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Resampled Regenerative Estimators
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We discuss some estimators for simulations of processes having multiple regenerative sequences. The esti-
mators are obtained by resampling trajectories without and with replacement, which correspond to a type
of U -statistic and a type of V -statistic, respectively. The U -statistic estimator turns out to be equivalent to
the permuted regenerative estimator, which we previously proposed, but the V -statistic estimator is new.
We compare analytically some properties of these estimators along with the semi-regenerative estimator.
We show that when estimating the second moment of a cycle reward, the semi-regenerative estimator has
positive bias, which is strictly larger than the (positive) bias of the V -statistic estimator. The permuted
estimator is unbiased. All of the estimators have the same asymptotic central-limit behavior, with reduced
asymptotic variance compared to the standard regenerative estimator. Some numerical results are included.
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1. INTRODUCTION
A regenerative process is a stochastic process having an infinite sequence of ran-
dom times, known as regeneration points, at which times the process probabilistically
restarts. The path segment of the process between two regeneration points is known
as a regenerative cycle, and cycles are independent and identically distributed (i.i.d.).
For example, successive hitting times to a fixed state for a positive-recurrent Markov
chain on a discrete state space form a regeneration sequence. The standard regenera-
tive method [Crane and Iglehart 1975] exploits the i.i.d. property of cycles to construct
asymptotically valid confidence intervals.

Many stochastic processes with one regeneration sequence often actually have sev-
eral such sequences. For example, for a positive-recurrent Markov chain on a discrete
state space, there is a regeneration sequence corresponding to each state. Also, Moka
and Juneja [2014] describe how many regeneration sequences can be identified in an
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important class of queueing network models. The standard regenerative method only
uses one sequence, and we study herein methods that take advantage of more than one
sequence to try to reduce variance. In this paper, we examine estimators of the second
moment of a cycle reward.

Previously proposed methods that exploit multiple regeneration sequences include
the semi-regenerative method [Calvin et al. 2001; 2006], permuted regenerative esti-
mators [Calvin and Nakayama 1998; 2000a], the almost regenerative method [Gun-
ther and Wolff 1980], and A-segments [Zhang and Ho 1992]. The almost regenerative
method uses two fixed disjoint sets A0 and A1 (Gunther and Wolff [1980] instead call
the sets U and V ) of states to define almost regeneration points as the transition times
from a state in A0 to a state in A1. A generated sample path is then divided into seg-
ments demarcated by pairs of successive almost regeneration points. Both the semi-
regenerative method and the A-segment approach divide a simulated sample path
determined by successive visits to a fixed set A of states. To construct a permuted
regenerative estimator, one starts with a simulated sample path, permutes the re-
generative cycles of two regenerative sequences to construct new sample paths, and
averages over all permuted paths to obtain the estimator. Computing the permuted
estimator, which Calvin and Nakayama [1998] prove always has no greater and of-
ten strictly smaller (small-sample) variance than the standard regenerative estimator,
actually does not require averaging over the exponential number of permuted paths
since efficient closed-form formulae are derived.

In this paper, we develop two new methods based on resampling trajectory segments
of a generated sample path. For both of these methods, we fix a subset A of states, and
the trajectory segments are determined by successive entrances to the set A. One new
estimator resamples segments without replacement and the other with replacement,
which correspond to U - and V -statistics, respectively (e.g., see Chapters 5 and 6 of
Serfling [1980]). One of the contributions of this paper is the development of a frame-
work that allows us to express the standard estimator as a function of the generated
trajectory segments, which in turn enables us to define the resampled estimators.

The U -statistic estimator turns out to be equivalent to the permuted regenerative
estimator, but the V -statistic estimator is different than existing estimators. We also
compare the two resampled estimators with the semi-regenerative estimator, and for
the performance measure we consider, we show that they satisfy a total ordering; i.e.,
for any sample path, the semi-regenerative estimator is at least as large as the V -
statistic estimator, and the latter is at least as large as the U -statistic estimator. Also,
the U -statistic and permuted estimators are unbiased, and the other two are biased
high, with the semi-regenerative estimator having the larger bias. Asymptotically (as
the run length grows large), all four estimators are equivalent and have the same
central-limit behavior, but as the bias and ordering results show, the estimators differ
in the small-sample context. (We develop all of our results for the setting of a discrete-
time Markov chain living on a discrete state space; it would be interesting to explore
the applicability of the methods to more general regenerative processes [Henderson
and Glynn 2001] that also have multiple regeneration sequences.)

The main contributions of our paper are as follows. Our developed framework al-
lows one to define resampled estimators. While only the U -statistic has been proven to
have smaller variance than the standard regenerative estimator, our numerical exper-
iments seem to indicate that the V -statistic and semiregenerative estimator also can
often have reduced variance (relative to the standard estimator). Another contribution
is that while the resampled estimators can be defined in terms of averaging over an
exponentially growing number of resampled paths, we derive efficient closed-form for-
mulae for the estimators that can be computed very quickly. (In our numerical experi-
ments, computing the resampled estimators incurred less than 1% overhead compared
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to the standard estimator.) Moreover, the total ordering shows an interesting relation-
ship among the various estimators. Our initial focus is on using only two regeneration
sequences, but we also extend the methods to handle more than two sequences, which
can result in even more variance reduction. We could also apply the resampling ap-
proaches to derive corresponding estimators for performance measures other than the
second moment of additive cumulative cycle reward considered in this work, but the
calculations required to obtain efficient representations of the estimators may be com-
plicated, as they are here. As an alternative (which we do not pursue in this paper),
one may average over only a (randomly or deterministically chosen) subset of all re-
sampled paths. This may allow simple extensions to other performance measures, but
there also would likely be less variance reduction.

Our estimators share some similarities with bootstrapping and other resampling
methods [Efron and Tibshirani 1993]. Also, the resampled estimators bear some re-
semblance to various standardized time series (STS) methods, such as folded [An-
tonini et al. 2008] and permuted STS [Calvin and Nakayama 2006], although these
techniques only preserve the asymptotic (rather than the small-sample) distribution
of the resampled paths.

The rest of the paper has the following organization. In Section 2 we describe the
mathematical model and the performance measure considered. We give the semi-
regenerative estimator in Section 3, and we present the permuted estimator from
Calvin and Nakayama [2000b] in Section 4. Section 5 contains the resampled estima-
tors, and we compare the four estimators in Section 6. Section 7 presents the results of
numerical experiments. For the results through Section 7, we restrict ourselves to es-
timators exploiting only two regeneration sequences, but in Section 8, we show how to
combine several two-sequence estimators to obtain a single estimator that then takes
advantage of more than two sequences. The longer proofs are in the appendix and an
online-only appendix. Some of the results of this paper previously appeared without
proofs in Calvin and Nakayama [2002].

