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Abstract

Suppose that there are k ≥ 2 different systems (i.e., stochastic processes), where each system has

an unknown steady-state mean performance and unknown asymptotic variance. We allow for the

asymptotic variances to be unequal and for the distributions of the k systems to be different. We

consider the problem of running independent, single-stage simulations to make multiple comparisons

of the steady-state means of the different systems. We derive asymptotically valid (as the run

lengths of the simulations of the systems tend to infinity) simultaneous confidence intervals for each

of the following problems: all pairwise comparisons of means, all contrasts, multiple comparisons

with a control, and multiple comparisons with the best. Our confidence intervals are based on

standardized time series methods, and we establish the asymptotic validity of each under the sole

assumption that the stochastic processes representing the simulation output of the different systems

satisfy a functional central limit theorem. Although simulation is the context in this paper, the

results naturally apply to (asymptotically) stationary time series.1

1 Introduction

Suppose that there are k ≥ 2 different systems (i.e., stochastic processes) that we want to compare,

where system i has (unknown) steady-state mean µi and (unknown) asymptotic variance σ2
i . We

allow for the asymptotic variances to be unequal and for the distributions of the k systems to be

different. We consider the problem of running independent simulations to compare the steady-state
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means of the different systems. For example, the different systems may represent various service

disciplines in a queueing system, and we are interested in comparing the steady-state throughputs

of the systems. Although simulation is the context in this paper, the results naturally apply to

(asymptotically) stationary time series.

In this paper, we present some single-stage simulation procedures for constructing simulta-

neous confidence intervals for each of the following multiple-comparisons problems: (1) all pair-

wise comparisons µi − µj , i < j; (2) all contrasts c1µ1 + c2µ2 + · · · + ckµk, where the constants

(c1, c2, . . . , ck) ∈ <k satisfy c1 + c2 + · · ·+ ck = 0; (3) multiple comparisons with a control µi − µk,

i = 1, 2, . . . , k − 1, where system k is considered to be the control; and (4) multiple comparisons

with the best (MCB), µi−maxj 6=i µj , i = 1, 2, . . . , k. Our confidence intervals are constucted using

a standardized time series method, and they are shorter than those based on the Bonferroni in-

equality. We prove that our confidence intervals are asymptotically valid (as n→∞, with the run

length of each of the systems equal to n); i.e., for each problem above, the joint probability that all

of our confidence intervals simultaneous cover the true values is, in the limit, at least 1− α, where

α is prespecified by the user.

Most of the previous work on multiple-comparison procedures compared k normally distributed

populations using i.i.d. sampling within each population. Tamhane (1977) studied the first two

problems listed above, and Spøtvoll (1972), Dalal (1978), and Tamhane (1979) constructed con-

fidence intervals for all linear combinations of means of normals. Hsu (1981,1984a,1984b) and

Edwards and Hsu (1983) developed confidence intervals for multiple comparisons with the best.

For an overview of these and other multiple-comparison procedures for i.i.d. random variables, see

Hochberg and Tamhane (1987) and Miller (1981).

There has been some additional work on multiple-comparison procedures specifically developed

for use in simulations. Nelson and Hsu (1993), Nelson (1993), and Yang and Nelson (1991) attack

the problem of comparing normally distributed populations by using common random numbers

to reduce the variance. Also, Yuan and Nelson (1993) consider MCB procedures for steady-state

simulations under the assumption that the simulation output of each system can be modeled as

an autoregressive process. Goldsman and Nelson (1990) empirically study a heuristic simulation

method for steady-state MCB.

Our results extend the previous work by proving the asymptotic validity of multiple-comparison

methods for the types of dependent, non-normally distributed output typically encountered in

steady-state simulations. We establish our results under the sole assumption that the stochastic

processes representing the simulation output of the different systems satisfy a functional central
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limit theorem. This assumption is satisfied by virtually all stochastic processes arising in practice.

As previously mentioned, our confidence intervals are based on standardized time series meth-

ods. Schruben (1983) proposed this class of techniques for constructing confidence intervals for the

steady-state mean of a stochastic process representing the simulation output of a single system.

Glynn and Iglehart (1990) formalized and generalized the class of methods and studied some of

its theoretical properties. The basic idea behind these approaches is to “cancel out” the asymp-

totic variance constant σ (in a manner akin to the t-statistic) rather than consistently estimate

it. This is desirable because consistent estimation of σ can be difficult in practice. Specifically,

certain methods for doing this (viz., the regenerative, autoregressive, and spectral methods) are

computationally complicated and not robust. For further work on standardized time series, see

Goldsman and Schruben (1984), Chen and Sargent (1987), Sargent, Kang, and Goldsman (1992),

and Nakayama (1994). Finally, we mention that the method of batch means (also known as us-

ing subseries), a technique that has been studied extensively in the simulation literature (e.g.,

see Bratley, Fox, and Schrage 1987 and Schmeiser 1982) and in the statistics literature (e.g., see

Carlstein 1986), is an example of a standardized time series methodology.

The rest of the paper is organized as follows. In Section 2, we develop the notation and state our

functional-central-limit-theorem assumption. We also present the class of standardized time series

methods in Section 2. Section 3 contains our multiple-comparison procedures. We give examples

of standardized time series techniques in Section 4, and all of the proofs are collected in Section 5.

