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Quantiles are often used to measure risk of stochastic systems. We examine quantile estimators obtained using

simulation with Latin hypercube sampling (LHS), a variance-reduction technique that efficiently extends

stratified sampling to higher dimensions and produces negatively correlated outputs. We consider single-

sample LHS (ssLHS), which minimizes the variance that can be obtained from LHS, and also replicated

LHS (rLHS). We develop a consistent estimator of the asymptotic variance of the ssLHS quantile estimator’s

central limit theorem, enabling us to provide the first confidence interval (CI) for a quantile when applying

ssLHS. For rLHS, we construct CIs using batching and sectioning. On average, our rLHS CIs are shorter

than previous rLHS CIs and only slightly wider than the ssLHS CI. We establish the asymptotic validity

of the CIs by first proving that the quantile estimators satisfy Bahadur representations, which show that

the quantile estimators can be approximated by linear transformations of estimators of the cumulative

distribution function (CDF). We present numerical results comparing the various CIs.
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History :

1. Introduction

For a given constant 0< p< 1, the p-quantile of a continuous random variable Y is a constant such

that Y has probability p of lying below the constant. We can also express the p-quantile in terms

of the inverse of the CDF of Y . For example, the median corresponds to the 0.5-quantile.
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Many application areas use quantiles to measure risk of stochastic systems. In financial portfolio

management, a quantile is called a value-at-risk, and portfolio risk and capital adequacy are often

assessed via a 0.99-quantile; e.g., see Chapter 9 of Glasserman (2004). A project manager may

want to determine the 0.95-quantile of the project completion time, with which he/she can then

determine how long the start of a project can be delayed and still have a high chance of it completing

by a specified deadline. Safety and uncertainty analyses of nuclear power plants are usually based

on 0.95-quantiles; e.g., see U.S. Nuclear Regulatory Commission (2010).

This paper studies simulation methods to estimate a quantile. The typical approach first esti-

mates the CDF, which is inverted to obtain a quantile estimator. We also want a confidence interval

(CI) for the quantile to provide a measure of the estimator’s error. Indeed, in safety analyses of

nuclear power plants, the U.S. Nuclear Regulatory Commission requires that plant licensees verify,

with 95% confidence, that a 0.95-quantile lies below a mandated threshold. This is known as a

95/95 criterion; e.g., see Section 24.9 of U.S. Nuclear Regulatory Commission (2011).

When simple random sampling (SRS; i.e., simulation without any variance reduction) is applied,

there are several methods to construct a CI for a quantile. One approach exploits a binomial

property of the independent and identically distributed (i.i.d.) outputs to obtain a nonparametric

CI based on order statistics; e.g., see Section 2.6.1 of Serfling (1980). An alternative method

starts by establishing a central limit theorem (CLT) for the SRS quantile estimator (Serfling 1980,

Section 2.3.3), and then unfolds the CLT to obtain a CI with a consistent estimator of the CLT’s

asymptotic variance. Techniques for consistently estimating the asymptotic variance include a finite

difference (FD; Bloch and Gastwirth (1968), Bofinger (1975)) and kernel methods (Falk (1986)).

These approaches require the user to specify a parameter known as the bandwidth, and choosing

a “good” bandwidth value can be difficult in practice. The bootstrap has also been applied to

construct a CI for a quantile when applying SRS (Hall and Martin (1988)). Unfortunately, the

bootstrap quantile variance estimator converges more slowly than the consistent estimators above,

which adversely affects the coverage of the bootstrap CI for a quantile (Hall and Martin (1989)).
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We can avoid having to consistently estimate the asymptotic variance by employing a method

that cancels out the asymptotic variance in a relevant limit theorem. One such technique is batching

(e.g., p. 491 of Glasserman (2004)), also known as subsampling. This method first divides the n

outputs into b ≥ 2 batches, each of size m = n/b, and computes a quantile estimator from each

batch. Then the sample mean and sample variance of the quantile estimates across the batches

are used to construct a CI for the quantile. A problem with batching arises from the fact that

quantile estimators are generally biased (Avramidis and Wilson (1998)). While the bias vanishes

as the sample size grows to infinity, the batching point estimator can have significant bias, which is

determined by the batch size m<n. Thus, when the overall sample size n is not large, the batching

CI may have poor coverage because it is centered at a highly contaminated point estimator.

To address this issue, we can instead apply sectioning, which was originally proposed in Sec-

tion III.5a of Asmussen and Glynn (2007) for SRS and extended to certain variance-reduction

techniques (VRTs) by Nakayama (2014). Similar to batching, sectioning replaces the batching point

estimator with the overall point estimator throughout the batching CI. Since the overall quan-

tile estimator has bias determined by the overall sample size, it is typically less biased than the

batching point estimator, and this can lead to improved CI coverage when the sample size is small.

Because the SRS CI for the p-quantile can be unusably wide, particularly when p≈ 0 or p≈ 1, we

may instead apply a VRT. This is especially important when a single simulation run takes enormous

computational effort to complete, as in many application areas. The current paper focuses on Latin

hypercube sampling (LHS), originally developed by McKay et al. (1979) as a way to efficiently

extend stratified sampling to higher dimensions, producing negatively correlated outputs. Stein

(1987) further analyzes the approach and shows that the LHS estimator of a mean has asymptotic

variance that is no larger than its SRS counterpart. Owen (1992) proves a CLT for the LHS

estimator of a mean of bounded outputs, and Loh (1996) extends this to outputs having a finite

absolute third moment. Avramidis and Wilson (1998) apply LHS to estimate a quantile and verify

that the LHS quantile estimator satisfies a CLT. The intuitive appeal of and ease of implementing
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LHS make it perhaps the most common VRT in certain fields, such as nuclear engineering, although

not currently for estimating quantiles. Citing over 300 references, Helton and Davis (2003) survey

the extensive literature on LHS, with a particular focus on its applications in nuclear engineering.

Other VRTs used in quantile estimation include control variates (CV) (Hsu and Nelson (1990),

Hesterberg and Nelson (1998)); importance sampling (IS) (Glynn (1996), Sun and Hong (2010));

combined IS and stratified sampling (IS+SS) (Glasserman et al. (2000)); and correlation-induction

methods, such as antithetic variates (AV) and LHS (Avramidis and Wilson (1998), Jin et al. (2003)).

While these papers develop VRT quantile estimators, most do not consider how to construct a CI.

One difficulty is that it is nontrivial to construct a consistent estimator of the asymptotic variance

in the CLT for the VRT quantile estimator.

Chu and Nakayama (2012a) develop a general asymptotically-valid approach for VRT CIs, and

they show how it applies for IS, IS+SS, CV, and AV. Nakayama (2011) extends this to a type of

replicated LHS (rLHS), in which r independent LHS samples are generated, each of a fixed size

m, where the asymptotic validity holds as r→∞ with m fixed. The approach in these papers first

establishes that the VRT quantile estimator satisfies a so-called Bahadur representation (Bahadur

(1966), Ghosh (1971)), which approximates a quantile estimator as the true quantile plus a linear

transformation of a CDF estimator, and then leverages this result to consistently estimate the

asymptotic variance using a FD. Other methods for constructing asymptotically valid CIs for

quantiles when applying VRTs include batching and sectioning (Nakayama (2014) for IS and CV)

and the bootstrap (Liu and Yang (2012) for IS).

In this paper, we consider LHS quantile estimators. We examine both a single-sample LHS

(ssLHS) estimator, where there is only one LHS sample of size n, and rLHS, with b independent

LHS samples, each of size m. We prove that each quantile estimator obeys a Bahadur

representation (as n→∞ for ssLHS, and as m→∞ with b fixed for rLHS). These lead to CLTs,

but the ssLHS CLT’s asymptotic variance is “neither known nor easily estimated” (Glasserman

2004, p. 242). Indeed, although Avramidis and Wilson (1998) derive the variance’s form, they do
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not give a variance estimator nor a quantile CI. To address this shortcoming, we now develop

an ssLHS CI by providing a consistent estimator for the ssLHS quantile estimator’s

asymptotic variance , which is a ratio of two terms. For the numerator, we modify an approach

of Owen (1992), which consistently estimates the asymptotic variance in the CLT for the estimator

of a mean of bounded, computable outputs. In our case, though, directly applying Owen’s method

would require knowing the true value of the p-quantile, which obviously is unknown; nevertheless,

we surmount this issue. We estimate the denominator with a FD, as in Chu and Nakayama (2012a).

We also develop rLHS CIs using batching and sectioning. We fix the number b≥ 2 of batches,

each with a single LHS sample of size m, for bm total outputs. Naming this method single replicated

LHS (srLHS), we prove the validity of the srLHS batching and sectioning CIs as m→∞

with b fixed. This contrasts an alternative approach of Nakayama (2012), which we call multiple

replicated LHS (mrLHS). In mrLHS, we increase the number r of independent replicated LHS

samples, each of fixed size m (for rm total outputs); the r LHS replicates are divided into a fixed

number b ≥ 2 of batches, with each batch comprising r/b independent LHS samples. The rLHS

methods differ in their asymptotic regimes: srLHS is valid as m→∞ with b fixed, whereas mrLHS

requires r→∞ with b and m fixed. The distinction is important as the LHS sample size determines

how much the variance is lessened. For a given overall sample size n, srLHS allows for the LHS size

to be large, but mrLHS has fixed LHS size, which is small since r must be large. Thus, srLHS

can reduce variance more than mrLHS , and our numerical results confirm this. Moreover, we

provide theoretical and numerical evidence showing that for the same n, the variance of srLHS

is comparable to ssLHS, which minimizes the variance that can be obtained by LHS .

The rest of the paper progresses as follows. Section 2 reviews SRS CIs for quantiles. We discuss

ssLHS quantile estimation in Section 3. Section 4 presents CIs based on ssLHS and srLHS, and

provides an asymptotic theoretical comparison of the methods. Section 5 contains numerical results,

and we make concluding remarks in Section 6. All proofs are in appendices. Our srLHS batching

and sectioning CIs also appear (without proofs) in Dong and Nakayama (2014).
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2. Background

Consider a random variable Y that can be expressed as

Y = g(U1,U2, . . . ,Ud), (1)

where g : <d→< is a given (measurable) function that can be computed but may not be known

in closed form, and U1,U2, . . . ,Ud are d i.i.d. unif[0,1] random variables, where d is fixed. Let F

denote the CDF of Y , and for 0< p< 1, we define the p-quantile of F (or equivalently of Y ) to be

ξp = F−1(p)≡ inf{x : F (x)≥ p}. Our goal is to estimate and construct a CI for ξp via simulation.

We assume that F is unknown but that we can still generate observations of Y through (1).

Our framework includes as a special case a complicated computer code g1 that takes as input a

fixed number of random variables with specified joint distribution to produce a single output. For

example, suppose that X1,X2, . . . ,Xd are independent (but not necessarily identically distributed)

random inputs, where Hj is the marginal CDF of Xj, which we can generate as Xj =H−1
j (Uj). Then

the output is Y = g1(X1,X2, . . . ,Xd) = g1(H−1
1 (U1),H−1

2 (U2), . . . ,H−1
d (Ud))≡ g(U1,U2, . . . ,Ud).

2.1. Constructing a Confidence Interval When Applying SRS

To apply SRS to generate n i.i.d. outputs, we first generate n× d i.i.d. unif[0,1] random variables

U1,1 U1,2 · · · U1,d

U2,1 U2,2 · · · U2,d

...
...

. . .
...

