuddin [25] also showed by example that simple failure biasing may not give bounded

relative error for unbalanced systems. However, Nakayama [18] demonstrated that this is not

always the case by constructing an example of an unbalanced system for which simple failure

biasing gives bounded relative error. Furthermore, Nakayama established a necessary and

sufficient condition that characterizes when simple failure biasing will give bounded relative

error in the estimation of γ. This condition is equivalent to the one given in Theorem 2

specialized to the case of simple failure biasing.

As previously mentioned, Shahabuddin [25] constructed an example showing that simple

failure biasing may not give bounded relative error. This is also shown in the following example.

Example 1 (continued) Figure 3 is a state diagram of this model when using simple fail-
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Figure 3: Transition diagram for Example 1 under simple failure biasing
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ure biasing. Consider the path (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉) ∈ ∆3. Since simple failure

biasing does not alter the transition probabilities from the initial state, P′(〈0, 0, 0〉, 〈0, 0, 1〉) =
ε/4 + o(ε) under simple failure biasing. All of the other transitions in the path have probabil-

ity Θ(1) under simple failure biasing, and so the the entire path has probability Θ(ε) under

simple failure biasing. However, Theorem 2 requires this path to have new probability O(1)

for there to be bounded relative error. Therefore, the performance measure estimator in this

example will not have bounded relative error if we use simple failure biasing. In fact we can

show (after a lot of algebra) that under simple failure biasing,

σ′2 =
54
ρ2

0

ε5 + o(ε5),

and so

RE′ =
√
3/2
ρ0

ε−1/2 + o(ε−1/2) → ∞

as ε → 0. •
In Section 3.4.1 we saw that balanced failure biasing always results in bounded relative

error. Thus, balanced failure biasing is more robust than simple failure biasing. However, as

we previously mentioned, Shahabuddin [25] proved that simple failure biasing will always result

in bounded relative error when the system is balanced, and Nakayama [18] showed by example

that when simple failure biasing gives bounded relative error, the coefficient of the leading

term in the asymptotic expansion for the variance resulting from simple failure biasing can be

smaller than that from balanced failure biasing. These coefficients are important since they

largely determine the expected half-width of the resulting confidence intervals when simulating

real systems with small but fixed failure rates. Thus, simple failure biasing may be more

appropriate than balanced failure biasing in certain contexts.

3.4.3 Bias2 Failure Biasing

Now we describe the bias2 failure biasing method of importance sampling, which was developed

by Goyal et al. [11]. The basic idea of this approach is as follows. Bias2 failure biasing

does not alter the transition probabilities from state 0 or from any state x ∈ F . From any

state x ∈ H, the technique gives a higher combined probability ρ1, where ρ1 = Θ(1), to those

failure transitions corresponding to component types which have at least one of their type

already failed. More precisely, for each state x ∈ H, define

F2(x) = {(x, y) ∈ F (x) : ni(y) < ni(x) < ni(0) for some component type i},

which is the set of failure transitions (x, y) that have at least one component of some type i

failed in state x and at least one component of that type fails on the transition (x, y). Also,
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define

F1(x) = F (x)− F2(x),

which is the set of the other failure transitions from x. Furthermore, for any state x ∈ S,

define

pF1(x) =
∑

(x,y)∈F1(x)

P(x, z),

pF2(x) =
∑

(x,y)∈F2(x)

P(x, z),

pF (x) =
∑

(x,y)∈F (x)

P(x, z),

pR(x) =
∑

(x,y)∈R(x)

P(x, z).

Thus, pF1(x) is the total probability of taking a failure transition in F1(x) from x, pF2(x) is the

same for the set F2(x), pF (x) is the total probability of taking any failure transition from x,

and pR(x) is the total probability of taking a repair transition from x. We construct the new

transition matrix P′ from the original transition matrix P using the ensuing algorithm.

(i) For (x, y) 	∈ Γ,

P′(x, y) = 0.

(ii) For (x, y) ∈ Γ and x ∈ U ,

(a) With x = 0,

P′(x, y) = P(x, y);

(b) With x 	= 0, F1(x) 	= ∅, and F2(x) 	= ∅,

P′(x, y) =




ρ0ρ1P(x, y)/pF2(x) if (x, y) ∈ F2(x)

ρ0(1− ρ1)P(x, y)/pF1(x) if (x, y) ∈ F1(x)

(1− ρ0)P(x, y)/pR(x) if (x, y) ∈ R(x)

0 otherwise

.

(c) With x 	= 0 and either F1(x) = ∅ or F2(x) = ∅,

P′(x, y) =




ρ0P(x, y)/pF (x) if (x, y) ∈ F (x)

(1− ρ0)P(x, y)/pR(x) if (x, y) ∈ R(x)

0 otherwise

.

(iii) For (x, y) ∈ Γ and x ∈ F ,

P′(x, y) = P(x, y).
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Extensive empirical work suggests that ρ1 should be chosen such that 0.5 ≤ ρ1 ≤ 0.9; see Goyal

et al. [11] for further details.