Finally, we note that Damerdji and Nakayama (1996) develop some two-stage multiple-comparison

procedures for steady-state simulations. Also, Nakayama (1996a) presents (without proof) MCB

confidence intervals for single-stage steady-state simulations using the method of batch means.

Nakayama (1996b) studies the case when there is correlation among the different systems induced

by common random numbers.

2 Notation and Assumptions

Suppose that there are k ≥ 2 systems, labeled 1, 2, . . . , k. For system i = 1, 2, . . . , k, let Yi =

{Yi(t) : t ≥ 0} ∈ D1[0,∞) be a real-valued (measureable) stochastic process representing the

simulation output of system i, where D1[0,∞) is the space of right-continous real-valued functions

on [0,∞) having left limits (see Ethier and Kurtz 1986 or Glynn 1990 for more details on the

space D1[0,∞).) Essentially all stochastic processes arising in practice have sample paths lying in

D1[0,∞). We can work with discrete-time processes {Yi,l : l = 0, 1, 2, . . .} by taking Yi(t) = Yi,btc,

where bβc denotes the greatest integer less than or equal to β ∈ <. Let Y = (Y1,Y2, . . . ,Yk) and
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Y (t) = (Y1(t), Y2(t), . . . , Yk(t)).

We assume that the processes Y1,Y2, . . . ,Yk are mutually independent. (In practice, this

means that for all i and j with j 6= i, the simulations of systems i and j are generated using non-

overlapping streams of uniform random numbers.) We allow for the distributions of Y1,Y2, . . . ,Yk

to be different.

To establish our results, we need to restrict our attention to processes Y that satisfy a func-

tional central limit theorem (FCLT). More formally, letting “⇒” denote weak convergence (see

Billingsley 1968 for details), we assume the following:

A1 There exist a finite diagonal matrix Σ ∈ <k×k with diagonal elements σi, i = 1, 2, . . . , k, such

that σi > 0, i = 1, 2, . . . , k, and a finite constant µ = (µ1, µ2, . . . , µk) ∈ <k such that

Xn ⇒ ΣB

as n → ∞, where B is a standard k-dimensional Brownian motion, Xn = (X1,n, X2,n, . . . , Xk,n),

and

Xi,n(t) = n1/2 (Ȳi,n(t)− µit
)
, 0 ≤ t ≤ 1,

with

Ȳi,n(t) =
1
n

∫ nt

0
Yi(s)ds, 0 ≤ t ≤ 1,

for i = 1, 2, . . . , k.

Since we assumed that the Yi, i = 1, 2, . . . , k, are mutually independent, the off-diagonal

elements of the matrix Σ are all 0. Note that both Xn and Ȳn = (Ȳ1,n, Ȳ2,n, . . . , Ȳk,n) lie in C[0, 1],

the space of continuous <k-valued functions on [0, 1]; see Ethier and Kurtz (1986) or Glynn (1990)

for further details on the space C[0, 1]. Also, Xn is a rescaled, normalized, integrated version of

the original process Y, and the time parameter of Xn and Ȳn are rescaled by n as compared to Y.

Observe that Assumption A1 implies that for each i,

1
t

∫ t

0
Yi(s)ds− µi =

1√
t
Xi,t(1) ⇒ 0 · σiBi(1) = 0

as t → ∞, and so the µi, i = 1, 2, . . . , k, appearing in A1 are precisely the steady-state means of

the process Y. Also, A1 ensures that for each i,

√
n

[
1
n

∫ n

0
Yi(s)ds− µi

]
= Xi,n(1) ⇒ σiBi(1)

as n → ∞. Recalling that Bi(1) has a standard normal distribution, we see that σi is the asymp-

totic variance parameter of the process Yi. In addition, B = (B1, B2, . . . , Bk), where each Bi
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is a standard 1-dimensional Brownian motion, and B1, B2, . . . , Bk are mutually independent. By

Theorem 3.2 and pages 26–27 of Billingsley (1968), Assumption A1 is then equivalent to requiring

that

Xi,n ⇒ σiBi

as n→∞ for each i = 1, 2, . . . , k.

Virtually all “real-world” stochastic systems having a steady state satisfy the FCLT in Assump-

tion A1. For example, Assumption A1 holds if the process Y satisfies any of the following:

1. Y is regenerative and satisfies suitable moment conditions (see Glynn and Whitt 1987);

2. Y is a martingale process (see Chapter 7 of Ethier and Kurtz 1986);

3. Y satisfies appropriate mixing conditions (see Chapter 7 of Ethier and Kurtz 1986); or

4. The Y(t) are associated (see Newman and Wright 1981).

Now we describe the class of standardized time series methods (as applied to the output of a

single system). The foundation of these techniques is a class of functions g defined by Glynn and

Iglehart (1990). The basic idea is to divide the output of each system into a fixed number m ≥ 1 of

(non-overlapping) batches. The function g is then applied to a scaled, normalized, and integrated

version of each process Yi, namely Xi,n, and we can think of g(Xi,n), when appropriately scaled,

as an “estimate” of the asymptotic variance constant σi. (Glynn and Whitt 1990 show that the

method of batch means with a fixed number of batches, which is an example of a standardized time

series method, cannot consistently estimate the asymptotic variance.)