Us,1 Us,2 · · · Us,d

(2)

for s = n. We apply function g from (1) to each row to generate a sample of n i.i.d. outputs

Yi = g(Ui,1,Ui,2, . . . ,Ui,d), i= 1,2, . . . , n. Let Fn be the SRS estimator of the CDF F , where Fn(y) =

(1/n)
∑

1≤i≤n I(Yi ≤ y) and I(·) is the indicator function, which equals 1 (resp., 0) when its argu-

ment is true (resp., false). The SRS estimator of the p-quantile ξp = F−1(p) is ξp,n = F−1
n (p) =

Yn:dnpe, where Yn:1 ≤ Yn:2 ≤ · · · ≤ Yn:n are the sample’s order statistics and d·e is the ceiling function.
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Let F ′ denote the derivative (when it exists) of F . If F ′(ξp)> 0, the SRS p-quantile estimator

ξp,n satisfies a CLT (
√
n/τp)(ξp,n − ξp)⇒ N(0,1) as n→∞ (Serfling 1980, Section 2.3.3), where

τp =
√
p(1− p)/F ′(ξp), N(a, b2) is a normal random variable with mean a and variance b2, and ⇒

denotes convergence in distribution (e.g., see Section 25 of Billingsley (1995)). Unfolding the CLT

leads to Cn = [ξp,n ± zα/2τp/
√
n] as an asymptotic 100(1− α)% confidence interval for ξp, where

zα/2 = Φ−1(1−α/2) and Φ is the N(0,1) CDF. But the CI Cn is unusable since F ′(ξp) is unknown.

One way to consistently estimate τp when applying SRS employs a finite difference to estimate

the sparsity function λp ≡ 1/F ′(ξp). Because d
dp
F−1(p) = limh→0[F−1(p+ h)−F−1(p− h)]/(2h) =

1/F ′(F−1(p)) = λp, we estimate λp by λp,n = [F−1
n (p+ hn)− F−1

n (p− hn)]/(2hn), where hn > 0 is

a user-specified bandwidth. Then τp,n ≡
√
p(1− p)λp,n⇒ τp as n→∞ when hn→ 0 and nhn→∞

as n→∞; see Bloch and Gastwirth (1968) and Bofinger (1975). Hence, a two-sided 100(1−α)%

confidence interval for ξp is Cn,SRS = [ξp,n ± zα/2τp,n/
√
n], which is asymptotically valid, i.e., the

coverage P (ξp ∈Cn,SRS)→ 1−α as n→∞. The choice of bandwidth hn in the FD has a significant

impact on the quality of the estimator τp,n, which can affect the coverage for small n, and it can

be difficult to specify an appropriate value for hn in practice; e.g., see Bofinger (1975), Hall and

Sheather (1988) and Chu and Nakayama (2012b).

2.2. Batching and Sectioning CIs When Using SRS

Rather than trying to consistently estimate τp, we can construct a CI by instead applying a cancel-

lation method, which cancels τp in the relevant limit theorem in a manner analogous to the Student

t statistic. Two such techniques are batching (also known as subsampling) and sectioning. Batching

divides the overall sample Y1, Y2, . . . , Yn, of size n into b≥ 2 batches, each containing a sample of

size m= n/b. For each batch j = 1,2, . . . , b, let Yj,i = Y(j−1)m+i, i= 1,2, . . . ,m, be the ith output in

the jth batch, and define a CDF estimator for batch j as Fj,m(y) = (1/m)
∑

1≤i≤m I(Yj,i ≤ y). The

p-quantile estimator from the jth batch is ξp,j,m = F−1
j,m(p), and we define ξ̄p,b,m = (1/b)

∑
1≤j≤b ξp,j,m

as the SRS batching p-quantile estimator. The sample variance of ξp,j,m, j = 1,2, . . . , b, is S2
b,m,batch =

(1/(b−1))
∑

1≤j≤b(ξp,j,m− ξ̄p,b,m)2. Let tb−1,α/2 =G−1(1−α/2), where G is the CDF of a Student t
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random variable with b−1 degrees of freedom. The SRS batching two-sided 100(1−α)% confidence

interval for ξp is then Cb,m,batch = [ξ̄p,b,m± tb−1,α/2Sb,m,batch/
√
b], which is asymptotically valid.

A problem for the batching CI stems from quantile estimators generally being biased. Although

the bias vanishes as the sample size grows large (Avramidis and Wilson (1998)), it can be significant

for small sample sizes. The batch size m= n/b < n determines the bias of the batching estimator

ξ̄p,b,m, so batching centers its CI at an estimator that may be considerably biased. Hence, the

batching CI may have poor coverage, especially when the overall sample size n is not very large.

Sectioning (Section III.5a of Asmussen and Glynn (2007) for SRS, Nakayama (2014) for IS and

CV) addresses this issue by replacing the batching point estimator ξ̄p,b,m in the batching CI with

the overall quantile estimator ξp,n, based on the CDF estimator Fn from all n outputs. The SRS

sectioning two-sided 100(1−α)% CI for ξp is Cb,m,sec = [ξp,n± tb−1,α/2Sb,m,sec/
√
b], where S2

b,m,sec =

(1/(b− 1))
∑

1≤j≤b(ξp,j,m− ξp,n)2.

While Cb,m,batch and Cb,m,sec are asymptotically valid CIs, the sectioning CI usually has better

coverage, especially when the overall sample size n= bm is small. For both batching and sectioning,

Section III.5a of Asmussen and Glynn (2007) suggests choosing b≤ 30. Nakayama (2014) presents

numerical results with b= 10 and b= 20 when applying each of SRS, IS, and CV, and found that

b= 10 resulted in significantly better coverage than b= 20 for the same overall sample size n when

n is small and p≈ 1.

3. Latin Hypercube Sampling

We now describe how to generate a single LHS sample of size s. Start with s× d i.i.d. unif[0,1]

random variables Ui,j, i = 1,2, . . . , s, j = 1,2, . . . , d, as in (2). Also, generate π1, π2, . . . , πd as d

independent random permutations of (1,2, . . . , s), where πj = (πj(1), πj(2), . . . , πj(s)), πj(i) is the

value to which i is mapped in the jth permutation, and each of the s! permutations is equally

likely. For i= 1,2, . . . , s, and j = 1,2, . . . , d, define

Vi,j =
πj(i)− 1 +Ui,j

s
, (3)
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which we arrange in a grid

V1,1 V1,2 · · · V1,d

V2,1 V2,2 · · · V2,d

...
...

. . .
...

Vs,1 Vs,2 · · · Vs,d

. (4)

Then, apply function g :<d→<1 from (1) to each row of (4) to obtain the s outputs

Ŷi = g(Vi,1, Vi,2, · · · , Vi,d), i= 1,2, . . . , s. (5)

We call (Ŷ1, Ŷ2, . . . , Ŷs) an LHS sample of size s. Each row i in (4) has d i.i.d. unif[0,1] random

variables, so Ŷi ∼ F , i = 1,2, . . . , s. But since the entries in each column j in (4) share the same

permutation πj, the rows in (4) are dependent, making Ŷ1, Ŷ2, . . . , Ŷs dependent as well.

LHS yields smaller asymptotic variance than SRS when estimating a mean (Stein (1987)) or a

quantile (Avramidis and Wilson (1998)). Under the conditions below, Avramidis and Wilson (1998)

prove a CLT for a quantile estimator using single-sample LHS. In this paper, we further show

(Theorem 1 below) that the ssLHS quantile estimator obeys a weak Bahadur (1966) representation

(Ghosh (1971)) under two continuity conditions from Avramidis and Wilson (1998), where U =

(U1,U2, . . . ,Ud) denotes a vector of i.i.d. unif[0,1] random variables:

CC1 The function g(·) in (1) has a finite set of discontinuities D.

CC2 There exists a neighborhood N (ξp) of ξp such that for each x ∈ N (ξp) and for each j =

1, . . . , d, there exists a finite set Qj(x) with P (g(U) = x |Uj = uj) = 0 for every uj ∈ [0,1]−Qj(x).

Define the ssLHS CDF estimator based on a single LHS sample of size s= n as

F̂n(y) =
1

n

∑
1≤i≤n

I(Ŷi ≤ y), (6)

and let ξ̂p,n = F̂−1
n (p) be the ssLHS p-quantile estimator. We then have the following result:

Theorem 1. Suppose continuity conditions CC1 and CC2 hold, CDF F has a bounded second

derivative in a neighborhood of ξp, and F ′(ξp)> 0. Let pn = p+ cn−1/2 for any constant c∈<, and
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let ξ̂pn,n be the ssLHS estimator of the pn-quantile ξpn = F−1(pn), with ssLHS sample size n. Then

ξ̂pn,n satisfies the weak Bahadur representation

ξ̂pn,n = ξ#
pn
− [F̂n(ξp)− p]/F ′(ξp) + R̂n, with n1/2R̂n⇒ 0 as n→∞, (7)

where ξ#
pn

= ξp + (pn− p)/F ′(ξp) and F̂n(·) is defined in (6).

The dependence among Ŷi, i= 1,2, . . . , n, complicates Theorem 1’s proof (in Appendix A). To

handle this, we modify and extend arguments that Avramidis and Wilson (1996, 1998) develop to

demonstrate the ssLHS quantile estimator ξ̂p,n obeys a CLT.

Setting c= 0 in Theorem 1 corresponds to what we call a fixed weak Bahadur representation:

ξ̂p,n = ξp− [F̂n(ξp)− p]/F ′(ξp) + R̂n with n1/2R̂n⇒ 0 as n→∞. (8)

The fixed version shows that the p-quantile estimator has n1/2-asymptotics determined by the CDF

estimator at ξp. Because F̂n(ξp) is the average of I(Ŷi ≤ ξp), which are bounded with mean p,

n1/2[F̂n(ξp)− p]⇒N(0,ψ2
p) (9)

as n→∞ for some ψp > 0 (defined later) by the CLT of Owen (1992), which holds for an LHS

estimator of a mean of bounded outputs. Thus, rearranging (8) and multiplying by n1/2 leads to

n1/2(ξ̂p,n− ξp) =−n1/2[F̂n(ξp)− p]/F ′(ξp) +n1/2R̂n⇒N(0, η2
p) (10)

as n→∞ by Slutsky’s theorem (e.g., p. 19 of Serfling (1980)), where

ηp =ψp/F
′(ξp). (11)

While the limiting result given by the outer terms in (10) was previously proven by Avramidis

and Wilson (1998), the fixed weak Bahadur representation provides further insight into why the

ssLHS quantile estimator, which is not a sample average, satisfies the CLT. Moreover, the fixed

weak form in (8) and the analogue for single replicated LHS suffice to establish the asymptotic

validity of our srLHS sectioning CI in Section 4.2 below.



Dong and Nakayama: Quantile Estimation With LHS
Article submitted to Operations Research; manuscript no. OPRE-2014-08-465-final 11

But we also develop an ssLHS CI with a finite difference to estimate λp. We only consider using

a FD bandwidth hn = cn−1/2 for any constant c > 0. The consistency of the FD will then follow

from the perturbed weak Bahadur representation (7) for perturbed pn = p± cn−1/2 in Theorem 1.

Working with only pn of this form facilitates our proof of Theorem 1 as it allows us to leverage

results from Avramidis and Wilson (1996). Also, Chu and Nakayama (2012a) present numerical

results when applying other VRTs showing that bandwidths of the form hn = cn−1/2 led to FD CIs

with better small-sample coverage than setting hn = cn−a for a= 1/3 and 1/5, especially for p≈ 1.

4. Confidence Intervals When Applying LHS

We now develop three methods for constructing a CI for a quantile when applying LHS. The first

approach uses only a single LHS sample and is based on consistently estimating the asymptotic

variance constant η2
p in the CLT in (10) for the ssLHS quantile estimator ξ̂p,n. The other two CIs

employ batching and sectioning, and these require independent replicated LHS samples.

4.1. CI Using ssLHS

Under the conditions in Theorem 1, Avramidis and Wilson (1996, 1998) prove the ssLHS quan-

tile estimator ξ̂p,n obeys the CLT in (10). However, as noted by (Glasserman 2004, p. 242), the

asymptotic variance η2
p in (10) is “neither known nor easily estimated,” making it “difficult” to

obtain a CI from the ssLHS CLT. Indeed, Avramidis and Wilson (1996, 1998) do not discuss how

to estimate ηp nor how to construct a CI for ξp when applying ssLHS. We now tackle these issues.

The difficulties in consistently estimating ηp =ψp/F
′(ξp) from (11) are twofold. First, the numer-

ator ψp has a complicated form (described shortly) and depends on the unknown ξp, and we extend

a method of Owen (1992) to consistently estimate ψp. The sparsity function λp = 1/F ′(ξp) also

poses problems as it requires estimating the derivative F ′ of the unknown CDF F at the unknown

ξp; we handle this using a finite difference with a technique developed in Chu and Nakayama

(2012a), which relies on the perturbed Bahadur representation established in Theorem 1.