2. FRAMEWORK
Suppose X = (Xj : j = 0, 1, 2, . . .) is an irreducible positive-recurrent discrete-time
Markov chain living on a discrete state space S = {1, 2, 3, . . .}. For any state x ∈ S,
we define a sequence of regeneration points T (x) = (Tk(x) : k = 0, 1, 2, . . .), where
T0(x) = inf{j ≥ 0 : Xj = x} and Tk(x) = inf{j > Tk−1(x) : Xj = x}, k ≥ 1. We call the
sample-path segment (Xj : Tk−1(x) ≤ j < Tk(x)) the kth T (x)-cycle. Define a “reward”
function f : S → <, and for x ∈ S, define

α(x) = Ex

(τ−1∑
k=0

f(Xk)

)2
 , (1)

where τ = inf{k ≥ 1 : Xk = w} for a fixed state w ∈ S and Ex denotes expectation given
X0 = x. Our goal is to estimate α(w), which arises, for example, when computing the
time-average variance constant of a stochastic process; e.g., see Section 4 of Calvin and
Nakayama [2000a] for details. We assume Ew[(

∑τ−1
j=0 |f(Xj)|)2] < ∞, which ensures

α(w) exists and is finite.
We will compare various estimators of α(w). These include the semi-regenerative

estimator [Calvin et al. 2006], the permuted estimator [Calvin and Nakayama 2000b],
and two new estimators based on resampling, one of which turns out to be the same
as the permuted estimator. To describe the estimators, we first fix a set A ⊂ S with
w ∈ A. For this A, let T0 = inf{j : Xj ∈ A} and Tk = inf{j ≥ Tk−1 + 1 : Xj ∈ A} for
k ≥ 1.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article xx, Publication date: July 2013.



xx:4 J. M. Calvin and M. K. Nakayama

To simplify notation, we will develop estimators when the set A = {1, 2} and w = 1.
(We could always relabel the states if we want to use different states in A and for w. In
addition, Section 8 discusses an approach to deal with A having arbitrary cardinality.)
Also, we construct the estimators based on a single sample path ~Xm = (Xj : j =
0, 1, . . . , Tm(1)) of a fixed number m of T (1)-cycles, with X0 = 1. Note that τ = T1(1).
Also, define W = (Wk : k = 0, 1, 2, . . .) with Wk = XTk

for k ≥ 0, which is the embedded
chain of X on visits to the set A. Let M = m + |{Tk(2) : k ≥ 0, Tk(2) < Tm(1)}|, which
is the number of returns to the set A up to time Tm(1), so TM = Tm(1). We define a
trajectory to be a sample path segment between two successive entrances to A. Thus,
(Xj : Tk−1 ≤ j < Tk) is a trajectory for each k ≥ 1.

We define the standard estimator of α(1) based on the sample path ~Xm to be

α̂STD( ~Xm) =
1

m

m∑
k=1

Y 2
k , (2)

where

Yk =

Tk(1)−1∑
j=Tk−1(1)

f(Xj)

for k = 1, 2, . . . ,m. Note that α̂STD( ~Xm) is unbiased since the Yk, k = 1, 2, . . . ,m, are
i.i.d. by the regenerative property.

3. SEMI-REGENERATIVE ESTIMATOR
The semi-regenerative method is based on an alternative representation of the per-
formance measure α(1) as a function of expectations of functionals of trajectories. We
then construct the semi-regenerative estimator by replacing each expectation with an
estimator of it from the generated sample path ~Xm.

Presenting the semi-regenerative estimator requires more notation; its derivation
is given in the online-only appendix. Recall that we defined A = {1, 2} and M such
that TM = Tm(1). For x, y ∈ A, let h(x, y) =

∑M−1
k=0 I(Wk = x,Wk+1 = y), which is the

number of times a trajectory along the path ~Xm starts in state x and ends in state y. Let
H(x) =

∑M−1
k=0 I(Wk = x), which is the number of trajectories in ~Xm that begin in state

x, and H(1) = m. Observe that h(x, 1) + h(x, 2) = H(x) for x ∈ A. Also, h(1, 2) = h(2, 1)

since ~Xm is a path of a fixed number of T (1)-cycles.
For x, y ∈ A, define T1(x, y) = inf{Tk : k ≥ 0, Wk = x, Wk+1 = y} and Ti(x, y) =

inf{Tk ≥ Ti−1(x, y)+1 : k ≥ 0, Wk = x, Wk+1 = y} for i ≥ 2. Also, let T ′1(x, y) = inf{Tk+1 :
k ≥ 0, Wk = x, Wk+1 = y} and T ′i (x, y) = inf{Tk+1 : k ≥ 0, Tk ≥ Ti−1(x, y) + 1, Wk =
x, Wk+1 = y} for i ≥ 2. Thus, for k = 1, 2, . . . , h(x, y), the kth trajectory starting in state
x ∈ A and ending in state y ∈ A begins at time Tk(x, y) and finishes at time T ′k(x, y)−1,
and we define Yk(x, y) as the sum of the rewards along that trajectory; i.e.,

Yk(x, y) =

T ′k(x,y)−1∑
j=Tk(x,y)

f(Xj).

For ` = 1, 2, define the sum of the `th power of the Yk(x, y) as

S`(x, y) =

h(x,y)∑
k=1

Y `k (x, y),
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Y (1,2)1

Y (2,2)3 Y (2,2)3 Y (2,1)3 Y (1,2)3

Y (2,2)2 Y (2,1)1

Fig. 1. The original sample path ~Xm (top) and instances of resampled paths without replacement (middle)
and with replacement (bottom)

where S`(x, y) = 0 when h(x, y) = 0.
Figure 1 illustrates some of the notation. The top is an example of a sample path

~Xm; we later describe the other two sample paths in Section 5. State 1 corresponds to
the horizontal axis, and state 2 corresponds to the dashed horizontal line. The number
of T (1)-cycles in path ~Xm is m = 5. The number of (1, 1)-trajectories is h(1, 1) = 2, the
number of (1, 2)-trajectories is h(1, 2) = 3, the number of (2, 1)-trajectories is h(2, 1) = 3,
and the number of (2, 2)-trajectories is h(2, 2) = 3. Also, H(1) = 5 and H(2) = 6.

The semi-regenerative estimator of α(1) is

α̂SR( ~Xm) = Q+
2

mh(1, 2)
S2

1(2, 2), (3)
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where

Q =
1

m

(
S2(1, 1) + S2(1, 2) + S2(2, 1) + S2(2, 2)

+
2

h(1, 2)
[S1(1, 2)S1(2, 1) + S1(2, 1)S1(2, 2) + S1(1, 2)S1(2, 2)]

)
. (4)

If h(1, 2) = 0, then S`(1, 2) = S`(2, 1) = S1(2, 2) = 0 for ` = 1, 2, so Q = S2(1, 1)/m since
we define 0/0 = 0, and α̂SR( ~Xm) = Q = α̂STD( ~Xm).

4. PERMUTED ESTIMATOR
Recall we defined the standard estimator of α(1) as α̂STD( ~Xm) in (2). To obtain the
permuted estimator of α(1) based on the sample path ~Xm, we first permute T (2)-cycles
and T (1)-cycles in ~Xm to obtain a permuted path ~X ′m, and averaging α̂STD( ~X ′m) over
all possible permuted paths ~X ′m yields the permuted estimator. Calvin and Nakayama
[2000b] showed that the permuted estimator is

α̂P( ~Xm) = Q+
2

m(h(1, 2) + 1)

(
S2

1(2, 2)− S2(2, 2)
)
. (5)

When h(1, 2) = 0, we have S`(2, 2) = 0 for ` = 1, 2, so α̂P( ~Xm) = α̂STD( ~Xm).