Bias2 failure biasing is a member of the class B. Moreover, it is an element of P, which
can be seen as follows. For each x ∈ U , define F1(x) and F2(x) as above. If F1(x) 	= ∅ and

F2(x) 	= ∅, then let ξ1(x) = ρ0(1− ρ1) and ξ2(x) = ρ0ρ1. If F2(x) = ∅, then let ξ1(x) = ρ0, and

ξ2(x) = ρ0 if F1(x) = ∅. Thus, Theorem 3 implies that bias2 failure biasing yields performance

measure estimators having bounded relative error when the system is balanced. Now let us

examine what happens when we apply bias2 failure biasing to our previous example.

Example 1 (continued) Figure 4 is a state diagram of this model when using bias2 failure

biasing. Consider the path (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉) ∈ ∆3. Since bias2 failure biasing

does not alter the transition probabilities from the initial state, P′(〈0, 0, 0〉, 〈0, 0, 1〉) = ε/4+o(ε)

under bias2 failure biasing. All of the other transitions in the path have probability Θ(1) under

bias2 failure biasing, and so the the entire path has probability Θ(ε) under bias2 failure biasing.

However, Theorem 2 require this path to have new probability O(1) for there to be bounded

relative error. Therefore, the estimator of γ in this example will not have bounded relative

error if we use bias2 failure biasing. In fact we can show (after a lot of algebra) that under

bias2 failure biasing,

σ′2 =
24

ρ2
0(1− ρ1)2

ε5 + o(ε5),

and so

RE′ =
√
2/3

ρ0(1− ρ1)
ε−1/2 + o(ε−1/2) → ∞

as ε → 0. •
Since bias2 failure biasing may not result in bounded relative error for unbalanced systems

whereas balanced failure biasing always does, balanced failure biasing is more robust. However,

Goyal et al. [11] showed empirically that bias2 failure biasing can give better results than

balanced failure biasing when simulating balanced systems.

We can modify the bias2 failure biasing method so that it will always yield bounded relative

error as follows. Change step (ii) of the above algorithm to

(ii’) For (x, y) ∈ Γ and x ∈ U ,

(a) With x = 0,

P′(x, y) = P(x, y);
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Figure 4: Transition diagram for Example 1 under bias2 failure biasing
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(b) With x 	= 0, F1(x) 	= ∅, and F2(x) 	= ∅,

P′(x, y) =




ρ0ρ1/|F2(x)| if (x, y) ∈ F2(x)

ρ0(1− ρ1)/|F1(x)| if (x, y) ∈ F1(x)

(1− ρ0)P(x, y)/pR(x) if (x, y) ∈ R(x)

0 otherwise

.

(c) With x 	= 0 and either F1(x) = ∅ or F2(x) = ∅,

P′(x, y) =




ρ0/|F0(x)| if (x, y) ∈ F (x)

(1− ρ0)P(x, y)/pR(x) if (x, y) ∈ R(x)

0 otherwise

.

We call the new resulting method bias2 balanced failure biasing, and it is easy to show that

Theorem 2 implies that it will always give rise to bounded relative error.

3.4.4 Failure Distance Biasing

Failure distance biasing, developed by Carrasco [1, 2], is an importance sampling scheme

which falls into the class of failure biasing methods. To describe the technique, we need some

definitions. For any state x ∈ U , define the failure distance as

d(x) = min
y�x,
y∈F

(
C∑

i=1

ni(x)− ni(y)

)
,

which is the minimum number of failing components whose failure in x would take the system

down. Also, define d(x) = 0 for all x ∈ F . Now consider any failure transition (x, y) with

x ∈ U . Then we say that (x, y) is dominant if d(y) < d(x), and non-dominant otherwise. Also,

(x, y) is critical if d(y) < d(x)−1. The criticality of (x, y) is defined to be c(x, y) = d(x)−d(y).

Now fix ρd and ρc, where ρd = Θ(1) and ρc = Θ(1). (Carrasco [1] suggests setting ρ0 = 0.8,

ρd = 0.7, and ρc = 0.2.) Then we construct the transition matrix P′ for failure distance

biasing as follows.

We do not alter any of the transition probabilities from states x ∈ F . Also, we give

probability 0 to any transition (x, y) 	∈ Γ under failure distance biasing. Now consider any

state x ∈ U . The algorithm contains a number of steps in which some set of feasible transi-

tions (x, y) ∈ Γ is divided into two sets, where we allocate some probability to the transitions

in one set and pass the other set on to the next step. We skip a step if one of the two sets is

empty. In the first step, the set of feasible transitions (x, y) ∈ Γ is divided into the set of failure

transitions, F (x), and the set of repair transitions, R(x). If R(x) 	= ∅, then we give the set

R(x) a total probability of 1−ρ0, where the 1−ρ0 is allocated to the various repair transitions
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in proportion to the original transition probabilities. If R(x) 	= ∅, then we give the set F (x)

a total (conditional) probability of ρ0 and pass it on to the next step. We then divide the set