To give an expression for the numerator ψp in (11), we review concepts from Stein (1987) and

Avramidis and Wilson (1998). Let φ(·) be a real-valued, square-intergrable function defined over
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the d-dimensional unit cube [0,1]d. Let µφ = E[φ(U)] =
∫

[0,1]d
φ(u)du, where U = (U1,U2, . . . ,Ud)

is a vector of i.i.d. unif[0,1] random variables. Then define the jth main effect of φ(·) as

φj(uj) = E[φ(U) |Uj = uj] =

∫
[0,1]d−1

φ(u1, . . . , uj, . . . , ud)
∏

1≤j′≤d
j′ 6=j

duj′ (12)

for uj ∈ [0,1] and j = 1,2, . . . , d; the additive part of φ(·) is

φadd(u) =
∑

1≤j≤d

φj(uj)− (d− 1)µφ, (13)

where u = (u1, u2, . . . , ud)∈ [0,1]d; and the residual from additivity of φ(·) is

φres(u) = φ(u)−φadd(u). (14)

Recall g in (1), and define χ(u) = I(g(u)≤ ξp), which is square-integrable as it is bounded. Let χj(·),

χadd(·), and χres(·) be its jth main effect, additive part, and residual from additivity, respectively.

Avramidis and Wilson (1998) show that

ψ2
p = E[χ2

res(U)] = Var[χres(U)] = Var[χ(U)]−
d∑
j=1

Var[χj(Uj)], (15)

where the second equality holds since E[χres(U)] = 0 and the third because Cov[χ(U), χj(Uj)] =

Var[χj(Uj)], j = 1,2, . . . , d. Thus, LHS removes the variability of the additive part from the original

response χ(U). The difficulties in estimating ψ2
p arise from the facts that χres(·) is not observable

and depends implicitly on the unknown ξp.

To estimate ψ2
p, we modify an estimator from Owen (1992), who gives a consistent estimator of

E[φ2
res(U)] for a bounded computable function φ. In our case, even though g in (1) can be computed,

χ cannot because ξp is unknown, which makes estimating E[χ2
res(U)] more difficult. Instead, we

replace ξp in χ with ξ̂p,n, which consistently estimates ξp, but this significantly complicates the

analysis of the resulting estimator. We first describe how to adapt Owen’s estimator to estimate

ψ2
p = E[χ2

res(U)] under the assumption that ξp is known. Let Wi = I(Ŷi ≤ ξp), i = 1,2, . . . , n. For

j = 1,2, . . . , d, define the operator Nj such that

NjWi =


Wm if πj(i)<n, where πj(m) = πj(i) + 1

W̄n if πj(i) = n

, (16)
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where πj(i) is used in the definition of Vi,j in (3) and W̄n = n−1
∑

1≤i≤nWi. Thus, in the first case

of (16), NjWi is the output Wm corresponding to the next larger input in the jth coordinate. Then

under a Lipschitz condition (see (21) below), we can consistently estimate E[χ2
res(U)] by

1

2n

d∑
j=1

n∑
i=1

[Wi−NjWi]
2− (d− 1)p(1− p). (17)

(Owen (1992) also considers another estimator, but for simplicity, we only work with (17).)

Unfortunately, the estimator in (17) is not implementable because each Wi depends on the

unknown ξp, so we now modify (17) to account for this. For each x ∈<, define Wi(x) = I(Ŷi ≤ x),

and let W̄n(x) = n−1
∑

1≤i≤nWi(x) = F̂n(x). Then our estimator of the numerator ψ2
p in (11) and

(15) is

ψ̂2
p,n =

1

2n

d∑
j=1

n∑
i=1

[
Wi(ξ̂p,n)−NjWi(ξ̂p,n)

]2

− (d− 1)p(1− p) (18)

with NjWi(x) =Wm(x) if πj(i)<n, where πj(m) = πj(i) + 1, and NjWi(x) = W̄n(x) if πj(i) = n.

To handle the denominator in (11), we estimate λp = d
dp
F−1(p) using the finite difference

λ̂p,n = [F̂−1
n (p+hn)− F̂−1

n (p−hn)]/(2hn) (19)

with bandwidth hn > 0. The terms in the numerator of (19) are pn-quantile estimators for pn =

p±hn, which can be analyzed through perturbed Bahadur representations from (7). Thus, we can

estimate ηp in (11) with η̂p,n = ψ̂p,nλ̂p,n, and we obtain an approximate 100(1−α)% CI for ξp as

Cn,ssLHS = [ξ̂p,n± zα/2η̂p,n/
√
n]. (20)

Define ζ(u, x) = I(g(u)≤ x), and ζj(uj, x) as the jth main effect of ζ(u, x). The following result,

proven in Appendix B, shows that ψ̂p,n and λ̂p,n consistently estimate ψp and λp, respectively, and

the CI Cn,ssLHS is asymptotically valid.

Theorem 2. Under the assumptions of Theorem 1, λ̂p,n⇒ λp as n→∞ when the bandwidth in

(19) is hn = cn−1/2 for any constant c > 0. Suppose that in addition, for each j = 1,2, . . . , d, and

each x in a neighborhood N of ξp, the jth main effect ζj(uj, x) satisfies a Lipschitz condition, i.e.,

there exists a constant c0 > 0 such that |ζj(u,x)− ζj(v,x)|< c0|u− v| for every u, v ∈ [0,1]. (21)

Then ψ̂2
p,n⇒ψ2

p and P (ξp ∈Cn,ssLHS)→ 1−α as n→∞.
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4.2. CIs Using srLHS

Rather than trying to consistently estimate ηp in (11), we now describe CIs that circumvent this

issue. We build these intervals using replicated LHS with batching or sectioning. Let b≥ 2 be the

number of batches. For each batch, a single LHS sample of size m is generated by letting s=m in

(5), and LHS samples across batches are generated independently. The overall sample size across all

batches is n= bm. Because a single LHS sample is used in each batch, where we increase the batch

size m, Section 1 referred to this method as single replicated LHS (srLHS). This differs from the

rLHS approach proposed by Nakayama (2012), which increases the total number r of independent

LHS samples, each with a fixed size m, and divides the r LHS samples into b batches. Section 1

called the latter technique multiple replicated LHS (mrLHS), and batching and sectioning with

mrLHS are asymptotically valid when r→∞ with b and m fixed (Nakayama (2012)).

For srLHS, let Ỹj,i, i= 1,2, . . . ,m, be the m outputs in the jth batch, j = 1,2, . . . , b. Because the

batches are independent, Ỹj,i and Ỹj′,i′ are independent for j 6= j′, but Ỹj,i and Ỹj,i′ are dependent

as they are in the same LHS sample j. Then we define the srLHS overall p-quantile estimator

ξ̌p,b,m = F̌−1
b,m(p), where F̌b,m(y) =

1

b

∑
1≤j≤b

1

m

∑
1≤i≤m

I(Ỹj,i ≤ y), (22)

which is based on all n= bm outputs. Let F̃j,m be the CDF estimator from batch j, i.e.,

F̃j,m(y) =
1

m

∑
1≤i≤m

I(Ỹj,i ≤ y). (23)

The corresponding p-quantile estimator from batch j is ξ̃p,j,m = F̃−1
j,m(p), and

ξ́p,b,m =
1

b

∑
1≤j≤b

ξ̃p,j,m (24)

is the srLHS batching p-quantile estimator. The sample variance of ξ̃p,j,m, j = 1,2, . . . , b, is

Š2
b,m,batch =

1

b− 1

∑
1≤j≤b

(ξ̃p,j,m− ξ́p,b,m)2. (25)

The two-sided 100(1−α)% CI for ξp using srLHS batching is

Čb,m,batch = [ξ́p,b,m± tb−1,α/2Šb,m,batch/
√
b]. (26)
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As with SRS, the srLHS sectioning CI will usually have better coverage for small n than the

batching CI (26) because of the bias of batching point estimator ξ́p,b,m. Sectioning replaces ξ́p,b,m

with the overall quantile estimator ξ̌p,b,m from (22), and instead of (25), we compute Š2
b,m,sec =

(1/(b−1))
∑

1≤j≤b(ξ̃p,j,m− ξ̌p,b,m)2. Then the two-sided 100(1−α)% CI for ξp using srLHS sectioning

is

Čb,m,sec = [ξ̌p,b,m± tb−1,α/2Šb,m,sec/
√
b], (27)

which is centered at a less-biased point estimator ξ̌p,b,m than the batching CI (26).

To establish the asymptotic validity of the srLHS sectioning method, we first prove that the

srLHS overall quantile estimator has a weak Bahadur representation, which is given next. Its proof,

in Appendix C, exploits Theorem 1 and the independence of the LHS samples across batches.

Theorem 3. Assume the same conditions as in Theorem 1, and for pn = p+ cn−1/2 for any con-

stant c ∈ <, consider the srLHS overall pn-quantile estimator ξ̌pn,b,m based on srLHS with overall

sample size n= bm comprising b≥ 2 independent LHS samples, each of size m. Then

ξ̌pn,b,m = ξ#
pn
− [F̌b,m(ξp)− p]/F

′
(ξp) + Řb,m with n1/2Řb,m = b1/2m1/2Řb,m⇒ 0

as m→∞ with b≥ 2 fixed, where ξ#
pn

is defined in Theorem 1.

The next result, whose proof in Appendix D utilizes Theorem 3 for fixed pn = p, verifies the

asymptotic validity of the CI estimators by the srLHS approach.

Theorem 4. Under the same conditions as in Theorem 1, P (ξp ∈C)→ 1−α as m→∞ with b≥ 2

fixed, where C ∈ {Čb,m,batch, Čb,m,sec}.

4.3. Asymptotic Comparison of ssLHS, srLHS and mrLHS

We first use our various Bahadur representations to compare the ssLHS and srLHS quantile esti-

mators. By (8), (9), and (11) (and assuming appropriate uniform integrability, e.g., p. 338 of

Billingsley (1995)), we can approximate the variance of the ssLHS quantile estimator as

Var[ξ̂p,n]≈Var[F̂n(ξp)]/[F
′(ξp)]

2 ≈ψ2
p/(n[F ′(ξp)]

2) = η2
p/n (28)
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for large ssLHS size n. For the srLHS overall quantile estimator, it follows from Theorem 3 with fixed

pn = p that Var[ξ̌p,b,m]≈Var[F̌b,m(ξp)]/[F
′(ξp)]

2 for large LHS size m with b≥ 2 fixed. By (22) and

(23), we see that F̌b,m(ξp) is the average of F̃j,m(ξp), j = 1,2, . . . , b, which are i.i.d., so Var[F̌b,m(ξp)] =

Var[F̃j,m(ξp)]/b. When the LHS size m of each batch j is large, (9) implies Var[F̃j,m(ξp)]≈ ψ2
p/m.

We then see that the srLHS overall quantile estimator has variance Var[ξ̌p,b,m]≈ψ2
p/(bm[F ′(ξp)]

2) =

η2
p/(bm). Comparing this to (28), we see that when srLHS is implemented with each LHS size m

large and a fixed number b of batches, the srLHS overall quantile estimator has roughly

the same variance as the ssLHS quantile estimator with overall sample size n= bm.

A similar asymptotic analysis shows that the srLHS batching quantile estimator ξ́p,b,m in (24)

also possesses about the same variance. But in general, the srLHS overall quantile estimator will

typically have less bias than the srLHS batching quantile estimator, so the srLHS sectioning CI

should have better coverage than the batching CI, even though they have roughly the same widths.

We further note that the ssLHS CI in (20) is based on a normal approximation, whereas the

srLHS batching and sectioning CIs in (26) and (27), respectively, follow from a Student t limit.

Hence, the batching and sectioning CIs asymptotically will be somewhat wider than the ssLHS CI,

with the difference vanishing as b→∞. However, for a fixed overall sample size n= bm, choosing

b large will necessitate small m, but the asymptotics for srLHS require m to be large.