5. RESAMPLED ESTIMATORS
We now present two estimators obtained via resampling the (x, y)-trajectories for x, y ∈
A. One estimator is based on resampling the (x, y)-trajectories without replacement
(i.e., a permutation of trajectories), and the other resamples with replacement.

To explain how this is done, recall sample path ~Xm has m T (1)-cycles. We want to
create a new path by resampling trajectories from ~Xm so that the number of (x, y)-
trajectories for each x, y ∈ A is the same as in ~Xm; i.e., the values of m, h(1, 1), h(1, 2),
h(2, 1), h(2, 2) do not change. Resampling with or without replacement determines the
collection and order of the h(x, y) resampled (x, y)-trajectories for each x, y ∈ A used to
construct a new path. Resampling the (x, y)-trajectories without replacement results in
a permutation of those trajectories. If we resample with replacement, some trajectories
may appear more than once, and others may not be included. The U -statistic (resp., V -
statistic) estimator results from averaging over all resampled paths without (resp.,
with) replacement.

We now need to understand the form of the m T (1)-cycles in a resampled path. Each
of the h(1, 1) resampled (1, 1)-trajectories in the constructed path is itself a T (1)-cycle,
and these cycles do not visit state 2. The other T (1)-cycles contain a hit to state 2, so
each of these cycles starts with a (1, 2)-trajectory and ends with a (2, 1)-trajectory, with
zero or more (2, 2)-trajectories sandwiched between. Hence, constructing these T (1)-
cycles begins with pairing starting (1, 2)-trajectories with ending (2, 1)-trajectories.
Once we have all h(1, 2) = h(2, 1) such pairings, we then allocate the h(2, 2) resam-
pled (2, 2)-trajectories among them.

For example, in Figure 1 the original path ~Xm at the top has m = 5 T (1)-cycles, of
which h(1, 1) = 2 (resp., h(1, 2) = h(2, 1) = 3) contain no (resp., at least one) hit to state
2. Of the T (1)-cycles that visit state 2, the first (i.e., the one starting with the first
(1, 2)-trajectory) has one (2, 2)-trajectory, the second has two (2, 2)-trajectories, and the
third has none.
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The middle path in Figure 1 is constructed from resampling trajectories without
replacement. For each x, y ∈ A, the collection of h(x, y) resampled (x, y)-trajectories is
the same as in ~Xm but in a different order (a permutation). The T (1)-cycles with at
least one hit to state 2 have different pairings of (1, 2)- and (2, 1)-trajectories to begin
and end the cycles, and the (2, 2)-trajectories are dispersed among those T (1)-cycles
differently than in ~Xm. The first such T (1)-cycle has no (2, 2)-trajectories, the second
has two (2, 2)-trajectories, and the third has one (2, 2)-trajectory.

The bottom path in Figure 1 is constructed by resampling trajectories with replace-
ment. Some trajectories are used more than once: e.g., the second (1, 1)-trajectory (from
~Xm), the third (1, 2)-trajectory, and the third (2, 2)-trajectory. Other trajectories from
~Xm do not appear in the new path, such as the first (1, 1)-trajectory, the second (1, 2)-
trajectory, and the first (2, 2)-trajectory.

We next develop notation to express these ideas precisely, which will allow us to
show how to average over all resampled trajectories to obtain the resampled es-
timators. For x, y ∈ A, let Λ(x, y) be the set of permutations of (1, 2, . . . , h(x, y)),
and let Λ = ×x,y∈AΛ(x, y), where × denotes Cartesian product. Define Λ̂(x, y) =
{(i1, i2, . . . , ih(x,y)) : 1 ≤ ij ≤ h(x, y) for j = 1, 2, . . . , h(x, y)}, which is the set of all
h(x, y)-dimensional vectors in which the components in each vector are selected with
replacement from {1, 2, . . . , h(x, y)}. Let Λ̂ = ×x,y∈AΛ̂(x, y), and Λ ⊂ Λ̂. Note that Λ̂ con-
sists of all possible resamplings of trajectories with replacement, where the number of
resampled (x, y)-trajectories remains as h(x, y) for each x, y ∈ A, and Λ is the sub-
set of those when resampling without replacement. Define ∆ = {(i1, i2, . . . , ih(1,2)+1) :
i1 = 1, ih(1,2)+1 = h(2, 2) + 1, ij ≤ ij+1 for j = 1, 2, . . . , h(1, 2)}, which will be used to
allocate the resampled (2, 2)-trajectories to the T (1)-cycles with a hit to state 2. Specif-
ically, for a sequence (i1, i2, . . . , ih(1,2)+1) ∈ ∆, we will use the (2, 2)-trajectories hav-
ing positions ij , ij + 1, ij + 2, . . . , ij+1 − 1 within Λ(2, 2) or Λ̂(2, 2) in the jth T (1)-cycle
that visits state 2. If ij = ij+1, then the jth such T (1)-cycle has no (2, 2)-segments.
Let Γ = Λ × ∆ and Γ̂ = Λ̂ × ∆. Consider a K = (K(x, y) : x, y ∈ A) ∈ Λ̂ and
K(x, y) = (Ki(x, y) : i = 1, 2, . . . , h(x, y)) ∈ Λ̂(x, y), so K(x, y) is a particular or-
dered collection of h(x, y) resampled (x, y)-trajectories. When constructing a resam-
pled path using K, the order of the (1, 2)-trajectories and (2, 1)-trajectories in K(1, 2)
and K(2, 1), respectively, determines how the starting (1, 2)-trajectories and the end-
ing (2, 1)-trajectories are paired up in the T (1)-cycles with a hit to state 2. Also, let
D = (D1, D2, . . . , Dh(1,2)+1) ∈ ∆, which is a particular allocation scheme for the (2, 2)-
trajectories to be distributed to the T (1)-cycles visiting state 2. We now define a func-
tion g : Λ̂ × ∆ → < to construct a sample path from ~Xm for the particular resampled
trajectories K ∈ Λ̂ and allocation scheme D ∈ ∆ as

g(K,D)

=
1

m

h(1,1)∑
i=1

Y 2
Ki(1,1)(1, 1) +

h(1,2)∑
i=1

(
YKi(1,2)(1, 2) + YKi(2,1)(2, 1) +

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

)2


=
1

m

h(1,1)∑
i=1

Y 2
Ki(1,1)(1, 1) +

h(1,2)∑
i=1

(
Y 2
Ki(1,2)(1, 2) + Y 2

Ki(2,1)(2, 1)

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article xx, Publication date: July 2013.



xx:8 J. M. Calvin and M. K. Nakayama

+


Di+1−1∑
j=Di

YKj(2,2)(2, 2)


2

+ 2YKi(1,2)(1, 2)YKi(2,1)(2, 1)

+ 2
{
YKi(1,2)(1, 2) + YKi(2,1)(2, 1)

} Di+1−1∑
j=Di

YKj(2,2)(2, 2)

) . (6)

If h(2, 2) = 0, then there are no (2, 2)-trajectories, so all of the terms in (6) that include
some YKj(2,2)(2, 2) are zero. If h(1, 2) = 0, then only the first term in (6) remains.