More formally, let C1[0, 1] be the space of <-valued continuous functions on [0, 1], and let B1

be a standard 1-dimensional Brownian motion. Also, for a (measurable) function h : C1[0, 1] → S

with S some metric space, let D(h) be the set of discontinuities of h. Also define the function

e1 ∈ C1[0, 1] to be e1(t) = t. Then

A2 The (measurable) function g : C1[0, 1]→ < satisfies the following conditions:

(i) g(αx) = αg(x) for α > 0, α ∈ <, x ∈ C1[0, 1].

(ii) g(x− βe1) = g(x) for β ∈ < and x ∈ C1[0, 1].

(iii) P{g(B1) > 0} = 1.

(iv) P{B1 ∈ D(g)} = 0.
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Glynn and Iglehart (1990) defined M as the class of functions g satisfying Assumption A2.

Condition (i) ensures that g(Xi,n) is a well-behaved “estimator” of the parameter σi in the sense

that if we multiply all of the observations of Yi by some constant α, then the new asymptotic

variance parameter will be ασi. This property will allow us to “cancel out” the asymptotic variance

constant σi; for more details, see the proof of Theorem 1 in the Section 5. Condition (ii) guarantees

that g(Xi,n) does not depend on the unknown parameter µi. Conditions (iii) and (iv) are technical

assumptions required to invoke the continuous mapping principle (Proposition 1 in Section 5).

Observe that for each system i = 1, 2, . . . , k, Xi,n = n1/2(Ȳi,n − µie1). Thus, if g ∈M, then

g(Xi,n) = n1/2g(Ȳi,n − µie1) = n1/2g(Ȳi,n)

by Assumption A2(i) and (ii).

As noted by Glynn and Iglehart (1990), the method of batch means (with a fixed number of

batches) is an example of a standardized time series methodology. Therefore, this technique has a

corresponding function g. For further details on this and other functions g, see Section 4.

3 Our Multiple-Comparison Procedures

When presenting all of our procedures, we will use the following notation and assumptions. There

are k systems, which are simulated independently. Prior to running the simulation, we specify the

desired confidence level 1 − α. We run the simulation of each system i, i = 1, 2, . . . , k, with a run

length n, where n is large. For each system i, we analyze its simulation output as follows. We

divide the simulation output of system i into mi ≥ 1 (non-overlapping) batches, each of length

n/mi, and apply a function gi to the output, where gi satisfies Assumption A2. Then, compute the

estimate of the steady-state mean of system i as

µ̂i(n) =
1
n

∫ n

0
Yi(s) ds

and

S2
i (n) = g2

i (Xi,n)mi/n, (1)

which, when divided by mi, is an “estimate” of the variance of µ̂i(n). Explicit formulae for calcu-

lating gi(Xi,n) for various functions gi are given in Section 4.

3.1 All Pairwise Comparisons

First suppose that we would like to simultaneously make all pairwise comparisons of systems.

Before presenting our confidence intervals, we first need the following definition. For a given
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probability 1− 2γ and a function gi satisfying A2 using mi batches, we define the constant νi,γ ≥ 0

such that

E
[
Fχ2

(
ν2
i,γg

2
i (Bi)

)]
= 1− 2γ, (2)

where Fχ2 denotes the distribution function of a χ2 random variable with 1 degree of freedom. The

continuity of Fχ2 and the bounded convergence theorem imply that νi,γ exists. In Section 4 we will

describe how to select νi,γ for various functions g.

Now we simultaneously construct the (two-sided) confidence intervals

Ii,j(n) =

µ̂i(n)− µ̂j(n)−
(
ν2
i,β/2S

2
i (n)

mi
+
ν2
j,β/2S

2
j (n)

mj

)1/2

,

µ̂i(n)− µ̂j(n) +

(
ν2
i,β/2S

2
i (n)

mi
+
ν2
j,β/2S

2
j (n)

mj

)1/2
 (3)

for µi−µj , 1 ≤ i < j ≤ k, where β = 1− (1−α)2/(k(k−1)) and the desired confidence level is 1−α.

Then we have the following result, whose proof is given in Section 5.

Theorem 1 Assume Assumption A1 holds and that for each i = 1, 2, . . . , k, gi satisfies Assump-

tion A2 with mi ≥ 1 batches. Also, for a desired confidence level 1−α, let β = 1− (1−α)2/(k(k−1)).

Then,

lim
n→∞

P {µi − µj ∈ Ii,j(n), ∀ i < j} ≥ 1− α.

Theorem 1 makes use of Šidák’s (1967) inequality to bound below the probability of simultaneous

coverage of the confidence intervals by a function of the individual coverage probabilities. This

bound is sharper than the Bonferroni inequality. Thus, Theorem 1 yields confidence intervals that

are shorter than those based on the Bonferroni inequality.