The main difference of our srLHS methods and the mrLHS approaches in Nakayama (2012)

lies in their asymptotic regimes. The mrLHS batching and sectioning CIs are asymptotically valid

when the number r of independent LHS samples satisfies r→∞, with a fixed size m for each

LHS sample and a fixed number b ≥ 2 of batches, with each batch containing r/b independent

LHS samples. Thus, mrLHS methods use rm total observations. In contrast, the srLHS CIs require

a fixed number b ≥ 2 of independent LHS samples, each of size m→∞. The total number of

observations for srLHS is then bm. If the total sample size is fixed at n for both methods, srLHS

allows larger LHS size than mrLHS. Hence, srLHS can reduce variance more than mrLHS because

the variance of LHS estimators decreases as the LHS sample size grows. Our numerical results in

Section 5 confirm this.
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Figure 1 A stochastic activity network.

5. Numerical Results

We now present numerical results from constructing various CIs for quantiles of two stochastic

models. The first is a stochastic activity network (SAN), previously studied in Juneja et al. (2007),

Chu and Nakayama (2012b), and Nakayama (2014). The second model considers the sojourn time

(waiting time plus service time) of customer v= 5 in an M/M/1 queue.

5.1. SAN Model

A SAN models the time to complete a project having activities with random durations and prece-

dence constraints. Figure 1 displays a SAN with d= 15 activities, which correspond to the edges

in the network. The length Xj of edge j is the time to complete activity j. The activity dura-

tions are independent exponential random variables, with activities j ≤ 8, having mean 2, and the

rest with mean 1. The network has q = 10 paths from nodes s to t, which are B1 = {1,4,11,15},

B2 = {1,4,12}, B3 = {2,5,11,15}, B4 = {2,5,12}, B5 = {2,6,13}, B6 = {2,7,14}, B7 = {3,8,11,15},

B8 = {3,8,12}, B9 = {3,9,15}, and B10 = {3,10,14}. Let Y = maxk=1,2,...,q

∑
j∈Bk

Xj, which corre-

sponds to the time to complete the project. Let F denote the CDF of Y , and we are interested

in constructing confidence intervals for the p-quantile of F for different values of p using SRS and

various versions of LHS.

To simulate the model using SRS, we generate d= 15 i.i.d. unif[0,1] random numbers, which we

transform via inversion to get Xj, j = 1,2, . . . ,15, and then compute the output Y . We repeat this

n independent times to obtain n i.i.d. outputs Y1, Y2, . . . , Yn. For LHS, we generate the (dependent)



Dong and Nakayama: Quantile Estimation With LHS
18 Article submitted to Operations Research; manuscript no. OPRE-2014-08-465-final

outputs as in Section 3. From one SRS simulation with n = 107, we estimated the “true value”

of the p-quantile as ξp = 11.7659 for p= 0.8 and ξp = 15.3478 for p= 0.95, which we used in our

coverage experiments. For each nominal 90% CI Cn based on an overall sample size n, we ran 104

independent experiments to estimate the coverage P (ξp ∈Cn) and average half-width (AHW).

Table 1 presents results from constructing CIs when applying SRS, ssLHS, srLHS and mrLHS.

(Dong and Nakayama (2014) present similar results for a smaller SAN with d= 5 activities using

batching and sectioning only.) For SRS, we constructed the finite-difference CI from Section 2.1,

and the batching and sectioning CIs from Section 2.2. These correspond to the columns labeled

“FD”, “Batch”, and “Section”. All batching and sectioning CIs use b= 10 batches. (Experiments

in Nakayama (2014) with b= 10 and b= 20 using SRS, importance sampling and control variates

show that b= 20 often results in poorer coverage than b= 10 for the same overall sample size n,

especially when n is small or p ≈ 1.) The ssLHS CI is from (20), which combines the modified

Owen (1992) estimator (18) and the finite difference (19); this column is also labeled “MOFD” for

“modified Owen-FD”. For srLHS, the batching and sectioning CIs in (26) and (27), respectively,

again have b= 10 independent batches, with each batch consisting of a single LHS sample of size

m= n/b. We construct mrLHS CIs with a fixed LHS size m= 10, and the number of independent

LHS samples as r= n/m, which are divided into b= 10 batches; thus, the number r of independent

LHS samples grows with n, but each LHS sample size remains fixed at m= 10. When n= 100, the

performance of srLHS and mrLHS are comparable as the two methods are then identical, but as n

grows, the advantage of srLHS over mrLHS appears and increases with n.

The FD estimators used bandwidth hn = n−1/2. For small n and p≈ 1, we can have p+ hn ≥ 1,

which causes problems for the FD because the inverse of the estimated CDF is evaluated outside its

domain (0,1); e.g., see (19). In this case, we replace p+hn and p−hn in the FD with 1− (1−p)/10

and 2p−1+(1−p)/10, respectively, the latter chosen so that the two are symmetric about p. Some

sort of adjustment like this needs to be made for the finite difference to be well-defined.

We first analyze the coverage in Table 1 of the CIs. For large n, the coverages of all the CIs

are close to nominal, demonstrating their asymptotic validity. The coverages for p= 0.95 converge
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Table 1 Coverages (and average half-widths) of nominal 90% confidence intervals for the p-quantile (p = 0.5 and

p = 0.8) of the SAN model using FD, modified Owen-FD (MOFD), batching and sectioning methods with SRS,

ssLHS, srLHS (b = 10, m = n/b), and mrLHS (b = 10, m = 10).

p= 0.8

n SRS ssLHS srLHS mrLHS

FD Batch Section MOFD Batch Section Batch Section

100 0.902 0.666 0.892 0.898 0.629 0.892 0.617 0.886

(1.038) (0.890) (0.970) (0.844) (0.734) (0.812) (0.728) (0.806)

400 0.883 0.837 0.902 0.888 0.803 0.904 0.825 0.902

(0.463) (0.484) (0.498) (0.327) (0.344) (0.361) (0.405) (0.419)

1600 0.882 0.889 0.905 0.883 0.867 0.904 0.877 0.897

(0.226) (0.249) (0.252) (0.153) (0.167) (0.170) (0.207) (0.209)

6400 0.893 0.895 0.901 0.895 0.892 0.902 0.899 0.902

(0.115) (0.125) (0.126) (0.077) (0.084) (0.084) (0.104) (0.105)

p= 0.95

n SRS ssLHS srLHS mrLHS

FD Batch Section MOFD Batch Section Batch Section

100 0.943 0.854 0.860 0.954 0.879 0.864 0.874 0.861

(2.259) (1.674) (1.724) (2.576) (1.587) (1.635) (1.580) (1.626)

400 0.896 0.672 0.892 0.928 0.665 0.888 0.677 0.888

(0.926) (0.841) (0.913) (0.797) (0.719) (0.785) (0.788) (0.856)

1600 0.890 0.833 0.897 0.909 0.820 0.897 0.830 0.896

(0.443) (0.456) (0.470) (0.342) (0.355) (0.368) (0.432) (0.445)

6400 0.895 0.886 0.905 0.897 0.873 0.903 0.884 0.900

(0.218) (0.235) (0.237) (0.163) (0.174) (0.177) (0.223) (0.225)
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more slowly than for p= 0.8. In general, sectioning has better coverage than batching, especially

for small n and the larger p, because the sectioning CI is centered at a less-biased estimator. Also,

ssLHS and sectioning with srLHS and mrLHS have comparable coverages for p= 0.8.

In terms of AHW for large n, all of the various LHS methods outperform SRS. The AHW ratio

(AHWR) of SRS with FD to ssLHS for p= 0.8 is 0.115/0.077≈ 1.49, which means that the sample

size of SRS with FD would have to be increased by a factor of (0.115/0.077)2 ≈ 2.2 for its CI’s

AHW to approximately equal that of ssLHS. While the AHWR of SRS with FD to ssLHS is smaller

(0.218/0.163≈ 1.34) for p= 0.95, this still corresponds to SRS with FD requiring about an 80%

larger sample size than ssLHS to get the same AHW. The srLHS AHW is slightly greater (about

9%) than for ssLHS, and the difference roughly matches the increase in the CIs’ 0.95-critical points

from a Student t distribution with b− 1 = 9 degrees of freedom to a normal (1.833 to 1.645); see

the asymptotic analysis in Section 4.3. Comparing mrLHS to srLHS, the AHWR with batching

and sectioning is around 1.25 for both p= 0.8 and p= 0.95, demonstrating the additional variance

reduction that srLHS obtains over mrLHS from having a larger LHS sample size. The AHWR of

SRS to mrLHS is approximately 1.2 for p= 0.8 and 1.05 for p= 0.95, so mrLHS may produce only

a modest variance reduction compared to SRS for extreme quantiles. This illustrates a deficiency

of mrLHS and further motivates the use of srLHS and ssLHS.

5.2. Sojourn Time in M/M/1 Queue

We also ran numerical experiments to estimate the p-quantile ξp of the sojourn time of customer

v= 5 in an M/M/1 queue, where the first customer arrives at time 0 to an empty system. For i≥ 1,

let Ai denote the time that elapses between the arrivals of customers i and i+ 1, and A1,A2, . . .

are i.i.d. exponential random variables with rate 1. Let Si be the service time of customer i, and

S1, S2, . . . are i.i.d. exponentials (independent of the interarrival times) with rate 10/9. In our

experiments we set p= 0.5, 0.8, and 0.95. We implemented algorithms in Kaczynski et al. (2012)

to numerically compute ξp, obtaining the true values ξ0.5 = 1.670, ξ0.8 = 3.370, and ξ0.95 = 5.515.
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As with the SAN experiments in Section 5.1, our M/M/1 experiments apply SRS, ssLHS, srLHS,

and mrLHS, using FD, MOFD, batching and sectioning. For SRS, we generate an i.i.d. uniform grid

as in (2). When applying some form of LHS, we generate an LHS sample (of dependent uniforms) as

in (4). In both (2) and (4), each row has d= 2v−1 entries, which are used to generate by inversion

the interarrival times A1,A2, . . . ,Av−1, and the service times S1, S2, . . . , Sv. We then compute the

waiting time W ′
j of customer j ≥ 2 via Lindley’s equation: W ′

j = max(W ′
j−1 +Sj−1−Aj−1,0), with

W ′
1 = 0. The sojourn time of customer v is then W ′

v +Sv.

Table 2 (resp., 3) gives the M/M/1 results for p= 0.5 and 0.8 (resp., 0.95) from 104 independent

experiments to estimate coverage and AHW for different overall sample sizes n. As with the SAN

results, we see that for the M/M/1 model, coverages for all p appear to converge to the nominal

level 0.9 as n gets large. For p = 0.5 and n = 6400, the AHWR for SRS with FD over ssLHS is

0.049/0.027≈ 1.59, which means that the sample size of SRS with FD would have to be increased

by about a factor of (0.049/0.027)2 ≈ 2.5 for its CI’s AHW to equal that of ssLHS. The AHWR

of SRS with FD to ssLHS decreases to 0.069/0.045≈ 1.53 and 0.131/0.102≈ 1.28 for p= 0.8 and

p= 0.95, respectively, but the latter still corresponds to SRS with FD requiring about a 65% larger

sample size than ssLHS to get roughly the same AHW.

The results also show the superiority in AHW of ssLHS and srLHS over mrLHS. For p= 0.95

and n= 6400, we see that the AHWR of mrLHS with sectioning to ssLHS is 0.125/0.102≈ 1.23,

which corresponds to mrLHS needing roughly a 50% larger sample size n than ssLHS to produce

about the same AHW. Also, for n= 6400, the AHWRs of mrLHS to srLHS (both for sectioning)

for p= 0.5, 0.8, and 0.95 are 1.07, 1.10, and 1.15, respectively. Thus, the advantage of srLHS over

mrLHS can increase as p becomes more extreme, where for p= 0.95, mrLHS would require about

a 32% larger sample size than that for srLHS to obtain approximately the same AHW.