F (x) into the set of dominant transitions and the set of non-dominant transitions. We assign

a (conditional) probability of (1−ρd) to the set of non-dominant transitions (given that we are

in the set F (x)), which we allocate to the individual transitions in proportion to their original

transition probabilities. We give the set of dominant transitions a (conditional) probability

of ρd (given that we are in the set F (x)) and pass this set on to the next step. If the set of

dominant transitions is composed of transitions having different criticalities, then we divide the

set of dominant transitions from x into two sets: one containing all of the transitions with the

smallest criticality and the other having all of the other transitions. The set consisting of the

transitions with the smallest criticalities is assigned a (conditional) probability of (1−ρc) (given

that we are in the set of dominant transitions), where the individual transitions in the set are

allocated probabilities in proportion to their original transition probabilities. The other set is

allotted a (conditional) probability of ρc (given that we are in the set of dominant transitions)

and is passed on to the next step. We repeat the last step as long as the remaining set contains

transitions having different criticalities. The process ends once all of the transitions in the

remaining set have the same criticality. To illustrate this, consider the following example from

Carrasco [1]. Suppose from state x there are a number of repair transitions and some failure

transitions having criticalities 1, 2, and 3. Then distance failure biasing assigns probabilities

1− ρ0, ρ0(1− ρc), ρ0ρc(1− ρc), and ρ0ρ
2
c to the respective sets.

We can easily show that failure distance biasing is a member of both class B and class P.
Thus, Theorem 3 implies that it will yield performance measure estimators having bounded

relative error when the system is balanced. Now we apply failure distance biasing to our

previous example.

Example 1 (continued) Figure 5 is a state diagram of this model when using failure

distance biasing. Note that d(〈0, 0, 0〉) = 3. Also, all states with exactly one component failed

(i.e., states 〈1, 0, 0〉, 〈0, 1, 0〉, and 〈0, 0, 1〉) have a failure distance of 2. Thus, all of the failure

transitions from state 〈0, 0, 0〉 have a criticality of 1. Since there are no repair transtions from

state 〈0, 0, 0〉, the probabilities of all failure transitions from state 〈0, 0, 0〉 under failure distance
biasing are the same as under the original measure.

Now consider the path (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉) ∈ ∆3. Under failure distance bi-

asing, the first transition of the path has probabilityP′(〈0, 0, 0〉, 〈0, 0, 1〉) = P(〈0, 0, 0〉, 〈0, 0, 1〉) =
ε/4+ o(ε). Since each other transition has probability at most Θ(1), the entire path has prob-

ability

P ′{(X0, . . . , XτF ) = (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉)} = O(ε)
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Figure 5: Transition diagram for Example 1 under failure distance biasing
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under failure distance biasing. However, Theorem 2 requires this path to have probability Θ(1)

under failure distance biasing to achieve bounded relative error. Therefore, the performance

measure estimator in this example will not have bounded relative error if we use failure distance

biasing. In fact we can show (after a lot of algebra) that under failure distance biasing,

σ′2 =
24
ρ2
0ρ

2
d

ε5 + o(ε5)

and

RE′ =
√
2/3

ρ0ρd
ε−1/2 + o(ε−1/2) → ∞

as ε → 0. •
Using the same type of modifications done to the bias2 failure biasing method to obtain

the bias2 balanced failure biasing method, we can modify the failure distance biasing method

so that it will always yield bounded relative error. We call the resulting algorithm balanced

failure distance biasing and do not present it explicitly.

4 Estimating Derivatives Using Importance Sampling

We now examine the behavior of estimates of derivatives of γ with respect to component

failure rates obtained using importance sampling. Our goal is to prove results similar to those

established in the previous section for likelihood ratio derivative estimators.

4.1 Additional System Structure

To obtain results on likelihood ratio derivative estimators, we will assume that our system has

more structure. In particular, we will limit the generality of failure propagation and disallow

state dependent failure rates for the components. The following modifications were developed

by Nakayama [18] mainly to simplify the calculations.

First, we no longer allow components to have state dependent failure rates. Thus, the failure

rate of components of type i is λi, regardless of the state of the system. When parameterizing

by ε, we have that λi = λi(ε) = λ̃iε
bi , where bi ≥ 1 is integer-valued, λ̃i > 0, and bi and λ̃i do

not depend on the state of the system. This implies that

b0 = min
1≤i≤C

bi.

We restrict the generality of failure propagation as follows. First, we no longer permit the

p( · ;x, i) to depend on ε. Also, we assume that the following hold:

A4 If p(y;x, i) > 0 and p(y;x, j) > 0, then bi = bj.
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A5 If there exists a component type i such that bi = b0 and p(y; 0, i) > 0, then there exists

another component type j 	= i such that bj = b0 and p(y; 0, j) 	= p(y; 0, i).

Assumption A4 stipulates that if there is a failure transition which can be triggered by the

failure of two different types of components, then the failure rates of the two component types

must be of the same order of magnitude. This assumption enables us to determine the order

of magnitude of the transition rate of any failure transition. More specifically, Assumption A4

implies that the transition rate of any (x, y) ∈ Γ satisfies

q(x, y) =




c(x, y)εd(x,y) if y � x

µ(x, y) if y ≺ x

0 otherwise

,

where c(x, y) > 0, d(x, y) ≥ 1 are integer-valued, ε > 0, and µ(x, y) > 0. Note that the

transition rates for failure transitions consist of a single term rather than a sum as before. We

use Assumption A4 to determine the order of magnitude of the derivatives; see the proof of

Lemma 11 of Nakayama [19] for further details.