3.2 All Contrasts

The previous theorem considered the problem of making all pairwise comparisons. Now we examine

constructing simultaneous confidence intervals for all contrasts
∑k
i=1 ciµi with c = (c1, c2, . . . , ck) ∈

Ck, where Ck = {c ∈ <k :
∑k
i=1 ci = 0} is the k-dimensional contrast space. For example, this is

useful if we want to analyze weighted means such as µ1 − (µ2 + µ3)/2.

To study the setting of all contrasts, we need the following lemma due to Tukey (1953); also

see pages 81–82 of Hochberg and Tamhane (1987).
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Lemma 1 Let x = (x1, x2, . . . , xk) ∈ <k and let ξi,j, 1 ≤ i < j ≤ k, be nonnegative real numbers.

Then |xi − xj | ≤ ξi,j for all i < j if and only if∣∣∣∣∣
k∑
i=1

cixi

∣∣∣∣∣ ≤ 2∑k
l=1 |cl|

k∑
i=1

k∑
j=1

c+
i c
−
j ξi,j ∀ c = (c1, c2, . . . , ck) ∈ Ck,

where c+
i = max(ci, 0) and c−j = −min(cj , 0).

Thus, for each c = (c1, c2, . . . , ck) ∈ Ck, we now define the confidence interval

Ic(n) =

 k∑
i=1

ciµ̂i(n)− 2∑k
l=1 |cl|

k∑
i=1

k∑
j=1

c+
i c
−
j

(
ν2
i,β/2S

2
i (n)

mi
+
ν2
j,β/2S

2
j (n)

mj

)1/2

,

k∑
i=1

ciµ̂i(n) +
2∑k

l=1 |cl|

k∑
i=1

k∑
j=1

c+
i c
−
j

(
ν2
i,β/2S

2
i (n)

mi
+
ν2
j,β/2S

2
j (n)

mj

)1/2
 (4)

for
∑k
i=1 ciµi, where νi,β/2 is as defined in (2). Then Theorem 1 and Lemma 1 immediately imply

the following.

Theorem 2 Assume Assumption A1 holds and that for each i = 1, 2, . . . , k, gi satisfies Assump-

tion A2 with mi ≥ 1 batches. Also, for a desired confidence level 1−α, let β = 1− (1−α)2/(k(k−1)).

Then,

lim
n→∞

P

{
k∑
i=1

ciµi ∈ Ic(n), ∀ c = (c1, c2, . . . , ck) ∈ Ck
}
≥ 1− α.

Theorem 2 is mainly intended for constructing only those confidence intervals with c ∈ Ck that

are of interest. Also, we note that contrasts only allow comparisons between means. However, in

many instances, we may also like simultaneously to construct confidence intervals for the individual

means. For example, we may want joint confidence intervals for µ1 − µ2 and µ1. This may be

accomplished by developing simultaneous confidence intervals for all linear combinations of means

as done on pp. 183–186 of Hochberg and Tamhane (1987). However, we do not examine this further.

3.3 Multiple Comparisons with a Control

We now consider the problem of making multiple comparisons with a control. More specifically,

suppose that system k is the control, and we want to compare all other systems i 6= k simul-

taneously to the control. For example, system k may represent a system already in place, and

systems 1, 2, . . . , k − 1 are various alternatives with which we might replace system k if one of the

other systems is better (as measured by the steady-state means).
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To do this, we define simultaneous (1− α)-level two-sided confidence intervals Ii,k(n) as in (3)

for µi − µk, i = 1, 2, . . . , k − 1, with β = 1 − (1 − α)1/(k−1). Similarly, we define upper one-sided

confidence intervals as

Iu,i,k(n) =

−∞, µ̂i(n)− µ̂k(n) +

(
ν2
i,βS

2
i (n)

mi
+
ν2
k,βS

2
k(n)

mk

)1/2
 , (5)

and lower one-sided confidence intervals as

Il,i,k(n) =

µ̂i(n)− µ̂k(n)−
(
ν2
i,βS

2
i (n)

mi
+
ν2
k,βS

2
k(n)

mk

)1/2

, +∞

 (6)

for µi − µk, i = 1, 2, . . . , k − 1. (We use subscripts u and l on I to denote that the one-sided

confidence interval are upper and lower, respectively.) Then we have the following result, whose

proof is given in Section 5.

Theorem 3 Assume Assumption A1 holds and that for each i = 1, 2, . . . , k, gi satisfies Assump-

tion A2 with mi ≥ 1 batches. Also, for a desired confidence level 1− α, let β = 1− (1− α)1/(k−1).

Then,

(i) for the simultaneous two-sided confidence intervals,

lim
n→∞

P {µi − µk ∈ Ii,k(n), i = 1, 2, . . . , k − 1} ≥ 1− α;

(ii) for the simultaneous upper one-sided confidence intervals,

lim
n→∞

P {µi − µk ∈ Iu,i,k(n), i = 1, 2, . . . , k − 1} ≥ 1− α;

(iii) for the simultaneous lower one-sided confidence intervals,

lim
n→∞

P {µi − µk ∈ Il,i,k(n), i = 1, 2, . . . , k − 1} ≥ 1− α.