6. Concluding Remarks

LHS is perhaps the most widely applied VRT in certain fields, such as nuclear engineering, because

of its intuitive appeal and ease of implementation. However, LHS has not been adopted for perform-

ing safety and uncertainty analyses of nuclear facilities, which require CIs for quantiles; currently,
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Table 2 Coverages (and average half-widths) of nominal 90% confidence intervals for the p-quantile (p = 0.5 and

p = 0.8) of the sojourn time of customer v = 5 in an M/M/1 queue using FD, modified Owen-FD (MOFD), batching

and sectioning methods with SRS, ssLHS, srLHS (b = 10, m = n/b), and mrLHS (b = 10, m = 10).

p= 0.5

n SRS ssLHS srLHS mrLHS

FD Batch Section MOFD Batch Section Batch Section

100 0.876 0.894 0.890 0.762 0.901 0.881 0.899 0.880

(0.342) (0.347) (0.354) (0.195) (0.215) (0.220) (0.215) (0.220)

400 0.901 0.900 0.903 0.872 0.895 0.897 0.905 0.900

(0.176) (0.182) (0.185) (0.108) (0.114) (0.115) (0.118) (0.120)

1600 0.897 0.898 0.897 0.886 0.896 0.897 0.902 0.902

(0.085) (0.093) (0.093) (0.054) (0.058) (0.059) (0.061) (0.062)

6400 0.902 0.902 0.901 0.895 0.901 0.903 0.898 0.898

(0.043) (0.046) (0.046) (0.027) (0.029) (0.029) (0.031) (0.031)

p= 0.8

n CMC ssLHS srLHS mrLHS

FD Batch Section MOFD Batch Section Batch Section

100 0.894 0.818 0.878 0.813 0.792 0.859 0.779 0.857

(0.581) (0.527) (0.548) (0.372) (0.363) (0.382) (0.363) (0.382)

400 0.908 0.877 0.895 0.890 0.869 0.900 0.868 0.891

(0.289) (0.291) (0.296) (0.189) (0.191) (0.196) (0.210) (0.215)

1600 0.894 0.899 0.902 0.893 0.888 0.900 0.895 0.901

(0.139) (0.150) (0.151) (0.091) (0.097) (0.099) (0.109) (0.110)

6400 0.894 0.901 0.903 0.896 0.901 0.904 0.897 0.899

(0.069) (0.076) (0.076) (0.045) (0.049) (0.050) (0.055) (0.055)
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Table 3 Coverages (and average half-widths) of nominal 90% confidence intervals for the p-quantile (p = 0.95) of

the sojourn time of customer v = 5 in an M/M/1 queue using FD, modified Owen-FD (MOFD), batching and

sectioning methods with SRS, ssLHS, srLHS (b = 10, m = n/b), and mrLHS (b = 10, m = 10).

p= 0.95

n SRS ssLHS srLHS mrLHS

FD Batch Section MOFD Batch Section Batch Section

100 0.685 0.409 0.823 0.908 0.427 0.806 0.420 0.798

(0.688) (0.757) (0.895) (1.278) (0.625) (0.741) (0.624) (0.742)

400 0.953 0.708 0.886 0.972 0.694 0.884 0.710 0.882

(0.673) (0.497) (0.534) (0.608) (0.401) (0.434) (0.436) (0.468)

1600 0.920 0.845 0.900 0.918 0.837 0.894 0.845 0.897

(0.279) (0.271) (0.279) (0.219) (0.212) (0.219) (0.241) (0.247)

6400 0.901 0.882 0.895 0.900 0.884 0.905 0.888 0.901

(0.131) (0.138) (0.140) (0.102) (0.107) (0.109) (0.124) (0.125)

only SRS is used. An initial investigation on applying mrLHS for safety and uncertainty analyses of

nuclear facilities appears in Grabaskas et al. (2012), using an rLHS CI based on a finite difference

developed by Nakayama (2011). But this rLHS method and mrLHS of Nakayama (2012) do not

obtain the full variance reduction possible by LHS since they both require a fixed LHS size.

Our current paper developed LHS CIs for quantiles that maximize this VRT’s variance reduc-

tion by allowing the LHS size to grow large. We considered ssLHS and srLHS, proving Bahadur

representations for quantile estimators for both approaches. We leveraged these results to obtain

asymptotically valid CIs for ssLHS and srLHS. For the ssLHS CI, we developed a consistent esti-

mator of the asymptotic variance from the ssLHS quantile estimator’s CLT; the previous work of

Avramidis and Wilson (1998) on ssLHS quantile estimation did not address the issues of estimating

the asymptotic variance nor of constructing a CI. We also use batching and sectioning to build

CIs with srLHS, and these CIs have roughly the same average width as the ssLHS CI and are
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shorter than mrLHS CIs (Nakayama (2012)). The improvement of srLHS over mrLHS results from

srLHS allowing large LHS sizes, whereas mrLHS permits only fixed LHS sizes. Sectioning produces

CIs with better coverage than batching, especially for small overall sample sizes, because the for-

mer centers its CI at a less-biased point estimator. Our methods have the potential for significant

impact in applications such as safety and uncertainty analyses of nuclear power plants. Moreover,

other areas, such as finance and service industries, can also greatly benefit from our results.

Appendix A: Proof of Theorem 1

For two functions f1 and f2, we write f1(n) =O(f2(n)) to mean that there exist constants c1 and

n1 such that |f1(n)| ≤ |c1f2(n)| for all n≥ n1. Chu and Nakayama (2012a) establish the following

three conditions, which, if satisfied, are sufficient to ensure that a weak Bahadur representation (7)

holds for a quantile estimator F−1
n (pn) with Fn a CDF estimator and pn = p+O(n−1/2) as n→∞.

Condition A1 P (Tn)→ 1 as n→∞, where Tn is the event that the CDF estimator Fn(y) is

monotonically increasing in y.

Condition A2 For each an =O(n−1/2), Dn ≡ n1/2[(Fn(ξp+an)−Fn(ξp))−(F (ξp+an)−F (ξp))]⇒
0 as n→∞.

Condition A3 n1/2[Fn(ξp)−F (ξp)]⇒N(0,ψ2
p) as n→∞ for some 0<ψp <∞.

We now show that the ssLHS CDF estimator F̂n in (6) satisfies Conditions A1, A2, and A3. In

(6), each I(Ŷi ≤ y) is monotonically increasing in y, so F̂n(y) is also monotonically increasing in

y; i.e., Condition A1 holds. Also, (9) implies Condition A3. For Condition A2, our theorem only

considers perturbations pn = p+ c/
√
n for a constant c, and a careful examination of the proof of

Theorem 3.1(i) of Chu and Nakayama (2012a) reveals that in this case, it suffices to instead show

Condition A4 For each an = n−1/2t with t∈<, Dn⇒ 0 as n→∞.

We prove this through Lemmas 1 and 2 below for a fixed t≥ 0. (The case t < 0 is similar.)

Recall χ(u) = I(g(u) ≤ ξp) for u ∈ [0,1]d, and its jth main effect χj(·), additive part χadd(·),
and residual from additivity χres(·), as in (12)–(14). Avramidis and Wilson (1996) define χ(n)(u) =

I(g(u)≤ ξp +n−1/2t), its jth main effect χ
(n)
j (·), additive part χ

(n)
add(·), and residual from additivity

χ(n)
res (·). Define ω(n)(u) = χ(n)(u)−χ(u), so ω(n) ∈ {0,1} when t≥ 0. It is easy to verify that its jth

main effect ω
(n)
j (uj) = χ

(n)
j (uj)− χj(uj), additive part ω

(n)
add(u) = χ

(n)
add(u)− χadd(u), and residual

from additivity ω(n)
res (u) = χ(n)

res (u)−χres(u). For a d-vector U of i.i.d. unif[0,1] random variables,

E[ω(n)(U)] = P (ξp <Y ≤ ξp + t/
√
n)→ 0 (29)
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as n→∞ because we assumed F ′ exists at ξp. Let B(i, n) be the subinterval [(i−1)/n, i/n] of [0,1]

for i= 1,2, . . . , n.

Lemma 1. Under the conditions of Theorem 1, limn→∞ n
∑

1≤i≤n

[∫
B(i,n)

ω
(n)
j (u)du

]2

= 0 for j =

1, . . . , d.

Proof of Lemma 1 We will establish Lemma 1 by extending the proof of Lemma 4 in Avramidis

and Wilson (1996). Fix t ≥ 0; we can handle t < 0 similarly. Choose n0 sufficiently large so that

ξp + n
−1/2
0 t ∈ N (ξp), and fix ν ≥ n0. Note that ω

(ν)
j (·) = χ

(ν)
j (·) − χj(·) has a finite number of

discontinuities over [0,1] because Avramidis and Wilson (1996) have proven in their Lemma 4 that

under conditions CC1 and CC2, both χ
(ν)
j ( · ) and χj( · ) also have that property. Using the same

arguments that Avramidis and Wilson (1996) applied to verify their equation (90), we can show

that for each fixed ν ≥ n0,

lim
n→∞

n
∑

1≤i≤n

[∫
B(i,n)

(χ
(ν)
j (u)−χj(u))du

]2

=

∫
[0,1]

(χ
(ν)
j (u)−χj(u))2 du. (30)

For all n≥ ν and u∈ [0,1],

χ
(ν)
j (u)−χj(u)≥ χ(n)

j (u)−χj(u)≥ χj(u)−χj(u) (31)

because t ≥ 0. By the fact that limν→∞χ
(ν)
j (u) = χj(u) for all u ∈ [0,1] (see equation (87) in

Avramidis and Wilson (1996)) and the bounded convergence theorem (BCT; Theorem 16.5 of

Billingsley (1995)), we then have that (30) and (31) imply

0 =

∫
[0,1]

(χj(u)−χj(u))
2
du= lim

ν→∞

∫
[0,1]

(
χ

(ν)
j (u)−χj(u)

)2
du

= lim
ν→∞

lim
n→∞

n
∑

1≤i≤n

[∫
B(i,n)

(
χ

(ν)
j (u)−χj(u)

)
du

]2

≥ limsup
n→∞

n
∑

1≤i≤n

[∫
B(i,n)

(
χ

(n)
j (u)−χj(u)

)
du

]2

≥ lim inf
n→∞

n
∑

1≤i≤n

[∫
B(i,n)

(
χ

(n)
j (u)−χj(u)

)
du

]2

≥ lim
n→∞

n
∑

1≤i≤n

[∫
B(i,n)

(
χj(u)−χj(u)

)
du

]2

=

∫
[0,1]

(χj(u)−χj(u))2du = 0.

Therefore, Lemma 1 holds because

lim
n→∞

n
∑

1≤i≤n

[∫
B(i,n)

ω
(n)
j (u)du

]2

= lim
n→∞

n
∑

1≤i≤n

{[∫
B(i,n)

(
χ

(n)
j (u)−χj(u)

)
du

]2
}

= 0. �

Lemma 2. Under the conditions of Theorem 1, the ssLHS CDF estimator F̂n satisfies

D̂n ≡ n1/2
[(
F̂n(ξp +n−1/2t)− F̂n(ξp)

)
−
(
F (ξp +n−1/2t)−F (ξp)

)]
⇒ 0 (32)

as n→∞ for each t∈<, so Condition A4 holds for an = n−1/2t, as required for Theorem 1.
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Proof of Lemma 2 Fix t ≥ 0. (The argument for t < 0 is analogous.) By definition, F̂n(ξp +

n−1/2t)− F̂n(ξp) = n−1
∑

1≤i≤nω
(n)(U(i)), where U(i), i = 1,2, . . . , n, are the input variables of a

Latin hypercube sample; i.e., U(i) = (Vi,1, Vi,2, . . . , Vi,d) is the ith row from (4). By decomposing

ω(n)(·) into its additive and residual parts and using (14), we can write D̂n from (32) as

D̂n =An +Bn, (33)

where An = n−1/2
∑n

i=1

[
ω

(n)
add(U(i))−

(
F (ξp +n−1/2t)−F (ξp)

)]
and Bn = n−1/2

∑n

i=1ω
(n)
res (U(i)). We

will prove Lemma 2 by showing that both An and Bn weakly vanish as n→∞ via some arguments

similar to those in the proof of Lemma 6 of Avramidis and Wilson (1996).

Let ELH[·], VarLH[·] and CovLH[·] stand for the expectation, variance and covariance, respec-

tively, under LHS. We also continue to use E[·] and Var[·] when considering quantities that do not

depend on LHS. To verify that An⇒ 0, it suffices to show that vn ≡VarLH[An]→ 0 as n→∞ by

Chebyshev’s inequality because ELH[An] = 0. We start by noting that

vn =
1

n
VarLH

[
n∑
i=1

ω
(n)
add(U(i))

]
= Var[ω

(n)
add(U)] + (n− 1)CovLH[ω

(n)
add(U(1)), ω

(n)
add(U(2))] (34)

because ω
(n)
add(U(i)), i = 1,2, . . . , n, are exchangeable. We first prove Var[ω

(n)
add(U)] = o(1), where

for two functions f1 and f2, we write f1(n) = o(f2(n)) to mean that f1(n)/f2(n)→ 0 as n→∞.