Assumption A5 requires that if there is some component type i which has one of the largest

failure rates and a failure of a component of this type can trigger a transition from state 0 to

some state y, then there must exist some other component type j which can trigger the same

transition but with a different probability. Note that A5 holds when the component type j in

the assumption satisfies bj = b0 and p(y; 0, j) = 0. This condition may not be unreasonable

when considering large systems. We use Assumption A5 to ensure that there is no concellation

when calculating certain quantities associated with the derivatives; see the proof of Lemma 11

of Nakayama [19] for further details.

If there is no failure propagation, then Assumption A5 is automatically satisfied and A4

reduces to requiring there to be at least two different component types having failure rates of

the largest order εb0 ; i.e., there exists i and j such that i 	= j and bi = bj = b0. Also, a similar

situation occurs if we limit the generality of failure propagation by restricting that each failure

transition can only be triggered by the failure of a single type of component; i.e., for each

(x, y) ∈ Γ with y � x, there exists only one component type i for which p(y;x, i) > 0.

We now define some more notation. For each component type i, let

τi = inf{k > 0 : ni(Xk−1)p(Xk;Xk−1, i) > 0, Xk � Xk−1},

which is the first failure transition of the DTMC X that may have been triggered by a failure

of a component of type i. Note that we can decompose the event {τF < τ0} as

{τF < τ0} = {τi ≤ τF < τ0} ∪ {τF < min{τ0, τi}}, (10)
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where the two subsets are disjoint. Nakayama [19] showed that there exist ri ≥ r and r̄i ≥ r

such that

P{τi ≤ τF < τ0} = Θ(εri) (11)

and

P{τF < min{τi, τ0}} = Θ(εr̄i), (12)

where r is defined in (5). If P{τF < min{τ0, τi}} = 0, then we define r̄i = ∞. Also, it is easy

to see that (10) implies that

min{ri, r̄i} = r. (13)

For each component type i, we let

∆i = {(x0, . . . , xn) ∈ ∆ : n ≥ 1, ni(xk)p(xk+1;xk, i) > 0

for some 0 ≤ k < n such that xk+1 � xk}

be the set of paths to system failure in which at least one of the failure transitions along the

path could have been triggered by a failure of a component of type i; i.e., the set of paths for

which τi ≤ τF < τ0. Similarly, we define

∆̄i = {(x0, . . . , xn) ∈ ∆ : n ≥ 1, ni(xk)p(xk+1;xk, i) = 0

for all 0 ≤ k < n such that xk+1 � xk},

which is the set of paths to system failure in which none of the failure transitions along the

path could have been triggered by a failure of a component of type i; i.e., the set of paths

for which τF < min{τi, τ0}. Furthermore, let ∆i
m = ∆i ∩∆m and ∆̄i

m = ∆̄i ∩∆m, and note

that ∆i = ∪∞
m=ri

∆i
m and ∆̄i = ∪∞

m=r̄i
∆̄i

m, where ri and r̄i are as defined in (11) and (12),

respectively.

4.2 A General Necessary Condition For Bounded Relative Error For Deriva-

tive Estimators

We now analyze likelihood ratio derivative estimators of the partial derivative of γ with respect

to the failure rate of component type i obtained using importance sampling. Throughout the

rest of the paper, we will employ the notation ∂iA(λ1, . . . , λC) = ∂
∂λi

A(λ1, . . . , λC) for some

function A(λ1, . . . , λC).

Using the likelihood ratio method of estimating derivatives, we obtain

∂iγ = E[1{τF < τ0}Di],
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where

Di =
τmin−1∑

k=0

∂iP (Xk, Xk+1)
P (Xk, Xk+1)

.

See Glynn [7], Reiman and Weiss [24], and Nakayama et al. [20] for further details. The

following result gives an expression in terms of ε for the partial derivative with respect to the

failure rate of component type i.

Proposition 2 Consider any system satisfying Assumptions A1–A5. For all ε sufficiently

small,

∂iγ = Θ(εmin{ri−bi, r̄i−b0}),

where ri and r̄i are as defined in (11) and (12), respectively.

See Nakayama [19] for the proof. In general, we cannot say whether ri − bi ≤ r̄i − b0 or

ri − bi > r̄i − b0.

We can apply importance sampling to estimate the derivatives with respect to λi. To do

so, we first define the following class of probability measures.

Definition 5 I ′ is the class of probability measures P ′ defined on (Ω,F) such that P ′{(X0, . . . , XτF ) =

(x0, . . . , xn)} > 0 for all (x0, . . . , xn) ∈ ∆ with Di(x0, . . . , xn) 	= 0.

The class I ′ is the set of valid importance sampling measures for estimating ∂iγ. Note that

Definition 5 places minimal restrictions on the structure of any P ′ ∈ I ′. In particular, it is not

assumed that P ′ ∈ I ′ is Markovian.