Suppose we set K ′(x, y) = (1, 2, . . . , h(x, y)) for all x, y ∈ A, and let K ′ = (K ′(x, y) :
x, y ∈ A). Note that K ′(x, y) ∈ Λ(x, y) for all x, y ∈ A, and K ′ ∈ Λ. Define D′ =
(D′1, D

′
2, . . . , D

′
h(1,2)+1) with D′i = min{j : Tj(2, 2) > Ti(1, 2)} for i ≥ 1, so D′ ∈ ∆. Then

g(K ′, D′) = α̂STD( ~Xm),

the standard estimator of α(1).
We now define the resampled estimators

α̂U ( ~Xm) =
1

|Γ|
∑

(K,D)∈Γ

g(K,D) (7)

and

α̂V ( ~Xm) =
1

|Γ̂|

∑
(K,D)∈Γ̂

g(K,D), (8)

where α̂U ( ~Xm) is the estimator based on resampling without replacement, which we
can think of as a type of U -statistic, and α̂V ( ~Xm) is the estimator with replacement, a
type of V -statistic.

Recall that the middle (resp., bottom) part of Figure 1 displays a resampled path
sampled without (resp., with) replacement from the original sample path ~Xm, on
the top of the figure. The original path ~Xm has K ′(1, 1) = (1, 2), K ′(1, 2) = (1, 2, 3),
K ′(2, 1) = (1, 2, 3), K ′(2, 2) = (1, 2, 3), and D′ = (1, 2, 4, 4). The path shown in the mid-
dle, which is resampled without replacement, has K(1, 1) = (2, 1), K(1, 2) = (3, 1, 2),
K(2, 1) = (2, 3, 1), K(2, 2) = (3, 1, 2), and D = (1, 1, 3, 4). The bottom sample path in
Figure 1, which is a resampled path with replacement, has K(1, 1) = (2, 2), K(1, 2) =
(3, 1, 3), K(2, 1) = (2, 3, 1), K(2, 2) = (3, 3, 2), and D = (1, 1, 3, 4).

The following result is established in the Appendix.

THEOREM 5.1. For all ~Xm, α̂U ( ~Xm) = α̂P( ~Xm) and

α̂V ( ~Xm) = Q+
2(h(2, 2)− 1)

mh(2, 2) (h(1, 2) + 1)
S2

1(2, 2), (9)

where Q is defined in (4).

When h(2, 2) = 0, we have α̂V ( ~Xm) = Q since S2
1(2, 2) = 0, so α̂V ( ~Xm) = α̂P( ~Xm) =

α̂SR( ~Xm) = Q. Moreover, α̂V ( ~Xm) = α̂P( ~Xm) = α̂SR( ~Xm) = α̂STD( ~Xm) when h(1, 2) = 0.

6. COMPARING THE ESTIMATORS
We begin by comparing the small-sample behavior of the semi-regenerative, permuted,
U -statistic, and V -statistic estimators.
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THEOREM 6.1. For all ~Xm and m,

α̂SR( ~Xm) ≥ α̂V ( ~Xm) ≥ α̂U ( ~Xm) = α̂P( ~Xm), (10)
where

— the first inequality is strict if and only if S1(2, 2) 6= 0;
— the second inequality is strict if and only if there exists i, j ∈ {1, 2, . . . , h(2, 2)} such

that Yi(2, 2) 6= Yj(2, 2);
— α̂SR( ~Xm) > α̂P( ~Xm) if and only if some Yk(2, 2) 6= 0.

Moreover, if E1[(
∑τ−1
j=0 |f(Xj)|)2] <∞, then

E[α̂SR( ~Xm)] ≥ E[α̂V ( ~Xm)] ≥ E[α̂U ( ~Xm)] = E[α̂P( ~Xm)] = E[α̂STD( ~Xm)] = α(1),

where

— the first inequality is strict if P{Y1(2, 2) = 0} < 1;
— the second inequality is strict if P{Y1(2, 2) = Y2(2, 2)} < 1.

Thus, α̂SR( ~Xm) and α̂V ( ~Xm) are biased high.

Note that the standard estimator α̂STD( ~Xm) defined in (2) does not appear in the
ordering given in (10). Since both α̂STD( ~Xm) and α̂P( ~Xm) are unbiased, the two estima-
tors cannot satisfy an ordering for all ~Xm.

PROOF. Calvin and Nakayama [2000b] prove that E[α̂P( ~Xm)] = α(1). (The expec-
tation exists, as well as the others considered, under the moment condition assumed.)
When h(1, 2) > 0,

DSR,P( ~Xm) ≡ α̂SR( ~Xm)− α̂P( ~Xm)

=
2

mh(1, 2)
S2

1(2, 2)−
2
(
S2

1(2, 2)− S2(2, 2)
)

m(h(1, 2) + 1)
(11)

=
2

m(h(1, 2) + 1)

(
S2

1(2, 2)

h(1, 2)
+ S2(2, 2)

)
≥ 0, (12)

where the last inequality is strict if and only if some Yk(2, 2) 6= 0. If h(1, 2) = 0, then
trivially there does not exist Yk(2, 2) 6= 0, and α̂P( ~Xm) = α̂SR( ~Xm) and DSR,P( ~Xm) = 0.
In addition, it is simple to show that E[DSR,P( ~Xm)] > 0 when P{Y1(2, 2) = 0} < 1, so
the semi-regenerative estimator is biased high.

Now if h(1, 2) > 0 and h(2, 2) > 0, then
2

mh(1, 2)
>

2(h(2, 2)− 1)

mh(2, 2) (h(1, 2) + 1)
,

so α̂SR( ~Xm) ≥ α̂V ( ~Xm), with strict inequality if and only if S1(2, 2) 6= 0. If h(1, 2) = 0

or h(2, 2) = 0, then S1(2, 2) = 0 vacuously and α̂V ( ~Xm) = α̂SR( ~Xm). Also, comparing
α̂V ( ~Xm) and α̂P( ~Xm), we have if h(1, 2) > 0 and h(2, 2) > 0, then

DV,P( ~Xm) ≡ α̂V ( ~Xm)− α̂P( ~Xm)

=
2(h(2, 2)− 1)

mh(2, 2) (h(1, 2) + 1)
S2

1(2, 2)− 2

m (h(1, 2) + 1)

(
S2

1(2, 2)− S2(2, 2)
)

= 2

(
h(2, 2)S2(2, 2)− S2

1(2, 2)

mh(2, 2)(h(1, 2) + 1)

)
≥ 0 (13)
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since Jensen’s inequality implies n
∑n
i=1 a

2
i ≥ (

∑n
i=1 ai)

2 for any real-valued ai, i =
1, 2, . . . , n. The inequality in (13) is strict if and only if not all the Yk(2, 2) are the same.
If h(1, 2) = 0 or h(2, 2) = 0, then there are no Yk(2, 2) terms, and α̂V ( ~Xm) = α̂P( ~Xm).
Finally, it is simple to see that E[DV,P( ~Xm)] > 0 if P{Y1(2, 2) = Y2(2, 2)} < 1.