3.4 Multiple Comparisons with the Best

Now we construct simultaneous confidence intervals for µi − maxj 6=i µj , i = 1, 2, . . . , k. This is

useful when we want to determine the system with the largest mean. Thus, define the confidence

interval

Ib,i(n) =

−
 min
j∈A(n), j 6=i

µ̂i(n)− µ̂j(n)−
(
ν2
i,βS

2
i (n)

mi
+
ν2
j,βS

2
j (n)

mj

)1/2
− ,

min
j 6=i

µ̂i(n)− µ̂j(n) +

(
ν2
i,βS

2
i (n)

mi
+
ν2
j,βS

2
j (n)

mj

)1/2
+ (7)

9



for µi −maxj 6=i µj , i = 1, 2, . . . , k, where νi,β is as defined in (2), β = 1− (1− α)1/(k−1),

A(n) =

i : min
j 6=i

µ̂i(n)− µ̂j(n) +

(
ν2
i,βS

2
i (n)

mi
+
ν2
j,βS

2
j (n)

mj

)1/2
 ≥ 0

 ,
and we recall that (γ)+ = max(γ, 0) and (γ)− = −min(γ, 0). In (7), we define minj∈∅ xj = 0. (We

use a subscript b on I to denote that the confidence interval is for multiple comparisons with the

best.) Then we have the following result, whose proof is given in Section 5.

Theorem 4 Assume Assumption A1 holds and that for each i = 1, 2, . . . , k, gi satisfies Assump-

tion A2 with mi ≥ 1 batches. Also, for a desired confidence level 1− α, let β = 1− (1− α)1/(k−1).

Then,

lim
n→∞

P

{
µi −max

j 6=i
µj ∈ Ib,i(n), i = 1, 2, . . . , k

}
≥ 1− α.

Note that the MCB confidence intervals use a quantile point with β = 1− (1−α)1/(k−1) rather

than β = 1 − (1 − α)2/(k(k−1)) as in all pairwise comparisons. Thus, MCB intervals will typically

be shorter than those arising from all pairwise comparisons.

4 Examples of Standardized Time Series

In this section we present various functions g satisfying Assumption A2. All of these examples are

taken directly from Glynn and Iglehart (1990). Also, we describe how to determine the constant

νi,γ given in (2).

Example 1. The first function g that we describe corresponds to the method of batch means.

For this example we require that the number of batches m is at least 2. Define the function

g : C1[0, 1]→ < as

g(x) =

[
m

m− 1

m∑
i=1

(
∆mx

(
i

m

)
− x(1)

m

)2
]1/2

,

where ∆dx(t) = x(t)− x(t− 1/d) for d ∈ < with d > 0. Thus, if we divide the output of system i

into mi ≥ 2 (non-overlapping) batches and apply function gi as above to Xi,n, we obtain

gi(Xi,n) =
(
n

mi

)1/2
 1
mi − 1

mi∑
j=1

(
Zi,j(n)− 1

mi

mi∑
l=1

Zi,l(n)

)2
1/2

,

where n is the run length of the simulation of system i, which is proportional to n, and

Zi,j(n) =
1

n/mi

∫ jn/mi

(j−1)n/mi

Yi(s) ds, j ≥ 1,
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which is the sample mean of the jth (non-overlapping) batch of size n/mi of system i. Note that

S2
i (n) = g2

i (Xi,n)mi/n is equal to the sample variance of the mi batch means of system i. Also,

(mi − 1)g2
i (Bi) has a χ2 distribution with mi − 1 degrees of freedom.

When gi is defined this way, the constant νi,γ in (2) is given by νi,γ = tmi−1,γ , where tm,γ is

the upper γ point of a Student’s t-distribution with m degrees of freedom; i.e., P{tm ≥ tm,γ} = γ,

where tm is a random variable having a t-distribution with m degrees of freedom.

Example 2. Our next function g gives rise to the standardized sum method developed by

Schruben (1983). Let m ≥ 1. Then define the function g : C1[0, 1]→ < as

g(x) =

m−1∑
j=0

(∫ 1

0
x

(
j + t

m

)
dt− 1

2

(
x

(
j + 1
m

)
+ x

(
j

m

)))2
1/2

.

Thus, if we divide the output of system i into mi ≥ 1 (non-overlapping) batches and apply func-

tion gi as above to Xi,n, we obtain

gi(Xi,n) =

 1
n

mi−1∑
j=0

(∫ 1

0

∫ (j+t)n/mi

jn/mi

Yi(s) ds dt−
1
2

∫ (j+1)n/mi

jn/mi

Yi(s) ds

)2
1/2

.

Glynn and Iglehart (1990) show that 12mig
2
i (Bi) has a χ2-distribution with mi degrees of freedom.

When gi is defined this way, the point νi,γ in (2) is given by νi,γ = (12)1/2tmi,γ .