For any P ′ ∈ I ′,

∂iγ = E[1{τF < τ0}Di] =
∑

(x0,...,xn)∈∆

P{(X0, . . . , XτF ) = (x0, . . . , xn)}

=
∑

(x0,...,xn)∈∆

Di(x0, . . . , xn)
P{(X0, . . . , XτF ) = (x0, . . . , xn)}
P ′{(X0, . . . , XτF ) = (x0, . . . , xn)}P

′{(X0, . . . , XτF ) = (x0, . . . , xn)}

=
∑

(x0,...,xn)∈∆

Di(x0, . . . , xn)L(x0, . . . , xn)P ′{(X0, . . . , XτF ) = (x0, . . . , xn)}

= E′[1{τF < τ0}DiL].

We obtain an importance sampling estimator of the derivative as follows. Generate i.i.d.

samples (Ĩ1, D̃1, L̃1), . . . , (Ĩn, D̃n, L̃n) of (1{τF < τ0}, Di, L) using the probability measure P ′.

We form the point estimate

∂̃iγ(n) =
1
n

n∑
k=1

ĨkD̃iL̃,
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and the variance of 1{τF < τ0}DiL under the measure P ′ is

σ′
i
2 = E′[1{τF < τ0}D2

i L
2]− (∂iγ)2.

Note that

E′[1{τF < τ0}D2
i L

2]

=
∑

(x0,...,xn)∈∆

D2
i (x0, . . . , xn)L2(x0, . . . , xn)P ′{(X0, . . . , XτF ) = (x0, . . . , xn)}

=
∑

(x0,...,xn)∈∆

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

= E[1{τF < τ0}D2
i L], (14)

and so we can compute the second moment of the derivative estimator under importance

sampling in terms of the original probability measure.

Now we establish a necessary condition analogous to Theorem 1 for the derivative estimators

to have bounded relative error.

Theorem 4 Consider any system satisfying Assumptions A1–A5. Also, consider any P ′ ∈ I ′,

and let RE′
i denote the relative error of the estimator of ∂iγ obtained using P ′. Suppose

∂iγ = Θ(εmin{ri−bi, r̄i−b0}) for some ri ≥ r and r̄i ≥ r. If RE′
i remains bounded as ε → 0, then

the following hold:

(i) If ri − bi ≤ r̄i − b0, then

(a) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2ri) for all (x0, . . . , xn) ∈ ∆i
m, m ≥ ri;

and

(b) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2ri−2b0+2bi) for all (x0, . . . , xn) ∈ ∆̄i
m,

m ≥ r̄i;

(ii) If ri − bi > r̄i − b0, then

(a) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r̄i+2b0−2bi) for all (x0, . . . , xn) ∈ ∆i
m,

m ≥ ri; and

(b) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r̄i) for all (x0, . . . , xn) ∈ ∆̄i
m, m ≥ r̄i.

To prove this result, we will need the following lemma, which establishes the order of

magnitude of the derivative of the likelihood ratio. See Nakayama [18] for the proof.

Lemma 2 Consider any system satisfying Assumptions A1–A5. Also, consider (x0, . . . , xn) ∈
∆m, where n > 0 and m ≥ r. Then there exists a constant φ which is independent of

(x0, . . . , xn) and ε such that for all ε > 0 sufficiently small,
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(i) Di(x0, . . . , xn) = Θ(ε−bi) and |Di(x0, . . . , xn)| ≤ (m+ 1)φε−bi if (x0, . . . , xn) ∈ ∆i
m;

(ii) Di(x0, . . . , xn) = Θ(ε−b0) and |Di(x0, . . . , xn)| ≤ (m+ 1)φε−b0 if (x0, . . . , xn) ∈ ∆̄i
m.

Now we are in a position to establish Theorem 4.

Proof of Theorem 4. First assume ri − bi ≤ r̄i − b0. Then Proposition 2 implies that

∂iγ = Θ(εri−bi). Now suppose there exists some path (y0, . . . , yk) ∈ ∆i
m with m ≥ ri such that

P ′{(X0, . . . , XτF ) = (y0, . . . , yk)} = O(ε2m−2ri+1). By Lemma 2, D2
i (y0, . . . , yk) = Θ(ε−2bi),

and so (14) implies that

E′[1{τF < τ0}D2
i L

2]

=
∑

(x0,...,xn)∈∆
n>0

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

≥ D2
i (y0, . . . , yk)L(y0, . . . , yk)P{(X0, . . . , XτF ) = (y0, . . . , yk)}

= Θ(ε−2bi)
Θ(εm)

O(ε2m−2ri+1)
Θ(εm) = O(ε2ri−2bi−1).

Hence, σ′
i
2 = O(ε2ri−2bi−1), and it follows that RE′

i → ∞ as ε → 0 since ∂iγ = Θ(εri−bi).

Similarly, we can show RE′
i → ∞ as ε → 0 if any of the other conditions are violated.

Theorem 4 clearly illustrates how the behavior of every path to failure affects the relative

error of the derivative estimator. Furthermore, Theorem 4 made no assumptions about the

structure of P ′ other than it must be a valid importance sampling measure. In particular, it

was not assumed that the importance sampling scheme is Markovian, even though the original

measure P is.