In the difference DSR,P( ~Xm) between the semi-regenerative and permuted estima-
tors, the second term in the right-hand side of (11), which is from the permuted esti-
mator α̂P( ~Xm), subtracts out the sum of the squares of the Yk(2, 2) (i.e., S2(2, 2)) from
the square of the sum (i.e., S2

1(2, 2)). The first term of (11), which appears in the semi-
regenerative estimator α̂SR( ~Xm), only has the square of the sum. A similar situation
occurs with the difference DV,P( ~Xm) between the V -statistic estimator and the per-
muted estimator.

We now compare some asymptotic properties of the estimators. Let D→ denote con-
vergence in distribution and N(a, b) denote a normal distribution with mean a and
variance b.

THEOREM 6.2. Suppose that E1[(
∑τ−1
j=0 |f(Xj)|)4] < ∞. Then for α̂( ~Xm) defined as

either α̂P( ~Xm), α̂SR( ~Xm), or α̂V ( ~Xm),

α̂( ~Xm)→ α(1), a.s.,

and
√
m
[
α̂( ~Xm)− α(1)

]
D→ N(0, σ2)

as m → ∞, where σ2 is the same for all the estimators and is given in Calvin and
Nakayama [2000b].

PROOF. Calvin and Nakayama [2000b] show that the results hold when α̂( ~Xm) =

α̂P( ~Xm), so to establish our theorem, it suffices to prove that
√
mDSR,P( ~Xm) → 0 a.s.

and
√
mDV,P( ~Xm) → 0 a.s. as m → ∞. Using the representation of DSR,P( ~Xm) in (12),

we will show
√
mDSR,P( ~Xm)→ 0 a.s.; the other result can be similarly established.

For p = 1, 2, define

Zp,k =
∑
l∈Bk

Y pl (2, 2),

where Bk is the set of indices of (2, 2)-trajectories that are contained in the kth
T (1)-cycle; i.e., Bk = {j = 1, 2, . . . , h(2, 2) : Tk−1(1) ≤ Tj(2, 2) ≤ Tk(1)}. Note that
Sp(2, 2) =

∑m
k=1 Zp,k for p = 1, 2. Also, define Z3,k = 1 if there exists some i such that

Tk−1(1) ≤ Ti(2) ≤ Tk(1), and Z3,k = 0 otherwise. Thus, h(1, 2) =
∑m
k=1 Z3,k. Because

X is regenerative, for p = 1, 2, 3, the Zp,k, k = 1, 2, . . . ,m, are i.i.d., and Lemma 4
of Calvin and Nakayama [2000a] establishes that 0 < E1[Z3,1] < 1, |E1[Z1,1]| < ∞,
and |E1[Z2,1]| < ∞. Since X is irreducible and positive recurrent, h(1, 2) → ∞ a.s. as
m→∞. Thus, (12) implies

√
mDSR,P( ~Xm) =

2√
m

(
m∑m

k=1 Z3,k + 1

)[ 1

m

m∑
k=1

Z1,k

]2
m∑m

k=1 Z3,k
+

1

m

m∑
k=1

Z2,k


→ 0 ·

(
1

E1[Z3,1]

)(
(E1[Z1,1])2

E1[Z3,1]
+ E1[Z2,1]

)
= 0 a.s.

as m→∞.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article xx, Publication date: July 2013.



Resampled Regenerative Estimators xx:11

Table I. Sample mean and sample variance of the estimators for the Ehrenfest model with [B = 9, A = {2, 4},
w = 2] and [B = 900, A = {410, 420}, w = 410].

B = 9 B = 900
estimator mean (×103) variance (×104) mean (×1012) variance (×1024)
regenerative: α̂STD( ~Xm) 5.1602 6.3328 7.7372 4.7519
permuted: α̂P( ~Xm) 5.1616 5.3448 7.8012 3.5472
V -statistic: α̂V ( ~Xm) 5.1620 5.3508 7.8400 3.5679
semi-regenerative: α̂SR( ~Xm) 5.1639 5.3545 7.8986 3.6169

Table II. Sample means and sample variances of the estimators for the Ehrenfest model
with B = 9, A = {1, v}, and w = 1. For the standard regenerative estimator the sample
mean across the 103 replications was 5.55× 104 and sample variance was 3.19× 108.

v
Estimator 0 2 3 4 5 6 7 8

sample permuted 5.55 5.49 5.52 5.48 5.56 5.50 5.44 5.47
mean V -statistic 5.55 5.50 5.53 5.48 5.56 5.51 5.45 5.48
(×104) semireg 5.55 5.58 5.61 5.57 5.66 5.60 5.52 5.51
sample permuted 3.19 2.15 2.30 2.26 2.35 2.75 2.63 2.62

variance V -statistic 3.19 2.16 2.30 2.26 2.35 2.75 2.64 2.63
(×108) semireg 3.19 2.21 2.37 2.33 2.42 2.84 2.73 2.68

7. NUMERICAL EXPERIMENTS
We ran experiments comparing the estimators for computing α(w) in (1) for a discrete-
time Markov chain (Xn : n = 0, 1, 2, . . .) with different choices for the set A and state
w. The reward function for all our experiments is f(x) = x for all states x ∈ S.
The first model for the experiments is the Ehrenfest urn model with state space
S = {0, 1, 2, . . . , B − 1} and transition probabilities Pi,i+1 = (B − 1 − i)/(B − 1) for
0 ≤ i < B − 1, and Pi,i−1 = 1− Pi,i+1 for 1 ≤ i < B. We first took B = 9, A = {2, 4}, and
w = 2, and we ran experiments to estimate α(w) based on 5,000 w-cycles for each of
1,000 independent replications. The second and third columns of Table I show for these
parameters the sample mean and sample variance across the independent replications
for each of the estimators described in this paper, and also the standard regenerative
estimator. The value being estimated is 5.1616 × 103 when w = 2. The time to com-
pute the resampled estimators was less than 1% more than the time to compute the
standard regenerative estimator.

The last two columns of Table I show the results of similar experiments for the
Ehrenfest model withB = 900,A = {410, 420}, and w = 410. The experiments are based
on 1,000 w-cycles for each of 1,000 independent replications. Each of the non-standard
estimators reduced variance by about 25% compared to the regenerative estimator.

Returning to the model with B = 9, Table II shows the results of an experiment
with A = {v, w} and w = 1 for different choices of v ∈ S. In this case the value being
estimated is 5.4673 × 104. We now used 100 w-cycles because of the long average cycle
length. The point estimators now are not as close to the value being estimated as in
the first case, and possible explanations for this are that in the second experiment, the
estimators have much more variability and many fewer cycles were simulated. In both
cases observe that the sample means of the estimators satisfy the ordering given in
Theorem 6.1. Tables I and II show the choices of A and w affect the variances of and
differences in the estimators. For v = 2 in Table II, the variance is reduced about 30%
compared to the standard regenerative estimator.