Example 3. The next function g corresponds to the standardized maximum intervals method

described in Schruben (1983). Let m ≥ 1. Also, for x ∈ C1[0, 1], we define t∗ (= t∗(x)) =

inf{t ≥ 0 : x(t) = M∗} and M∗ (= M∗(x)) = max{x(t) : 0 ≤ t ≤ 1}. Also, define the functions

Γ : C1[0, 1]→ C1[0, 1] and Λj : C1[0, 1]→ C1[0, 1] for j = 0, 1, . . . ,m− 1 as

Γ(x) = x− e1x(1),

Λj(x) = x

(
j + e1

m

)
− x

(
j

m

)
,

where e1(t) = t. Then let

g(x) =

m−1∑
j=0

1
t∗j (1− t∗j )

(
x

(
j + t∗j
m

)
− x

(
j

m

)
− t∗j

(
x

(
j + 1
m

)
− x

(
j

m

)))2
1/2

,

where t∗j = inf{t ≥ 0 : (Γ ◦ Λj)(x)(t) = M∗j } and M∗j = max{(Γ ◦ Λj)(x)(t) : 0 ≤ t ≤ 1}. Thus, if

we divide the output of system i into mi ≥ 1 (non-overlapping) batches and apply function gi as

11



above to Xi,n, we obtain

gi(Xi,n) =

 1
n

mi−1∑
j=0

1
t∗j (1− t∗j )

(∫ (j+t∗j )n/mi

jn/mi

Yi(s) ds− t∗j
∫ (j+1)n/mi

jn/mi

Yi(s) ds

)2
1/2

,

where t∗j = inf{t ≥ 0 : (Γ ◦ Λj)(Ȳi,n)(t) = M∗j } and M∗j = max{(Γ ◦ Λj)(Ȳi,n)(t) : 0 ≤ t ≤ 1}.

Schruben (1982) showed that mig
2
i (Bi) has a χ2-distribution with 3mi degrees of freedom. When

gi is defined this way, the point νi,γ in (2) is given by νi,γ = (1/3)1/2t3mi,γ .

Other standardized time series methods include the Cramér-von Mises method (Goldsman,

Kang, and Seila, 1993) and the Lp-norm methods (Tokol, Goldsman, Ockerman, and Swain, 1996).

5 Proofs

Here we will provide the proofs for Theorems 1, 3, and 4 from Section 3. To establish our results,

we will repeatedly apply the following proposition, which is known as the continuous mapping

principle. (See Theorem 5.1 of Billingsley 1968 or Glynn 1990 for the proof.)

Proposition 1 Suppose Xn, X ∈ C[0, 1] are random elements such that Xn ⇒ X as n → ∞.

Consider a (measurable) function h : C[0, 1] → S, S a metric space, and let D(h) be the set of

discontinuities of h. If P{X ∈ D(h)} = 0, then h(Xn)⇒ h(X) as n→∞.

We now present some preparatory lemmas that will be useful for proving Theorem 1. The first

is due to Šidák (1967).

Lemma 2 Let W = (W1,W2, . . . ,Wd), d > 1, be a multivariate normal with mean vector 0 and

arbitrary covariance matrix Θ = (Θi,j : i, j = 1, 2, . . . , d). Then,

P{|Wi| ≤ βi, i = 1, 2, . . . , d} ≥
d∏
i=1

P{|Wi| ≤ βi}

for (β1, β2, . . . , βk−1) ∈ <d.

The next lemma was established by Tamhane (1977).

Lemma 3 Let W1,W2, . . . ,Wd be mutually independent real-valued random variables, and let Ψ =

(Ψ1,Ψ2, . . . ,Ψp) : <d → <p, be a nonnegative function, where for each i = 1, 2, . . . , p, Ψi is

nondecreasing in each of its arguments. Then,

E

 p∏
j=1

Ψj(W1,W2, . . . ,Wd)

 ≥ p∏
j=1

E [Ψj(W1,W2, . . . ,Wd)] .

12



The following is a generalization of a result of Banerjee (1961).

Lemma 4 Let Fχ2 denote the distribution function of a χ2 random variable with 1 degree of

freedom. Also, let λ1, λ2, . . . , λd be real-valued constants such that λi ≥ 0, i = 1, 2, . . . , d, and

λ1 + λ2 + · · ·+ λd = 1. Then

E

[
Fχ2

(
d∑
i=1

λiν
2
i,γg

2
i (Bi)

)]
≥ 1− 2γ.

Proof. Note that

Fχ2(x) = 2
∫ √x

0

1√
2π
e−u

2/2du

for x ≥ 0 and 0 otherwise. By taking the second derivative of Fχ2(x) with respect to x, we can

show that it is a concave function. Thus,

E

[
Fχ2

(
d∑
i=1

λiν
2
i,γg

2
i (Bi)

)]
≥

d∑
i=1

λi E
[
Fχ2

(
ν2
i,γg

2
i (Bi)

)]
=

d∑
i=1

λi(1− 2γ) = 1− 2γ

by the definition of νi,γ in (2).

We are now in a position to prove Theorem 1 of Section 3.