4.3 A Necessary and Sufficient Condition For Bounded Relative Error for

Derivative Estimators

To establish a necessary and sufficient condition for likelihood ratio derivative estimators to

have bounded relative error, we must add more structure to the importance sampling schemes

considered. As in Section 3.4, we will be able to obtain stronger results by considering the

class J .

Theorem 5 Consider any system satisfying Assumptions A1–A5. Also, consider any P ′ ∈ J ,

and let RE′
i denote the relative error of the estimator of ∂iγ obtained using P ′. Suppose

∂iγ = Θ(εmin{ri−bi, r̄i−b0}) for some ri ≥ r and r̄i ≥ r. Then, RE′
i remains bounded as ε → 0

if and only if the following hold:

(i) If ri − bi ≤ r̄i − b0, then
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(a) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2ri) for all (x0, . . . , xn) ∈ ∆i
m, ri ≤

m ≤ 2ri − 1; and

(b) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2ri−2b0+2bi) for all (x0, . . . , xn) ∈ ∆̄i
m,

r̄i ≤ m ≤ 2ri − 2bi + 2b0 − 1.

(ii) If ri − bi > r̄i − b0, then

(a) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r̄i+2b0−2bi) for all (x0, . . . , xn) ∈ ∆i
m,

ri ≤ m ≤ 2r̄i + 2bi − 2b0 − 1; and

(b) P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2r̄i) for all (x0, . . . , xn) ∈ ∆̄i
m, r̄i ≤

m ≤ 2r̄i − 1.

The proof of Theorem 5 is given in the appendix.

We now discuss Theorem 5. First, we compare it to Theorem 4. Suppose that ri − bi ≤
r̄i − b0, and consider (x0, . . . , xn) ∈ ∆i

m for some m ≥ ri. To apply Theorem 4, we must

consider all m ≥ ri, whereas in Theorem 5, we only need to examine ri ≤ m ≤ 2ri − 1. The

reason for the difference is exactly the same as that for the contrast between Theorems 1

and 2; see the discussion after the statement of Theorem 2. Also, Nakayama [18] established

conditions analogous to those in Theorem 5 for the special case of simple failure biasing, and

Nakayama [19] proved directly that balanced failure biasing always gives bounded relative error

for the estimator of ∂iγ. (We will also examine how Theorem 5 applies to these two methods in

the following sections.) Furthermore, Nakayama [18] constructed examples demonstrating that

in the case of simple failure biasing, the conditions in Theorem 2 do not imply the conditions

in Theorem 5, and the converse does not hold as well. In particular, it was shown that when

using simple failure biasing, it is possible to estimate a derivative more efficiently than the

performance measure. This illustrates the need for developing the Theorem 5.

4.4 Sufficient Conditions For Bounded Relative Error for Derivative Esti-

mators

The conditions of Theorem 5 can be potentially difficult to verify in practice because of the

large number of sample paths that must be examined. However, the following result is a simple

sufficient condition for bounded relative error for the derivative estimators.

Proposition 3 Consider any system satisfying Assumptions A1–A3. Also, consider any P ′ ∈
J , and let RE′

i denote the relative error of the estimator of ∂iγ obtained using P ′. If P′(x, y) =

Θ(1) for all (x, y) ∈ Γ, then RE′
i remains bounded as ε → 0.
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Proof. It is easy to see that if P′(x, y) = Θ(1) for all (x, y) ∈ Γ, then P ′{(X0, . . . , XτF ) =

(x0, . . . , xn)} = Θ(1) for all (x0, . . . , xn) ∈ ∆. Thus, Theorem 5 implies that RE′ remains

bounded as ε → 0.

The following result shows that if we apply any proportional failure biasing method to a

balanced system, then the resulting derivative estimator will have bounded relative error. We

omit the proof as the result can be established in exactly the same Theorem 3 was proved.

Theorem 6 Consider any system satisfying Assumptions A1–A3. Also, consider any P ′ ∈ P
and let RE′

i denote the relative error of the estimator of ∂iγ obtained using P ′. If the system

is balanced, then RE′
i remains bounded as ε → 0.

4.5 Examples of Failure Biasing Methods

Now we examine how our results apply to the different failure biasing methods discussed in

Sections 3.4.1–3.4.4.

4.5.1 Balanced Failure Biasing

Nakayama [19] proved directly that balanced failure biasing always gives rise to bounded

relative error for the estimator of the derivative with respect to any component failure rate.

However, let us now observe how Theorem 5 applies in this situation. As we previously

established in (9), when using balanced failure biasing, P ′{(X0, . . . , Xτ ) = (x0, . . . , xn)} = Θ(1)

as ε → 0 for any (x0, . . . , xn) ∈ ∆, where the exact probability depends on the path (x0, . . . , xn).

This holds no matter what the probability of the path is under the original measure P . Hence,

balanced failure biasing satisfies the necessary and sufficient condition for estimating ∂iγ with

bounded relative error established in Theorem 5.

Let us now investigate what happens when balanced failure biasing is used to estimate

derivatives in our previous example.