We also ran experiments on the discrete-time embedded Markov chain of the M/M/1
queueing process with several values of the traffic intensity ρ (the ratio of the mean
service time divided by the mean interarrival time). This chain takes values in the
nonnegative integers, and has transition probabilities P0,1 = 1 and Pi,i+1 = ρ/(1 +ρ) =
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Table III. Comparison of estimators for M/M/1 queue with [ρ = 0.3, A = {0, 3}, w = 0], [ρ = 0.5, A = {0, 3}, w = 0],
[ρ = 0.9, A = {0, 3}, w = 0], and [ρ = 0.9, A = {0, 9}, w = 0].

ρ = 0.3 ρ = 0.5 ρ = 0.9, A = {0, 3} ρ = 0.9, A = {0, 9}
estimator mean variance mean variance mean variance mean variance

(×10) (×10) (×102) (×103) (×106) (×1012) (×106) (×1012)
regenerative 3.525 2.674 3.822 7.813 3.229 4.273 3.229 4.273
permuted 3.529 2.560 3.820 7.533 3.227 4.255 3.227 4.262
V -statistic 3.531 2.573 3.824 7.563 3.231 4.266 3.240 4.307
semi-regenerative 3.536 2.580 3.827 7.569 3.231 4.266 3.243 4.309

1 − Pi,i−1 for i > 0. In columns 2–7 of Table III, we took A = {0, 3} with w = 0 for
ρ = 0.3, 0.5, and 0.9. The last two columns of Table III are again for ρ = 0.9 but instead
with A = {0, 9} and w = 0. In all cases we again see that the estimators satisfy the
ordering given in Theorem 6.1. The choice of A and w affects the differences in the
estimators and their variances. Also, the reduction in variance is not as great for the
M/M/1 experiments as for the Ehrenfest results.

8. USING MORE THAN TWO SEQUENCES
Models possessing two regeneration sequences often have more than two such se-
quences. For example, for a positive-recurrent Markov chain on a discrete state space
S, there is a regeneration sequence corresponding to hits to each fixed state x ∈ S. We
now discuss how to adapt to our setting an idea of Heidelberger [1980] (see also Calvin
and Nakayama [2004]) for combining multiple regenerative estimators to obtain a new
estimator.

Fix a state w, and suppose we want to estimate the performance measure
α(w). Suppose that x0 = w, x1, x2, . . . , xd are d + 1 distinct points in S, and let
T (x0), T (x1), . . . , T (xd) be the corresponding regeneration sequences, with T (xl) =

{Ti(xl) : i = 0, 1, 2, . . .}. We simulate a single sample path ~Xm consisting of m
T (w)-cycles, and then from this path construct d (resampled, permuted, or semi-
regenerative) estimators α̂l( ~Xm) for l = 1, 2, . . . , d. The estimator α̂l( ~Xm) is obtained
by applying one of the methods discussed in this paper using the T (w)- and T (xl)-
sequences (or letting A = {w, xl}). Then define the combined estimator

α̂∗λ( ~Xm) =

d∑
l=1

λl α̂l( ~Xm) (14)

for some constants λ = (λ1, λ2, . . . , λd) such that
∑d
l=1 λl = 1. Since each α̂l( ~Xm) →

α(w) a.s. as m→∞ by Theorem 6.2, α̂∗λ( ~Xm)→ α(w) a.s. as m→∞.
Let α̂∗U,λ( ~Xm), α̂∗P,λ( ~Xm), α̂∗V,λ( ~Xm), and α̂∗SR,λ( ~Xm) denote the combined U -statistic,

permuted, V -statistic and semi-regenerative estimators, respectively. Since each of the
non-combined estimators satisfy the orderings in Theorem 6.1, we obtain the following
result, which shows the combined estimators satisfy the same ordering when they
use the same set of nonnegative weights. Let e denote the d-vector of all 1’s, and let
superscript > denote transpose.

COROLLARY 8.1. For all ~Xm,m, and λ = (λ1, . . . , λd)
> with each λl ≥ 0 and λ>e = 1,

α̂∗SR,λ( ~Xm) ≥ α̂∗V,λ( ~Xm) ≥ α̂∗U,λ( ~Xm) = α̂∗P,λ( ~Xm),

where

— the first inequality is strict if and only if S1(xl, xl) 6= 0 for some l = 1, . . . , d;
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— the second inequality is strict if and only if there exist l ∈ {1, . . . , d} and i, j ∈
{1, 2, . . . , h(xl, xl)} such that Yi(xl, xl) 6= Yj(xl, xl);

— α̂SR( ~Xm) > α̂P( ~Xm) if and only if some Yk(xl, xl) 6= 0 for some l = 1, . . . , d.

Moreover, if E1[(
∑τ−1
j=0 |f(Xj)|)2] <∞, then

E[α̂∗SR,λ( ~Xm)] ≥ E[α̂∗V,λ( ~Xm)] ≥ E[α̂∗U,λ( ~Xm)] = E[α̂∗P,λ( ~Xm)] = α(w),

where

— the first inequality is strict if P{Y1(xl, xl) = 0} < 1 for some l = 1, . . . , d;
— the second inequality is strict if P{Y1(xl, xl) = Y2(xl, xl)} < 1 for some l = 1, . . . , d.

Thus, α̂∗SR,λ( ~Xm) and α̂∗V,λ( ~Xm) are biased high.

We now discuss how to determine the optimal value of λ to minimize the asymptotic
variance of α̂∗λ( ~Xm). If Ew[(

∑τ−1
j=0 |f(Xj)|)4] <∞, then it can be shown that

√
m((α̂1( ~Xm), . . . , α̂d( ~Xm))− (α(w), . . . , α(w)))

D→ N(0, C)

as m → ∞, where N(0, C) denotes a d-dimensional normal random vector with mean
vector 0 and covariance matrix C = (Ci,j : i, j = 1, 2, . . . , d). Applying the delta method
(e.g., Corollary 3.3 on p. 124 of Serfling [1980]) then yields

√
m(α̂∗λ( ~Xm)− α(w))

D→ N(0, σ2
λ)

as m→∞, where σ2
λ = λ>Cλ, which is the asymptotic variance of α̂∗λ( ~Xm), and super-

script > denotes transpose.
Now we want to choose λ with λ>e = 1 to minimize σ2

λ. Assuming that C is positive
definite, the unique solution is

λ∗ =
C−1e

e>C−1e
. (15)

We can estimate the value of λ∗ using “sectioning” as follows. The idea is to divide
the sample path ~Xm of m T (w)-cycles into n non-overlapping sections, each consisting
of p T (w)-cycles, where m = np. Then calculate the d estimators for each section, and
use these estimators to estimate C. Specifically, the kth section, k = 1, 2, . . . , n, starts
at time T(k−1)p(w), ends at time Tkp(w)−1, and consists of T (w)-cycles (k−1)p+ 1, (k−
1)p + 2, . . . , kp. The regenerative property implies the n sections are independent. For
l = 1, 2, . . . , d, and k = 1, 2, . . . , n, let α̂l,k( ~Xm) be the (resampled, permuted, or semi-
regenerative) estimator obtained from the kth section using sequences T (w) and T (xl)
(or A = {w, xl}). Then we estimate Ci,j by