Equation (100) of Avramidis and Wilson (1996) establishes that E[χ
(n)
add(U)] = E[χadd(U)] + o(1)

and Var[χ
(n)
add(U)] = Var[χadd(U)] + o(1) as n→∞. Thus, because ω

(n)
add(u) = χ

(n)
add(u)−χadd(u), we

have

E[ω
(n)
add(U)] = o(1) (35)

as n→∞. Also, (13) and the independent components of U = (U1,U2, . . . ,Ud) imply

0≤Var[ω
(n)
add(U)] =

∑
1≤j≤d

Var[ω
(n)
j (Uj)] =

∑
1≤j≤d

(
E[(ω

(n)
j (Uj))

2]−E2[ω
(n)
j (Uj)]

)
≤
∑

1≤j≤d

(
E[ω

(n)
j (Uj)]−E2[ω

(n)
j (Uj)]

)
because 0≤ ω(n)

j (·)≤ 1. Thus, E[ω
(n)
j (Uj)] = E[ω(n)(U)]→ 0 as n→∞ by (29) leads to

Var[ω
(n)
add(U)] = o(1). (36)

Recalling (34), we next show that cn ≡ CovLH[ω
(n)
add(U(1)), ω

(n)
add(U(2))] = o(n−1). By an analogue

of equation (A.3) of Stein (1987) and the uniform boundedness of ω
(n)
add(u) in n and u, we have

cn = dn−1E2
[
ω

(n)
add(U)

]
−n−1

∑
1≤j≤d

{
n
∑

1≤i≤n

[∫
B(i,n)

ω
(n)
j (u)du

]2
}

+ o(n−1). (37)
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By (35), we have that dn−1E2
[
ω

(n)
add(U)

]
= o(n−1). In addition, Lemma 1 implies the quantity in

the braces on the right side of (37) is o(1) for each j = 1,2, . . . , d, so the entire second term in (37)

is o(n−1) because d is fixed. Thus, all three terms in (37) are o(n−1), so cn = o(n−1) as n→∞.

Putting this and (36) into (34) yields limn→∞ vn = 0, so An⇒ 0 as n→∞.

Now we prove that Bn from (33) vanishes as n→∞. Since ω(n)
res (u) are bounded uniformly in n

and u, equation (103) in Avramidis and Wilson (1996) still applies to our Bn, i.e., for each q≥ 1,

ELH[Bq
n] = EIR[Bq

n] + o(1) (38)

as n→∞, where EIR[·] denotes expectation when using independent replications (IR); i.e., when

U(1),U(2), . . . ,U(n) are independent vectors of independent uniforms. Note that ELH[Bn] = 0 since

E[ω(n)
res (U)] = E[ω(n)(U)]−E[ω

(n)
add(U)] = 0. (39)

It then suffices to prove limn→∞VarLH[Bn] = 0. By (38) with q= 2, we have that

VarLH[Bn] = ELH[B2
n] = EIR[B2

n] + o(1)

=
1

n
EIR

[ ∑
1≤i≤n

(ω(n)
res (U(i)))2 +

∑
1≤i≤n

∑
1≤i′≤n:
i′ 6=i

ω(n)
res (U(i))ω(n)

res (U(i′))

]
+ o(1). (40)

Under IR, we have that EIR[ω(n)
res (U(i))ω(n)

res (U(i′))] = E[ω(n)
res (U(i))]E[ω(n)

res (U(i′))] = 0 by (39). Let

µω,n = E[ω(n)(U)] = E[ω
(n)
add(U)] = E[ω

(n)
j (Uj))]. Thus, (40) and (39) yield

VarLH[Bn] = E
[
(ω(n)

res (U))2
]

+ o(1) = Var
[
ω(n)

res (U)
]

+ E2
[
ω(n)

res (U)
]

+ o(1)

= Var
[
ω(n)(U)−ω(n)

add(U)
]

+ o(1) = Var
[
ω(n)(U)−

∑
1≤j≤d

ω
(n)
j (Uj) + (d− 1)µω,n

]
+ o(1)

= Var[ω(n)(U)] +
∑

1≤j≤d

Var[ω
(n)
j (Uj)]−

∑
1≤j≤d

2Cov[ω(n)(U), ω
(n)
j (Uj)] + o(1)

= Var[ω(n)(U)]−
∑

1≤j≤d

Var[ω
(n)
j (Uj)] + o(1), (41)

where the last line follows from the fact that

Cov[ω(n)(U), ω
(n)
j (Uj)] = E[ω(n)(U)ω

(n)
j (Uj)]−µ2

ω,n = E[E[ω(n)(U)ω
(n)
j (Uj) |Uj]]−µ2

ω,n

= E[ω
(n)
j (Uj)E[ω(n)(U) |Uj]]−µ2

ω,n = E[(ω
(n)
j (Uj))

2]−µ2
ω,n = Var[ω

(n)
j (Uj)].

In addition, because [ω(n)(U)]2 = ω(n)(U) as it is binary, (41) implies

VarLH[Bn] =
(

E[ω(n)(U)]−E2[ω(n)(U)]
)
−
∑

1≤j≤d

(
E[(ω

(n)
j (Uj))

2]−E2[ω
(n)
j (Uj)]

)
+ o(1)

= (µω,n + (d− 1)µ2
ω,n)−

∑
1≤j≤d

E[(ω
(n)
j (Uj))

2] + o(1). (42)
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Because 0 ≤ ω(n)
j (Uj) ≤ 1, we see that 0 ≤ E[(ω

(n)
j (Uj))

2] ≤ E[ω
(n)
j (Uj)] = E[ω(n)(U)] = µω,n → 0

as n→∞ by (29). Therefore, the sum in (42) satisfies limn→∞
∑

1≤j≤dE[(ω
(n)
j (Uj))

2] = 0, so we

have limn→∞VarLH[Bn] = 0, which, combined with the previously established ELH[Bn] = 0, implies

Bn⇒ 0 as n→∞. We have thus proven that both An and Bn in (33) weakly converge to 0 as

n→∞. Hence, D̂n⇒ 0 as n→∞ by Slutsky’s theorem, completing the proofs of Lemma 2 and

Theorem 1. �

Appendix B: Proof of Theorem 2

Theorem 3.3(i) of Chu and Nakayama (2012a) establishes that if a perturbed pn-quantile estimator

satisfies the perturbed Bahadur representation in (7) with pn = p+ cn−1/2 for any constant c 6= 0,

as we proved in Theorem 1, then λ̂p,n⇒ λp as n→∞. Hence, if we show that

ψ̂2
p,n⇒ψ2

p as n→∞, (43)

we then have that η̂p,n = ψ̂p,nλ̂p,n⇒ψpλp = ηp as n→∞ by Slutsky’s theorem, and the asymptotic

validity of CI Cn,ssLHS in (20) follows from the CLT (10). Thus, what remains is to establish (43).

We do this by applying the following lemma, which we verify by modifying arguments used in

the proof of Theorem 4.1(ii) of Chu and Nakayama (2012a).

Lemma 3. Suppose l(x) is a real-valued function that is continuous at x = q. Also suppose that

Ln(x)⇒ l(x) as n→∞ for each x in a neighborhood N of q and that for each n, Ln(x) is monotonic

in x for x∈N . Then Qn⇒ q as n→∞ implies Ln(Qn)⇒ l(q) as n→∞.

Proof of Lemma 3 We will demonstrate that bn ≡ P (|Ln(Qn)− l(q)|> ε)→ 0 as n→∞ for each

ε > 0. Because l(x) is continuous at x= q, there exists a δ > 0 such that

max(|l(q+ δ)− l(q)|, |l(q− δ)− l(q)|)< ε/2. (44)

We can choose δ > 0 such that q+ δ and q− δ lie in the neighborhood N . We then express

bn = P (|Ln(Qn)− l(q)|> ε, |Qn− q| ≤ δ) +P (|Ln(Qn)− l(q)|> ε, |Qn− q|> δ)≡ rn + sn. (45)

The assumed monotonicity of Ln(x) in x for x∈N implies that |Ln(Qn)− l(q)| ≤max(|Ln(q+ δ)−
l(q)|, |Ln(q− δ)− l(q)|) when |Qn− q| ≤ δ. Hence,

rn ≤ P (max(|Ln(q+ δ)− l(q)|, |Ln(q− δ)− l(q)|)> ε, |Qn− q| ≤ δ)

≤ P (|Ln(q+ δ)− l(q)|> ε, |Qn− q| ≤ δ) +P (|Ln(q− δ)− l(q)|> ε, |Qn− q| ≤ δ)≡ rn,1 + rn,2.

Also rn,1 ≤ P (|Ln(q+ δ)− l(q)|> ε) ≤ P (|Ln(q+ δ)− l(q+ δ)|+ |l(q+ δ)− l(q)|> ε) ≤
P (|Ln(q+ δ)− l(q+ δ)|> ε/2)→ 0 as n→∞, where the last inequality follows from (44), and the

convergence holds because q+δ ∈N and we assumed Ln(x)⇒ l(x) for x∈N . Similarly, rn,2→ 0 as

n→∞, so rn→ 0. Also, sn ≤ P (|Qn− q|> δ)→ 0 as n→∞ because Qn⇒ q as n→∞. Combining

these results with (45) establishes that bn→ 0, completing the proof of Lemma 3. �
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We now return to verifying that (43) holds. By (18),

ψ̂2
p,n =

d∑
j=1

σ̂2
j (ξ̂p,n)− (d− 1)p(1− p), where σ̂2

j,n(x) =
1

2n

∑
1≤i≤n

[Wi(x)−NjWi(x)]
2
, x∈<. (46)

We will apply Lemma 3 to find the weak limit of each σ̂2
j,n(ξ̂p,n) as n→∞ using the following

approach. First, for each 1 ≤ j ≤ d and x in the neighborhood N of ξp for which the Lipschitz

condition (21) holds, we show that σ̂2
j,n(x) has a deterministic weak limit σ2

j (x), which is continuous

at x= ξp; see Lemma 4 below. Invoking Lemma 3 also requires that σ̂2
j,n(x) is monotone in x in the

neighborhood N , but it is not clear this holds. Instead, we next derive (in the proof of Lemma 5

below) an alternative representation of σ2
j (x) as the sum of three terms, each continuous at x= ξp

and whose corresponding estimators are monotone in x everywhere, and so also in N . We then

apply Lemma 3 to each of the three estimators to verify that σ̂2
j,n(ξ̂p,n)⇒ σ2

j (ξp) as n→∞. We

now provide the details.

Lemma 4. Under the conditions of Theorem 2,

σ̂2
j,n(x)⇒ σ2

j (x)≡Var[ζ(U, x)]−Var[ζj(Uj, x)] = E[Var[ζ(U, x) |Uj]] (47)

as n→∞ for each x in the neighborhood N for which (21) holds, and σj(x) is continuous at x= ξp.

Proof of Lemma 4 We first show that for each x∈N and j = 1,2, . . . , d, the weak convergence

in (47) holds as n→∞ under the Lipschitz condition (21). We will establish this by applying ideas

similar to those employed in the proof of Theorem 2 of Owen (1992).

For i = 1,2, . . . , n, recall that we previously defined U(i) = (Vi,1, Vi,2, . . . , Vi,d) as the ith row of

LHS inputs from (4) with s= n. To emphasize the dependence of the output Ŷi on the input U(i),

we recall the function ζ(u, x) = I(g(u)≤ x) for u∈ [0,1]d and x∈<, where g is defined in (1). Thus,

Wi(x) = ζ(U(i), x), and χ(u) = I(g(u) ≤ ξp) = ζ(u, ξp). For U = (U1,U2, . . . ,Ud) a vector of i.i.d.

unif[0,1] random variables and uj ∈ [0,1], let ζj(uj, x) = E[ζ(U, x) |Uj = uj] be the jth main effect

of ζ(·, x), and define ζres(u, x) as its residual from additivity. Note that E[ζ(U, x)] = E[ζj(Uj, x)] =

F (x). Hence, the last step in (47) holds by a variance decomposition.