Example 1 (continued) Recall that Figure 2 is the transition probability diagram under

balanced failure biasing. We can show (after a lot of algebra) that

∂1γ = 3ε2 + o(ε2)

∂2γ = 3ε2 + o(ε2)

∂3γ = 6ε+ o(ε)

and

σ′
1
2 =

(
57
2ρ2

0

− 9
)
ε4 + o(ε−3)
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σ′
2
2 =

(
57
2ρ2

0

− 9
)
ε4 + o(ε−3)

σ′
3
2 =

(
114
ρ2

0

− 36
)
ε2 + o(ε2)

under balanced failure biasing, and so

RE′
1 =

1
3

√
57
2ρ2

0

− 9 + o(1)

RE′
2 =

1
3

√
57
2ρ2

0

− 9 + o(1)

RE′
3 =

1
6

√
114
ρ2

0

− 36 + o(1),

all of which remain bounded as ε → 0. •
4.5.2 Simple Failure Biasing

Nakayama [18] established a necessary and sufficient condition for when simple failure biasing

gives rise to derivative estimators having bounded relative error. This condition is equivalent

to the one given in Theorem 5 specialized to the case of simple failure biasing. Furthermore,

Nakayama [18] presented examples showing that the conditions in Theorems 2 and 5 are not

equivalent and that neither implies the other. In particular, it was shown that it is possible to

obtain better estimates for a derivative than for the performance measure when using simple

failure biasing. This contrasts the situation that occurs when using balanced failure biasing,

in which the performance measure and all of the derivatives can be estimated with the same

relative error.

Theorem 6 implies that simple failure biasing yields derivative estimators having bounded

relative error when the system is balanced. Let us now investigate how the method works with

estimating derivatives in our previous example.

Example 1 (continued) Recall that Figure 3 is the transition probability diagram under

simple failure biasing. Consider estimating the derivative with respect to λ1. We can easily

show that r1 = 3 and r̄1 = ∞ since at least one component of each type must fail for the

system to fail, and so r1 − b1 = 2 < r̄1 − b0 = ∞. As we previously established, the path

(〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉) ∈ ∆1
3 under simple failure biasing has probability Θ(ε) 	=

O(1), and so Theorem 5 implies that the estimator of the derivative with respect to λ1 will not

have bounded relative error when simple failure biasing is used. In fact, we can show (after a

lot of algebra) that

σ′
1
2 =

6
ρ2

0

ε3 + o(ε3)
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under simple failure biasing, which implies

RE′
1 =

√
2/3
ρ0

ε−1/2 + o(ε−1/2).

Similarly, we can show that the simple failure biasing estimators of ∂2γ and ∂3γ do not have

bounded relative error. •
4.5.3 Bias2 Failure Biasing

Theorem 6 implies that bias2 failure biasing yields derivative estimators having bounded rel-

ative error when the system is balanced. Let us now investigate how the method works with

estimating derivatives in our previous example.

Example 1 (continued) Recall that Figure 4 is the transition probability diagram under

bias2 failure biasing. Consider estimating the derivative with respect to λ1. As we previously

established, the path (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉) ∈ ∆1
3 under bias2 failure biasing has

probability Θ(ε) 	= O(1), and so Theorem 5 implies that the estimator of the derivative with

respect to λ1 will not have bounded relative error when bias2 failure biasing is used. In fact,

we can show (after a lot of algebra) that

σ′
1
2 =

4
ρ2

0(1− ρ1)
ε3 + o(ε3)

under bias2 failure biasing, which implies

RE′
1 =

2
3ρ0

√
1− ρ1

ε−1/2 + o(ε−1/2) → ∞

as ε → 0. Similarly, we can show that the bias2 failure biasing estimators of ∂2γ and ∂3γ do

not have bounded relative error. •
Since bias2 failure biasing may not result in bounded relative error when estimating deriva-

tives in unbalanced systems whereas balanced failure biasing always does, balanced failure bi-

asing is more robust. However, as Theorem 6 showed, bias2 failure biasing will yield derivative

estimators with bounded relative error when simulating a balanced system. As in the case of

simple failure biasing, it may turn out that for balanced systems, the coefficient in the leading

term of the asymptotic expansion for the variance of a derivative estimator is better under

bias2 failure biasing than under balanced failure biasing. Thus, bias2 failure biasing may be

more appropriate than balanced failure biasing in certain situations.
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4.5.4 Failure Distance Biasing

Theorem 6 implies that failure distance biasing yields derivative estimators having bounded

relative error when the system is balanced. Let us now investigate how the method works with

estimating derivatives in our previous example.

Example 1 (continued) Recall that Figure 5 is the transition probability diagram under

failure distance biasing. Consider estimating the derivative with respect to the failure rate of

component type 1. Now consider the path (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉), which is in ∆1
3.