Ĉi,j =
m

n(n− 1)

n∑
k=1

[
α̂i,k( ~Xm)− ¯̂αi( ~Xm)

] [
α̂j,k( ~Xm)− ¯̂αj( ~Xm)

]
, (16)

where ¯̂αl( ~Xm) = 1
n

∑n
k=1 α̂l,k( ~Xm). Substituting the estimates Ĉi,j for Ci,j in (15) pro-

vides us with an estimate of λ∗. Asymptotically, the combined estimator with the exact
λ∗ will have no greater variance than the estimator for any single pair of regeneration
sequences (but this may not be the case in practice with the estimated λ∗). Thus, when
presented with more than two possible regeneration sequences, the user can use them
all to obtain a combined estimator that is asymptotically better than the estimator
from any two sequences.
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8.1. Numerical Results
We ran an experiment with the combined estimator in (14) with estimates of the opti-
mal weights in (15) using (16). The model we simulated is the Ehrenfest urn model
with B = 9 considered in Table II. We combined permuted estimators for sets of
states Ai = {1, i} with w = 1 for all values of i except i = 1, so, using the nota-
tion in Section 8, we have x0 = w = 1, x1 = 0 and xj = j for j = 2, . . . , 8. We first
estimated the covariance matrix of the permuted estimators by using (16) with 104

sections, each consisting of 103 cycles. Our estimates of the optimal weights were
(0.0648, 0.7527, 0.2072, 0.1204, 0.0197,−0.0221,−0.0129,−0.1297). We then ran 1,000 in-
dependent replications of 100 cycles (independent of the simulation to estimate the
weights), and computed the combined estimator in each replication using the above
weights. The average of the combined estimator over all of the independent replica-
tions was 5.4928 × 104, and the sample variance across replications was 1.355 × 108.
Thus, we see about a 37% reduction in the sample variance compared to the best sin-
gle permuted estimator, which is for A = {1, 2}, from Table II.

We also experimented with fixed uniform weights for the combined permuted esti-
mator. In one case, we used sets of states Ai = {1, i} with w = 1 for all values of i except
i = 1, and the weights were λi = 1/8 for each i except i = 1. From 103 independent
replications the resulting sample variance of the combined estimator was 0.3306× 108,
so the variance was reduced by a factor of 6.5 compared to the single permuted estima-
tor with A = {1, 2}.

We also tried the combined estimator with just a subset of the states, using sets of
states Ai = {1, i} with w = 1 for all even values of i ≤ 8 and fixed uniform weights λi =
1/5 for each even i. From 103 independent replications the resulting sample variance of
the combined estimator was 0.5159× 108, a reduction of about a factor of 4.2 compared
to the single permuted estimator with A = {1, 2}.

The seeming discrepancy among the results for fixed uniform weights and the esti-
mated optimal weights appears to be due to the fact there is considerable noise in the
estimates of the optimal weights. This contributes to not achieving as much improve-
ment in the variance as with the fixed uniform weights.

A. PROOF OF THEOREM 5.1: DERIVATION OF α̂U ( ~XM )

We start with α̂U ( ~Xm) in (7). Using the representation of the function g in (6), we will
compute the average of each term in g(K,D) over all (K,D) ∈ Γ. First observe that

1

|Γ|
∑

(K,D)∈Γ

h(1,1)∑
i=1

Y 2
Ki(1,1)(1, 1) =

1

|Λ(1, 1)|
∑

K(1,1)∈Λ(1,1)

h(1,1)∑
i=1

Y 2
Ki(1,1)(1, 1)

=

h(1,1)∑
i=1

Y 2
i (1, 1) = S2(1, 1). (17)

If h(1, 2) = 0, then all other terms in (6) vanish, so now assume h(1, 2) > 0. Then

1

|Γ|
∑

(K,D)∈Γ

h(1,2)∑
i=1

(
Y 2
Ki(1,2)(1, 2) + Y 2

Ki(2,1)(2, 1)
)

=

h(1,2)∑
i=1

(
Y 2
i (1, 2) + Y 2

i (2, 1)
)

= S2(1, 2) + S2(2, 1). (18)
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Moreover, note that

1

|Γ|
∑

(K,D)∈Γ

h(1,2)∑
i=1

2YKi(1,2)(1, 2)YKi(2,1)(2, 1)

=
2

|Λ(1, 2)× Λ(2, 1)|
∑

K(1,2)∈Λ(1,2)

∑
K(2,1)∈Λ(2,1)

h(1,2)∑
i=1

YKi(1,2)(1, 2)YKi(2,1)(2, 1)

=
2

h(1, 2)!h(2, 1)!

h(1,2)∑
i=1

∑
K(1,2)∈Λ(1,2)

YKi(1,2)(1, 2)
∑

K(2,1)∈Λ(2,1)

YKi(2,1)(2, 1)

=
2

h(1, 2)!h(2, 1)!

h(1,2)∑
i=1

∑
K(1,2)∈Λ(1,2)

h(1,2)∑
j=1

Yj(1, 2)I(Ki(1, 2) = j)

×
∑

K(2,1)∈Λ(2,1)

h(1,2)∑
`=1

Y`(2, 1)I(Ki(2, 1) = `)

=
2

h(1, 2)!h(2, 1)!

h(1,2)∑
j=1

Yj(1, 2)

h(1,2)∑
`=1

Y`(2, 1)

×
h(1,2)∑
i=1

∑
K(1,2)∈Λ(1,2)

I(Ki(1, 2) = j)
∑

K(2,1)∈Λ(2,1)

I(Ki(2, 1) = `)

=
2

h(1, 2)!h(2, 1)!

h(1,2)∑
j=1

Yj(1, 2)

h(1,2)∑
`=1

Y`(2, 1)

h(1,2)∑
i=1

(h(1, 2)− 1)! (h(2, 1)− 1)!

=
2h(1, 2)(h(1, 2)− 1)! (h(2, 1)− 1)!

h(1, 2)!h(2, 1)!
S1(1, 2)S1(2, 1)

=
2

h(1, 2)
S1(1, 2)S1(2, 1) (19)

since h(1, 2) = h(2, 1).
Also, if h(2, 2) = 0, then any terms in (6) that include YKj(2,2)(2, 2) vanish. Now

assume h(2, 2) > 0, so

1

|Γ|
∑

(K,D)∈Γ

h(1,2)∑
i=1

2YKi(1,2)(1, 2)

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

=
2

|Λ(1, 2)× Λ(2, 2)×∆|
∑

K(1,2)∈Λ(1,2)

∑
K(2,2)∈Λ(2,2)

∑
D∈∆

h(1,2)∑
i=1

YKi(1,2)(1, 2)

×
Di+1−1∑
j=Di

YKj(2,2)(2, 2)
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=
2

h(1, 2)! |Λ(2, 2)| |∆|

h(1,2)∑
i=1

∑
K(1,2)∈Λ(1,2)

YKi(1,2)(1, 2)

×
∑

K(2,2)∈Λ(2,2)

∑
D∈∆

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

=
2

h(1, 2)! |Λ(2, 2)| |∆|

h(1,2)∑
`=1

Y`(1, 2)(h(1, 2)− 1)!