Continuing now with establishing the weak convergence in (47), we next write

σ̂2
j,n(x) =

1

2n

∑
1≤i≤n

[Wi(x)− ζj(Vi,j, x) + ζj(Vi,j, x)−NjWi(x)]
2

=
1

2n

∑
1≤i≤n

[Wi(x)− ζj(Vi,j, x)]
2

+
1

2n

∑
1≤i≤n

[NjWi(x)− ζj(Vi,j, x)]
2

− 1

n

∑
1≤i≤n

[Wi(x)− ζj(Vi,j, x)] [NjWi(x)− ζj(Vi,j, x)]≡H1,n +H2,n−H3,n. (48)
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We separately analyze each term in (48), and we will show that as n→∞,

H1,n⇒
1

2
σ2
j (x), (49)

H2,n⇒
1

2
σ2
j (x), (50)

H3,n⇒ 0, (51)

which will prove the weak convergence in (47) by Slutsky’s theorem.

For the first term in (48), Owen (1992) states without proof that something similar to (49) holds

in the line immediately following his equation (13), and we now provide the details for completeness.

To do this, we will prove that

ELH[H1,n] =
1

2
σ2
j (x) (52)

for each n, and that

VarLH[H1,n]→ 0 as n→∞, (53)

which together ensure mean-square convergence of H1,n to σ2
j (x)/2, implying (49) (e.g., see Theo-

rem 1.3.2 of Serfling (1980)).

To prove (52), we have that because Wi(x) = ζ(U(i), x),

ELH[H1,n] =
1

2n

∑
1≤i≤n

ELH

[(
ζ(U(i), x)− ζj(Vi,j, x)

)2
]

=
1

2
E
[
ζ2(U, x)

]
−E[ζ(U, x)ζj(Uj, x)] +

1

2
E
[
ζ2
j (Uj, x)

]
(54)

by expanding the square and because the LHS rows U(i), i= 1,2, . . . , n, are identically distributed

as U. The middle term in (54), by iterated expectations, satisfies

E [ζ(U, x)ζj(Uj, x)] = E [E [ζ(U, x)ζj(Uj, x) |Uj]] = E [ζj(Uj, x)E [ζ(U, x) |Uj]] = E
[
ζ2
j (Uj, x)

]
.

Thus, (54) becomes

ELH[H1,n] =
1

2

(
E
[
ζ2(U, x)

]
−E

[
ζ2
j (Uj, x)

])
=

1

2
(Var[ζ(U, x)]−Var[ζj(Uj, x)]) =

1

2
σ2
j (x)

by the definition of σ2
j (x) in (47), where the second equality holds because (E[ζ(U, x)])2 =

(E[ζj(Uj, x)])2 by iterated expectations. Hence, we have established (52).

To verify (53), let vj(u) = [ζ(u, x)− ζj(uj, x)]
2
/2 for u = (u1, u2, . . . , ud), so H1,n =

(1/n)
∑

1≤i≤n vj(U
(i)). Then Proposition 3 of Owen (1997) implies that

VarLH [H1,n]≤ Var[vj(U)]

n− 1
→ 0 as n→∞
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by the boundedness of vj(U). Thus, (53) holds, which combined with (52) establishes (49).

Next we show that the second term, H2,n, in (48) satisfies (50). To do this, we extend the operator

Nj in (16) to further apply to Vi,j, with NjVi,j = Vm,j if πj(i)< n, where πj(m) = πj(i) + 1; and

NjVi,j = 1/2 if πj(i) = n. Then write

H2,n =
1

2n

∑
1≤i≤n

[NjWi(x)− ζj(NjVi,j, x) + ζj(NjVi,j, x)− ζj(Vi,j, x)]
2

=
1

2n

∑
1≤i≤n

[NjWi(x)− ζj(NjVi,j, x)]
2

+
1

2n

∑
1≤i≤n

[ζj(NjVi,j, x)− ζj(Vi,j, x)]
2

+
1

n

∑
1≤i≤n

[NjWi(x)− ζj(NjVi,j, x)] [ζj(NjVi,j, x)− ζj(Vi,j, x)]≡ J1,n +J2,n +J3,n. (55)

The collections of summands for J1,n and H1,n differ in only the two extreme cases when πj(·) maps

to 1 and to n. Specifically, define integer s so that πj(s) = 1, and Nj maps nothing to the element

with index s. Also, when πj(i) = n, we have that NjWi(x) = W̄ (n) and NjVi,j = 1/2. Therefore,

J1,n =H1,n−
1

2n
[Ws(x)− ζj(Vs,j, x)]2 +

1

2n
[W̄ (n)− ζj(1/2, x)]2⇒ 1

2
σ2
j (x) (56)

as n→∞ by (49) because Ws(x), W̄n, and ζj(·, x) are bounded between 0 and 1. We now show

that J2,n⇒ 0. For each i such that πj(i)<n, we have that NjVi,j and Vi,j lie in adjacent strata for

coordinate j. Thus, |NjVi,j −Vi,j| ≤ 2/n, so x∈N and the Lipschitz condition (21) ensure that

|ζj(NjVi,j, x)− ζj(Vi,j, x)| ≤ 2c0/n when πj(i)<n. (57)

Consequently, defining integer s′ so that πj(s
′) = n, we get

|J2,n|=
1

2n

∑
i:πj(i)<n

[ζj(NjVi,j, x)− ζj(Vi,j, x)]
2

+
1

2n
[ζj(NjVs′,j, x)− ζj(Vs′,j, x)]

2

≤ n− 1

2n

(
2c0

n

)2

+
1

2n
=O(n−1) (58)

by (57) and because 0≤ ζj(·, x)≤ 1. Similarly, we can again use (57) to show that J3,n =O(n−1),

which combined with (55), (56), and (58) yields (50).

Finally, for the third term, H3,n, in (48), we will verify (51) by arguing that

ELH[H2
3,n]→ 0 as n→∞ (59)

and applying Theorem 1.3.2 of Serfling (1980). Note that

H2
3,n =

1

n2

∑
1≤i≤n

∑
1≤k≤n

[Wi(x)− ζj(Vi,j, x)] [Wk(x)− ζj(Vk,j, x)]

× [NjWi(x)− ζj(Vi,j, x)] [NjWk(x)− ζj(Vk,j, x)]≡K1,n +K2,n, (60)
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where K1,n is the sum of the terms for which i = k, and K2,n sums the terms with i 6= k. The

summands of H2
3,n are bounded, so we can establish that the expectation of certain sums of terms

from H2
3,n asymptotically vanish by simply showing that their number of summands is o(n2). For

example, K1,n has n summands, so multiplying their sum by 1/n2 leads to

ELH[K1,n] =O(n−1). (61)

To analyze K2,n, which we recall includes the terms from H2
3,n with i 6= k, let Gl,j = ζj(NjVl,j, x)−

ζj(Vl,j, x) for l= 1,2, . . . , n. Also, let Nj,l =m if πj(l)<n, where πj(m) = πj(l) + 1; and Nj,l = 0 if

πj(l) = n. Moreover, define W0(x) = W̄n(x) and V0,j = 1/2. We then have that

K2,n =
1

n2

∑
1≤i≤n

∑
1≤k≤n:
k 6=i

[Wi(x)− ζj(Vi,j, x)] [Wk(x)− ζj(Vk,j, x)]

× [NjWi(x)− ζj(NjVi,j, x) +Gi,j] [NjWk(x)− ζj(NjVk,j, x) +Gk,j]

=
1

n2

∑
1≤i≤n

∑
1≤k≤n:
k 6=i

[Wi(x)− ζj(Vi,j, x)] [Wk(x)− ζj(Vk,j, x)]

×
[
WNj,i

(x)− ζj(VNj,i,j, x)
] [
WNj,k

(x)− ζj(VNj,k,j, x)
]

+
1

n2

∑
1≤i≤n

∑
1≤k≤n:
k 6=i

[Wi(x)− ζj(Vi,j, x)] [Wk(x)− ζj(Vk,j, x)]

×
[(
WNj,i

(x)− ζj(VNj,i,j, x)
)
Gk,j +

(
WNj,k

(x)− ζj(VNj,k,j, x)
)
Gi,j +Gi,jGk,j

]
≡ T1,n +T2,n,

where T1,n is the first double sum, and T2,n is the second double sum. We next handle T1,n and T2,n

by breaking down each into various sums over disjoint sets of index pairs (i, k), where one of those

sums for T1,n has each of its summands being the product of four distinct terms, with Nj,i 6= 0 and

Nj,k 6= 0. We will analyze that sum later after first handling all of the other cases.

For a given permutation πj, the definition of Nj,l precludes the possibility that both Nj,i = k and

Nj,k = i. (To see this, note that Nj,i = k means that πj(k) = πj(i)+1, which cannot simultaneously

occur with πj(i) = πj(k) + 1, which corresponds to Nj,k = i.) Thus, we only need to consider

summands in T1,n and T2,n with index pairs (i, k) for which Nj,i 6= k or Nj,k 6= i. There are O(n)

summands with index pairs (i, k) for which Nj,i = k and Nj,k 6= i, or for which Nj,i 6= k and Nj,k = i.

After multiplying by the leading 1/n2, the sum of those O(n) terms contribute O(n−1) to ELH[K2,n].

In addition, there are O(n) summands with index pairs (i, k) for which Nj,i = 0 or Nj,k = 0, so

again, the sum of those multiplied by 1/n2 add O(n−1) to ELH[K2,n]. Let An be the set of remaining

possible index pairs (i, k), i.e., for which 1≤ i≤ n, 1≤ k≤ n, i 6= k, Nj,i 6= k, Nj,k 6= i, Nj,i 6= 0, and

Nj,k 6= 0 all hold. While An depends (solely) on πj, its cardinality |An|=O(n2) for all πj.
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Let T ′1,n and T ′2,n be the sum of the terms with indices (i, k)∈An in T1,n and T2,n, respectively.

Also, define e(U(l)) = Wl(x) − ζj(Vl,j, x) = ζ(U(l), x) − ζj(Vl,j, x) for 1 ≤ l ≤ n. Thus, we have

that T ′1,n = (1/n2)
∑

(i,k)∈An
e(U(i))e(U(k))e(U(Nj,i))e(U(Nj,k)), and (i, k) ∈ An implies that each

summand is the product of four different e(·) terms, with Nj,i 6= 0 and Nj,k 6= 0. Consequently,

using iterated expectations yields

ELH[T ′1,n] = ELH

[
ELH[T ′1,n |πj]

]
=

1

n2
ELH

[ ∑
(i,k)∈An

ELH

[
ELH[e(U(i))e(U(k))e(U(Nj,i))e(U(Nj,k)) |U(k),U(Nj,i),U(Nj,k), πj]

∣∣∣πj]]

=
1

n2
ELH

[ ∑
(i,k)∈An

ELH

[
ELH[e(U(i)) |U(k),U(Nj,i),U(Nj,k), πj]e(U

(k))e(U(Nj,i))e(U(Nj,k))
∣∣∣πj]]

=
1

n2
ELH

[ ∑
(i,k)∈An

ELH

[(
E[e(U)] +O(n−1)

)
e(U(k))e(U(Nj,i))e(U(Nj,k))

∣∣∣πj]] (62)

=
1

n2
ELH

[ ∑
(i,k)∈An

ELH

[
O(n−1)e(U(k))e(U(Nj,i))e(U(Nj,k))

∣∣∣πj]], (63)

where (62) follows from Lemma 1 of Owen (1992), and the last step holds because E[e(U)] =

E[ζ(U, x)]−E[ζj(Uj, x)] = 0. Then by the boundedness of e(·) and the fact that |An|=O(n2), we

have that (63) implies ELH[T ′1,n] =O(n−1). Thus, combining this with the other index pairs (i, k) 6∈

An considered before in the previous paragraph yields ELH[T1,n]→ 0 as n→∞. A similar argument

shows that ELH[T2,n]→ 0 by using the fact that |Gl,j| ≤ 2c0/n for each l such that πj(l)<n by (57).