We previously showed that the entire path has probability

P ′{(X0, . . . , XτF ) = (〈0, 0, 0〉, 〈0, 0, 1〉, 〈1, 0, 1〉, 〈1, 1, 1〉)} = O(ε)

under failure distance biasing. However, Theorem 5 requires this path to have probability Θ(1)

under failure distance biasing to achieve bounded relative error. Therefore, the estimator of

the derivative with respect to λ1 in this example will not have bounded relative error if we use

failure distance biasing. In fact, we can show (after a lot of algebra) that

σ′
1
2 =

4
ρ2

0ρd
ε3 + o(ε3)

under failure distance biasing, which implies

RE′
1 =

2

3ρ0ρ
1/2
d

ε−1/2 + o(ε−1/2) → ∞

as ε → 0. Similarly, we can show that the failure distance biasing estimators of ∂2γ and ∂3γ

do not have bounded relative error. •
Since failure distance biasing may not result in bounded relative error when estimating

derivatives in unbalanced systems whereas balanced failure biasing always does, balanced fail-

ure biasing is more robust. However, as Theorem 6 showed, failure distance biasing will yield

derivative estimators with bounded relative error when simulating a balanced system. As in

the case of simple failure biasing, it may turn out that for balanced systems, the coefficient in

the leading term of the asymptotic expansion for the variance of a derivative estimator is bet-

ter under failure distance biasing than under balanced failure biasing. Thus, failure distance

biasing may be more appropriate than balanced failure biasing in certain contexts.

5 Conclusion and Directions for Future Research

In this paper we have established general conditions determining when an importance sampling

method will yield estimators of performance measures and their derivatives with bounded
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relative error. In particular, we provided a necessary and sufficient conditon for a class of

importance sampling measures which include all of the failure biasing methods currently in

the literature. Using our condition, we analyzed the various failure biasing methods and

showed that of these, only the balanced failure biasing method is guaranteed to always produce

bounded relative error. However, for a given model, another failure biasing method may yield

slightly better estimators.

One topic for future research is to develop a simple method of determining for a given model

which failure biasing method works best. Theorems 2 and 5 provide insight into this problem,

but applying these results in practice can be potentially difficult because of the number of

sample paths which must be examined. Another area worth investigating is to use our new

theory to devise more efficient importance sampling schemes for highly reliable Markovian

systems. Also, as demonstrated by Juneja and Shahabuddin [15], failure biasing methods no

longer produce estimators having bounded relative error when there are deferred repairs. Thus,

it would be interesting to determine if necessary and sufficient conditions for bounded relative

error similar to those established in this paper can also be proven for these types of systems.

Finally, we would like to establish a general theory for broad classes of importance sampling

schemes for highly reliable non-Markovian systems.
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7 Appendix

Proof of Theorem 5. First assume that ri−bi ≤ r̄i−b0, and suppose that conditions (i)(a)

and (i)(b) hold. Then Proposition 2 implies that ∂iγ = Θ(εri−bi). Thus, we need to establish

that E′[1{τF < τ0}D2
i L

2] = Θ(ε2ri−2bi)). Using the Schwarz inequality, we obtain

E′[1{τF < τ0}D2
i L

2] ≥ (
E′[1{τF < τ0}DiL]

)2 = (∂iγ)2 = Θ(ε2ri−2bi)),

and so it suffices to show E′[1{τF < τ0}D2
i L

2] = O(ε2ri−2bi)).
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From (14), we have that

E′[1{τF < τ0}D2
i L

2]

= E[1{τi ≤ τF < τ0}D2
i L] + E[1{τF < min{τi, τ0}}D2

i L]

=
∞∑

m=ri

∑
(x0,...,xn)∈∆i

m
n>0

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

+
∞∑

m=r̄i

∑
(x0,...,xn)∈∆̄i

m
n>0

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}.

Now consider some (x0, . . . , xn) ∈ ∆i
m with ri ≤ m ≤ 2ri − 1. By assumption,

P ′{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2m−2ri),

and so from Lemma 2(i),

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}
= Θ(ε−2bi)

Θ(εm)
O(ε2m−2ri)

Θ(εm) = O(ε2ri−2bi).

Thus, since |∆i
m| < ∞ for all m by Lemma 1(ii),

2ri−1∑
m=ri

∑
(x0,...,xn)∈∆i

m
n>0

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)} = O(ε2ri−2bi).

(15)

Also, Lemmas 1 and 2 imply that
∞∑

m=2ri

∑
(x0,...,xn)∈∆i

m
n>0

D2
i (x0, . . . , xn)L(x0, . . . , xn)P{(X0, . . . , XτF ) = (x0, . . . , xn)}

≤
∞∑

m=2ri

∑
(x0,...,xn)∈∆i

m
n>0

(
(m+ 1)φε−bi

)2
ηm+1αβmεm

≤
∞∑

m=2ri

|S|(m+1)N
(
(m+ 1)φε−bi

)2
ηm+1αβmεm

= αηφ2|S|N ε−2bi

∞∑
m=2ri

(m+ 1)2
(
βη|S|N ε

)m
= Θ(ε2ri−2bi)

as ε → 0. Hence, E[1{τi ≤ τF < τ0}D2
i L] = O(ε2ri−2bi)). Similarly, we can show that E[1{τF <

min{τi, τ0}}D2
i L] = O(ε2ri−2bi)), and it follows that E′[1{τF < τ0}D2

i L
2] = O(ε2ri−2bi)), which

is what we needed to establish. Moreover, using the same types of arguments, we can show

that the result holds when ri − bi > r̄i − b0 and the conditions (ii)(a) and (ii)(b) are in force.

On the other hand, since J ⊂ I ′, it follows from Theorem 4 that RE′
i → ∞ as ε → 0 if the

conditions do not hold.
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