Proof of Theorem 1. Note that

P{µi − µj ∈ Ii,j(n), ∀ i < j}

= P

|(µ̂i(n)− µi)− (µ̂j(n)− µj)| ≤
(
ν2
i,β/2S

2
i (n)

mi
+
ν2
j,β/2S

2
j (n)

mj

)1/2

, ∀ i < j


= P

|(µ̂i(n)− µi)− (µ̂j(n)− µj)| ≤
(
ν2
i,β/2mig

2
i (Xi,n)

min
+
ν2
j,β/2mjg

2
j (Xj,n)

mjn

)1/2

, ∀ i < j


since S2

i (n) = g2
i (Xi,n)mi/n for all i by (1). Thus,

P{µi − µj ∈ Il,i,j(n), ∀ i < j}

= P

{∣∣∣n1/2 (µ̂i(n)− µi)− n1/2 (µ̂j(n)− µj)
∣∣∣− (ν2

i,β/2g
2
i (Xi,n) + ν2

j,β/2g
2
j (Xj,n)

)1/2
≤ 0, ∀ i < j

}
= P

{
|Xi,n(1)−Xj,n(1)| −

(
ν2
i,β/2g

2
i (Xi,n) + ν2

j,β/2g
2
j (Xj,n)

)1/2
≤ 0, ∀ i < j

}
= P {u(Xn) ≤ 0} ,

where the function u = (ui,j : 1 ≤ i < j ≤ k) : C[0, 1]→ <k(k−1)/2 is defined as

ui,j(x) = |xi(1)− xj(1)| −
(
ν2
i,β/2g

2
i (xi) + ν2

j,β/2g
2
j (xj)

)1/2
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for i < j, and 0 ∈ <k(k−1)/2 is the (k(k − 1)/2)-dimensional vector with all components 0. By

Assumption A2(iv) and by the fact that the projection mapping is continuous, u is continuous at

B with probability 1, and so the continuous mapping principle ensures that u(Xn) ⇒ u(ΣB) as

n→∞.

Now we show that u(ΣB) has a continuous distribution function. Let Hi,j be the distribution

function of ui,j(ΣB). Note that

ui,j(ΣB) = |σiBi(1)− σjBj(1)| −
(
ν2
i,β/2g

2
i (σiBi) + ν2

j,β/2g
2
j (σjBj)

)1/2

= |σiBi(1)− σjBj(1)| −
(
ν2
i,β/2σ

2
i g

2
i (Bi) + ν2

j,β/2σ
2
j g

2
j (Bj)

)1/2

by Assumption A2(i). Recall that standard 1-dimensional Brownian motion has normal increments.

In addition, B1, B2, . . . , Bk are mutually independent, which implies that g1(B1), g2(B2), . . . , gk(Bk)

are also mutually independent. Moreover, (σiBi(1)− σjBj(1))/(σ2
i + σ2

j )
1/2 has a standard normal

distribution since 0 < σl <∞ for all l. Now let Φ̄ denote the distribution function of the absolute

value of a standard normal random variable, and let Gi be the distribution function of gi(Bi).

Then, for η ∈ <,

Hi,j(η) = P


∣∣∣∣∣σiBi(1)− σjBj(1)

(σ2
i + σ2

j )1/2

∣∣∣∣∣ ≤ η

(σ2
i + σ2

j )1/2
+

(
ν2
i,β/2σ

2
i g

2
i (Bi) + ν2

j,β/2σ
2
j g

2
j (Bj)

σ2
i + σ2

j

)1/2


=
∫ ∞

0

∫ ∞
0

Φ̄

 η

(σ2
i + σ2

j )1/2
+

(
ν2
i,β/2σ

2
i x

2 + ν2
j,β/2σ

2
j y

2

σ2
i + σ2

j

)1/2
 Gi(dx) Gj(dy)

since each Bi(1) is independent of gi(Bi), as was shown by Glynn and Iglehart (1990). Now the

continuity of Φ̄ and the bounded convergence theorem imply that Hi,j is continuous for all i < j.

Since u(ΣB) has a continuous distribution function, Theorem 2.1 of Billingsley (1968) implies

that

P {u(Xn) ≤ 0} → P {u(ΣB) ≤ 0}

as n→∞. Now we will show that

P {u(ΣB) ≤ 0} ≥ 1− α.

Let Fg denote the σ-field generated by (g1(B1), g2(B2), . . . , gk(Bk)). Note that

P {u(ΣB) ≤ 0}

= E

 P

∣∣∣∣∣σiBi(1)− σjBj(1)

(σ2
i + σ2

j )1/2

∣∣∣∣∣ ≤
(
ν2
i,β/2σ

2
i g

2
i (Bi) + ν2

j,β/2σ
2
j g

2
j (Bj)

σ2
i + σ2

j

)1/2

, ∀ i < j

∣∣∣∣∣∣ Fg



≥ E

∏
i<j

Φ̄

(ν2
i,β/2σ

2
i g

2
i (Bi) + ν2

j,β/2σ
2
j g

2
j (Bj)

σ2
i + σ2

j

)1/2
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by Lemma 2. Now define

Ψi,j

(
g2

1(B1), g2
2(B2), . . . , g2

k(Bk)
)

= Φ̄

(ν2
i,β/2σ

2
i g

2
i (Bi) + ν2

j,β/2σ
2
j g

2
j (Bj)

σ2
i + σ2

j

)1/2


for all i < j, and observe that each Ψi,j is a nondecreasing function of g2
1(B1), g2

2(B2), . . . , g2
k(Bk).