Hence, combining these results implies ELH[K2,n]→ 0 as n→∞, which with (60) and (61) ensures

that (59) holds. This verifies (51), which combined with (48), (49), and (50) establishes the weak

convergence in (47).

We now show that σ2
j (x) is continuous at x= ξp, which we do by establishing the continuity at x=

ξp of its two terms in (47): Var[ζ(U, x)] and Var[ζj(Uj, x)]. Because F ′(ξp)> 0, F (x) is continuous at

x= ξp, which implies the following. First, Var[ζ(U, x)] = F (x)[1−F (x)] is also continuous at x= ξp,

which handles the first term of σ2
j (x). Second, P (Y = ξp) = P (g(U) = ξp) = 0, so limy→ξp ζ(U, y) =

ζ(U, ξp) almost surely (a.s.). Since 0 ≤ ζ(u, y) ≤ 1 for all u ∈ [0,1]d and all y, the conditional

dominated convergence theorem (e.g., p. 88 of Williams (1991)) yields limy→ξp ζj(Uj, y) = ζj(Uj, ξp)

a.s. and limy→ξp ζ
2
j (Uj, y) = ζ2

j (Uj, ξp) a.s. Because 0≤ ζj(u, y)≤ 1 for all u∈ [0,1] and all y, which

ensures the same for ζ2
j (u, y), the BCT guarantees that limy→ξp Var[ζj(Uj, y)] = Var[ζj(Uj, ξp)], so

Var[ζj(Uj, x)] is continuous at x= ξp. Thus, σ2
j (x) is also, and Lemma 4 is proven. �

Lemma 5. Under the conditions of Theorem 2, σ̂2
j,n(ξ̂p,n)⇒ σ2

j (ξp) as n→∞.
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Proof of Lemma 5 It is not clear that σ̂2
j,n(x) is monotonic in a neighborhood of ξp, as required

to apply Lemma 3. Instead, we now derive another form for σ2
j (x) as the sum of three terms, each

continuous at x= ξp and whose estimator has the desired monotonicity. By (46),

σ̂2
j,n(x) =Lj,1,n(x) +Lj,2,n(x)−Lj,3,n(x), (64)

where Lj,1,n(x) = (1/(2n))
∑

1≤i≤nW
2
i (x), Lj,2,n(x) = (1/(2n))

∑
1≤i≤n[NjWi(x)]2, and Lj,3,n(x) =

(1/n)
∑

1≤i≤nWi(x)[NjWi(x)]. For each x, because Wi(x)∈ {0,1}, we have that

Lj,1,n(x) =
1

2n

∑
1≤i≤n

Wi(x) = F̂n(x)/2⇒ F (x)/2≡ lj,1(x) (65)

as n→∞ by the CLT for LHS estimators of a mean of bounded outputs, from Owen (1992).

Recalling (16), define s so that πj(s) = 1. Since Wi(x)∈ {0,1} and Nj maps nothing to index s,

Lj,2,n(x) =

(
1

2n

∑
1≤i≤n

Wi(x)

)
− 1

2n
Ws(x) +

1

2n
(W̄n(x))2⇒ F (x)/2≡ lj,2(x) (66)

because Ws(x) and W̄n(x) are bounded between 0 and 1. The weak limits in (47), (65), and (66)

are all deterministic, so for each x in the neighborhood N for which (21) holds, the corresponding

left sides jointly converge as n→∞ by Theorem 3.9 of Billingsley (1999). Thus, (64) and the

continuous-mapping theorem (CMT; Theorem 29.2 of Billingsley (1995)) ensure that for each x∈

N , Lj,3,n(x) =Lj,1,n(x) +Lj,2,n(x)− σ̂2
j,n(x)⇒ F (x)− σ2

j (x)≡ lj,3(x) as n→∞. Because F (x) and

σ2
j (x) are both continuous at x= ξp, the latter by Lemma 4, we then have that lj,3(x) maintains

the same property. Summarizing, we have shown that for each k = 1,2,3, the deterministic limit

lj,k(x) is continuous at x = ξp. Also, for all x in the neighborhood N for which (21) holds, the

estimators Lj,k,n(x)⇒ lj,k(x) as n→∞, and σ2
j (x) = lj,1(x) + lj,2(x)− lj,3(x).

To apply Lemma 3, we also need that the estimators Lj,k,n(x), k = 1,2,3, are monotonic in x

in the neighborhood N . This holds because Wi(x) and NjWi(x) are monotonically increasing in

x (actually for all x, not just in N) and nonnegative. Since ξ̂p,n⇒ ξp as n→∞ by (8) and (9),

Lemma 3 ensures that Lj,k,n(ξ̂p,n)⇒ lj,k(ξp) as n→∞ for k= 1,2,3, so σ̂2
j (ξ̂p,n)⇒ σ2

j (ξp) as n→∞,

proving Lemma 5. �

Finally, because Var[ζ(U, ξp)] = p(1− p), (46) and Lemmas 4 and 5 imply

ψ̂2
p,n⇒

d∑
j=1

σ2
j (ξp)− (d− 1)p(1− p) =

d∑
j=1

(Var[ζ(U, ξp)]−Var[ζj(Uj, ξp)])− (d− 1)(Var[ζ(U, ξp)]

= Var[ζ(U, ξp)]−
d∑
j=1

Var[ζj(Uj, ξp)] = Var[ζres(U, ξp)] = Var[χres(U)] =ψ2
p

by (15) because ζ(U, ξp) = χ(U), verifying that (43) holds, which completes the proof.
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Appendix C: Proof of Theorem 3

We will show that Conditions A1, A3, and A4 from Appendix A hold for the srLHS CDF estimator

F̌b,m in (22). In our definition of F̌b,m, each I(Ỹj,i ≤ y) is monotonically increasing in y, so F̌b,m(y)

is also monotonically increasing. Hence, Condition A1 is satisfied.

To handle Condition A4, first fix t≥ 0 (the case when t < 0 can be treated similarly). Define

Ďn = n1/2
[(
F̌b,m(ξp +n−1/2t)− F̌b,m(ξp)

)
−
(
F (ξp +n−1/2t)−F (ξp)

)]
= b−1/2

∑
1≤j≤b

m1/2
[(
F̃j,m(ξp +m−1/2b−1/2t)− F̃j,m(ξp)

)
−
(
F (ξp +m−1/2b−1/2t)−F (ξp)

)]
by (22) and (23) since n = bm, and we want to prove Ďn ⇒ 0 as n → ∞. Let t′ =

b−1/2t. Because each batch j contains a single LHS sample of size m, Lemma 2 implies

m1/2
[(
F̃j,m(ξp +m−1/2t′)− F̃j,m(ξp)

)
−
(
F (ξp +m−1/2t′)−F (ξp)

)]
⇒ 0 as m→∞, i.e., n= bm→

∞. Therefore, Ďn⇒ 0 as n→∞ by the independence of the batches, Example 3.2 and Theorem

3.9 of Billingsley (1999), and the CMT. Thus, Condition A4 holds for F̌b,m.

Now we prove F̌b,m satisfies Condition A3. The weak convergence in (9), which is true for ssLHS,

implies that for each batch j in srLHS, we have m1/2[F̃j,m(ξp)−F (ξp)]⇒Mj ∼N(0,ψ2
p) as m→∞,

where ψ2
p = Var[χres(U)] by (15). The LHS samples across batches are independent, so(

m1/2[F̃j,m(ξp)−F (ξp)] : j = 1,2, . . . , b
)
⇒
(
Mj : j = 1,2, . . . , b

)
(67)

as m→∞ by Example 3.2 of Billingsley (1999), where M1,M2, . . . ,Mb are mutually independent.

Because F̌b,m(y) = (1/b)
∑

1≤j≤b F̃j,m(y) and n= bm, the CMT guarantees that

n1/2[F̌b,m(ξp)−F (ξp)] = b1/2

[
1

b

∑
1≤j≤b

m1/2
(
F̃j,m(ξp)−F (ξp)

)]
⇒ 1

b1/2

∑
1≤j≤b

Mj ∼N(0,ψ2
p)

as n= bm→∞ with b fixed. Thus, Condition A3 holds for srLHS, completing the proof.

Appendix D: Proof of Theorem 4

We first prove the srLHS batching CI Čb,m,batch from (26) is asymptotically valid. By (10), for each

batch j in the srLHS batching method, the quantile estimator ξ̃p,j,m obeys a CLT m1/2[ξ̃p,j,m−ξp]⇒
M ′

j ∼N(0, η2
p) as m→∞. The batches are independent, so Example 3.2 of Billingsley (1999) implies(

m1/2[ξ̃p,j,m− ξp] : j = 1,2, . . . , b
)
⇒ (M ′

j : j = 1,2, . . . , b) (68)

as m→∞, with M ′
1,M

′
2, . . . ,M

′
b independent. Let M̄ ′

b = (1/b)
∑

1≤j≤bM
′
j, and the CMT ensures

b1/2[ξ́p,b,m− ξp]
Šb,m,batch

=
b1/2

[
(1/b)

∑
1≤j≤bm

1/2(ξ̃p,j,m− ξp)
]

[
(1/(b− 1))

∑
1≤j≤b

(
m1/2(ξ̃p,j,m− ξp)− 1

b

∑
1≤k≤bm

1/2(ξ̃p,k,m− ξp)
)2
]1/2

⇒
b1/2[(1/b)

∑
1≤j≤bM

′
j]

[(1/(b− 1))
∑

1≤j≤b(M
′
j − M̄ ′

b)
2]1/2

(69)
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as m→∞ with b≥ 2 fixed. Because the limiting distribution (Student t) in (69) is continuous, we

have that P (ξp ∈ Čb,m,batch) = P
(
−tb−1,α/2 ≤ b1/2[ξ́p,b,m− ξp]/Šb,m,batch ≤ tb−1,α/2

)
→ 1−α as n→∞

by the portmanteau theorem (Theorem 2.1 of Billingsley (1999)).

Now we will prove the asymptotic validity of the srLHS sectioning CI Čb,m,sec in (27). By

(10), for each j = 1,2, . . . , b, the batch-j quantile estimator satisfies ξ̃p,j,m = ξp − [F̃j,m(ξp) −

p]/F
′
(ξp) + R̃j,m with m1/2R̃j,m ⇒ 0 as m → ∞. Letting Ŕb,m = (1/b)

∑
1≤j≤b R̃j,m, we then

get ξ́p,b,m = (1/b)
∑

1≤j≤b ξ̃p,j,m = ξp −
[
(1/b)

∑
1≤j≤b F̃j,m(ξp) − p

]
/F
′
(ξp) + Ŕb,m. In addition,

(1/b)
∑

1≤j≤b F̃j,m(ξp) = (1/(bm))
∑

1≤j≤b
∑

1≤i≤m I(Ỹj,i ≤ ξp) = F̌b,m(ξp), so ξ́p,b,m = ξp− [F̌b,m(ξp)−

p]/F
′
(ξp) + Ŕb,m where m1/2Ŕb,m = (1/b)

∑
1≤j≤bm

1/2R̃j,m⇒ 0 as m→∞ with b fixed. Theorem 3

with pn = p then yields m1/2[ξ́p,b,m− ξ̌p,b,m] =m1/2[Ŕb,m− Řb,m]⇒ 0 as m→∞ with b fixed. Thus,

b1/2[ξ̌p,b,m− ξp]
Šb,m,sec

=
b1/2

[
m1/2(ξ̌p,b,m− ξ́p,b,m) +m1/2(ξ́p,b,m− ξp)

]
[
(1/(b− 1))

∑
1≤j≤b

(
m1/2(ξ̃p,j,m− ξ́p,b,m) +m1/2(ξ́p,b,m− ξ̌p,b,m)

)2
]

⇒
b1/2[(1/b)

∑
1≤j≤bM

′
j]

[(1/(b− 1))
∑

1≤j≤b(M
′
j − M̄ ′

b)
2]1/2

as m→∞ with b≥ 2 fixed by (68), (69), Theorem 3.9 of Billingsley (1999), and the CMT. Since the

above limit has a Student t distribution with b− 1 degrees of freedom, we have P (ξp ∈ Čb,m,sec)→

1−α as m→∞ with b fixed by the portmanteau theorem, completing the proof.
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