Hence, applying Lemma 3, we get

P {u(ΣB) ≤ 0} ≥
∏
i<j

E

Φ̄

(ν2
i,β/2σ

2
i g

2
i (Bi) + ν2

j,β/2σ
2
j g

2
j (Bj)

σ2
i + σ2

j

)1/2
 

=
∏
i<j

E

[
Fχ2

(
σ2
i

σ2
i + σ2

j

ν2
i,β/2g

2
i (Bi) +

σ2
j

σ2
i + σ2

j

ν2
j,β/2g

2
j (Bj)

) ]
,

where Fχ2 denotes the distribution function of a χ2 random variable with 1 degree of freedom.

Thus, Lemma 4 implies that

P {u(ΣB) ≤ 0} ≥
∏
i<j

E

[
Fχ2

(
σ2
i

σ2
i + σ2

j

ν2
i,β/2g

2
i (Bi) +

σ2
j

σ2
i + σ2

j

ν2
j,β/2g

2
j (Bj)

) ]

≥
∏
i<j

(1− β) = (1− β)k(k−1)/2 = 1− α

since β = 1− (1− α)2/(k(k−1)), which completes the proof.

To prove Theorem 3, we need the following result due to Slepian (1962).

Lemma 5 Let W = (W1,W2, . . . ,Wd), d > 1, be a multivariate normal with mean vector 0 and

covariance matrix Θ = (Θi,j : i, j = 1, 2, . . . , d). Also, let V = (V1, V2, . . . , Vd) be a multivariate

normal with mean vector 0 and covariance matrix Ξ = (Ξi,j : i, j = 1, 2, . . . , d). If Θi,j ≥ Ξi,j for

all 1 ≤ i < j ≤ k, then

P{Wi ≤ βi, i = 1, 2, . . . , d} ≥ P{Vi ≤ βi, i = 1, 2, . . . , d}

for (β1, β2, . . . , βk−1) ∈ <d.

Proof of Theorem 3. The proof of part (i) is the same as that of Theorem 1. Also, parts (ii)

and (iii) can be established using arguments similar to those employed in the proof of Theorem 1

except we need to rely on Lemma 5 instead of Lemma 2.

Now we prove Theorem 4.
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Proof of Theorem 4. First, define

Di,j(n) =

(
ν2
i,βS

2
i (n)

mi
+
ν2
j,βS

2
j (n)

mj

)1/2

.

Also, define (1), (2), . . . , (k) such that µ(1) ≤ µ(2) ≤ · · · ≤ µ(k); i.e., system (j) has the j-th smallest

steady-state mean. Then, define the events

E(n) =
{
µi − µ(k) ≥ µ̂i(n)− µ̂(k)(n)−Di,(k)(n), ∀ i 6= (k)

}
,

E1(n) =

{
µi −max

j 6=i
µj ≤

[
min
j 6=i

(µ̂i(n)− µ̂j(n) +Dj,i(n))
]+

, ∀ i
}
,

E2(n) =

µi −max
j 6=i

µj ≥ −
[

min
j∈A(n), j 6=i

(µ̂i(n)− µ̂j(n) +Di,j(n))

]−
, ∀ i

 .
Note that E(n) is the event that the lower one-sided confidence intervals for multiple comparisons

with a control, with the control being system (k), contain all of the true differences µi−µ(k). Thus,

we have that limn→∞ P (E(n)) ≥ 1 − α by Theorem 3(iii). Now following an argument developed

by Edwards and Hsu (1983), we show that E(n) ⊂ E1(n)
⋂
E2(n) for all n, which will establish the

result.

First we prove that E(n) ⊂ E1(n):

E(n) ⊂
{
µ(k) − µ(k−1) ≤ µ̂(k)(n)− µ̂j(n) +Dj,(k)(n), ∀ j 6= (k)

}
⊂

{
µi − µ(k−1) ≤

[
min
j 6=i

(µ̂i(n)− µ̂j(n) +Dj,i(n))
]+

, ∀ i
}

⊂
{
µi −max

j 6=i
µj ≤

[
min
j 6=i

(µ̂i(n)− µ̂j(n) +Dj,i(n))
]+

, ∀ i
}
,

where the penultimate step follows since µi − µ(k−1) ≤ 0 for all i 6= (k) and [ · ]+ ≥ 0.

Now we show E(n) ⊂ E2(n). First note that on the event E(n), we have that (k) ∈ A(n) since

E(n) = {µ̂(k)(n)− µ̂j(n) +Dj,(k)(n) ≥ µ(k) − µj , ∀ j 6= (k)} and µ(k) − µj ≥ 0 for all j. Hence,

E(n) ⊂
{
µi − µ(k) ≥ min

j∈A(n), j 6=i
(µ̂i(n)− µ̂j(n)−Di,j(n)) , ∀ i 6= (k)

}

⊂

µi −max
j 6=i

µj ≥ −
[

min
j∈A(n), j 6=i

(µ̂i(n)− µ̂j(n)−Di,j(n))

]−
, ∀ i

 ,
where the last step follows since µ(k) − maxj 6=(k) µj ≥ 0 and −[ · ]− ≤ 0. Hence, E(n) ⊂

E1(n)
⋂
E2(n), and the proof is complete.
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