×
∑

K(2,2)∈Λ(2,2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

h(2,2)∑
k=1

Yk(2, 2)I(Kj(2, 2) = k)

=
2

h(1, 2) |Λ(2, 2)| |∆|

h(1,2)∑
`=1

Y`(1, 2)
∑

K(2,2)∈Λ(2,2)

∑
D∈∆

h(2,2)∑
j=1

h(2,2)∑
k=1

Yk(2, 2)I(Kj(2, 2) = k)

=
2

h(1, 2) |Λ(2, 2)| |∆|

h(1,2)∑
`=1

Y`(1, 2)
∑

K(2,2)∈Λ(2,2)

∑
D∈∆

h(2,2)∑
k=1

Yk(2, 2)

h(2,2)∑
j=1

I(Kj(2, 2) = k)

=
2

h(1, 2) |Λ(2, 2)| |∆|

h(1,2)∑
`=1

Y`(1, 2)
∑

K(2,2)∈Λ(2,2)

∑
D∈∆

h(2,2)∑
k=1

Yk(2, 2)

=
2

h(1, 2) |Λ(2, 2)| |∆|

h(1,2)∑
`=1

Y`(1, 2)|Λ(2, 2)| |∆|
h(2,2)∑
k=1

Yk(2, 2)

=
2

h(1, 2)

h(1,2)∑
`=1

Y`(1, 2)

h(2,2)∑
k=1

Yk(2, 2) =
2

h(1, 2)
S1(1, 2)S1(2, 2).

We can similarly show that

1

|Γ|
∑

(K,D)∈Γ

h(1,2)∑
i=1

2
{
YKi(1,2)(1, 2) + YKi(2,1)(2, 1)

}Di+1−1∑
j=Di

YKj(2,2)(2, 2)

=
2

h(1, 2)
{S1(1, 2) + S1(2, 1)}S1(2, 2). (20)

Finally, letting C0 = 1/(|Λ(2, 2)×∆|), we get

1

|Γ|
∑

(K,D)∈Γ

h(1,2)∑
i=1

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

2

= C0

∑
K(2,2)∈Λ(2,2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

Di+1−1∑
`=Di

YK`(2,2)(2, 2)
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= C0

∑
K(2,2)∈Λ(2,2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

h(2,2)∑
p=1

Yp(2, 2) I(Kj(2, 2) = p)


×

Di+1−1∑
`=Di

h(2,2)∑
q=1

Yq(2, 2) I(K`(2, 2) = q)


= C0

h(2,2)∑
p=1

Yp(2, 2)

h(2,2)∑
q=1

Yq(2, 2) (21)

×
∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

Di+1−1∑
`=Di

∑
K(2,2)∈Λ(2,2)

I(Kj(2, 2) = p,K`(2, 2) = q)

= C0

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

∑
K(2,2)∈Λ(2,2)

I(Kj(2, 2) = p) (22)

+ C0

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

∑
K(2,2)∈Λ(2,2)

I(Kj(2, 2) = p,K`(2, 2) = p)

+ C0

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

×
∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

∑
K(2,2)∈Λ(2,2)

I(Kj(2, 2) = p,Kj(2, 2) = q).

+ C0

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

×
∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

∑
K(2,2)∈Λ(2,2)

I(Kj(2, 2) = p,K`(2, 2) = q).

where (22) follows by breaking up the sums in (21) indexed by p and q into cases when
p = q and p 6= q, and also doing the same for the sums indexed by j and `. In (22) the
first term corresponds to p = q and j = l, the second term corresponds to p = q and
j 6= l, the third term corresponds to p 6= q and j = l, and the fourth term corresponds
to p 6= q and j 6= l.

We now separately analyze the four terms in (22), which we denote as a1, a2, a3, a4.
For the first term, note that

a1 = C0

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

(h(2, 2)− 1)!

= C0(h(2, 2)− 1)!

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(2,2)∑
j=1

1
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= C0 h(2, 2)! |∆|
h(2,2)∑
p=1

Y 2
p (2, 2)

=

h(2,2)∑
p=1

Y 2
p (2, 2) = S2(2, 2). (23)

Note that the second term in (22) is a2 = 0 since I(Kj(2, 2) = p,K`(2, 2) = p) = 0 for
j 6= ` since K(2, 2) is a permutation of 1, 2, . . . , h(2, 2). Similarly, the third term in (22)
is a3 = 0 since I(Kj(2, 2) = p,Kj(2, 2) = q) = 0 because p 6= q and Kj(2, 2) cannot take
on two different values.

For the fourth term in (22),

a4 = C0

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

h(1,2)∑
i=1

∑
D∈∆

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

(h(2, 2)− 2)!

= C0 (h(2, 2)− 2)!

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

h(1,2)∑
i=1

∑
D∈∆

2

(
Di+1 −Di

2

)

since the number of terms summed in
∑Di+1−1
j=Di

∑Di+1−1
`=Di
` 6=j

is the number of ways to

choose two distinct numbers j and l from among Di, Di + 1, . . . , Di+1 − 1. To calcu-
late

∑
D∈∆ 2

(
Di+1−Di

2

)
, first recall each D = (D1, D2, . . . , Dh(1,2)) ∈ ∆ satisfies D1 = 1,

Di ≤ Di+1, and Dh(1,2) ≤ h(2, 2) + 1, so to calculate
∑
D∈∆ 2

(
Di+1−Di

2

)
, we can think of

arranging h(2, 2) + h(1, 2) balls into h(2, 2) + h(1, 2) boxes in a straight line, with each
box receiving exactly one ball, where h(1, 2) of the balls are black and identical and
the rest are white and identical. We put Di+1 − Di white balls between the ith and
(i + 1)st black balls. Specifically, the first box contains a black ball since D1 = 1. The
next D2 −D1 boxes each contain a white ball, and a black ball is placed in box D2 + 1.
Then the next D3 − D2 boxes each contain a white ball, and a black ball is placed in
box D3 +2. In general, after the jth black ball, the next Dj+1−Dj boxes each contain a
white ball, and a black ball is placed in boxDj+1+j. Now suppose thatDi+1−Di = k for
some k ≥ 2, and we now want to determine the number of D ∈ ∆ having Di+1−Di = k.
To calculate this, we first remove k white balls and k boxes, which corresponds to the
fact that if Di+1−Di = k, we do not need arrange those k white balls. Then we remove
one black ball and one box, which corresponds to the marker denoting the beginning
of the group of k white balls. Finally, remove one more black ball and one box, which
corresponds to the fact that D1 = 1. The remaining h(2, 2) − k + h(1, 2) − 2 balls can
then be arranged in any way into the h(2, 2)− k + h(1, 2)− 2 boxes, and the number of
possible arrangements is (h(2, 2)−k+h(1, 2)−2)!/[(h(2, 2)−k)! (h(1, 2)−2)!]. Now note
that C0 = 1/(|Λ(2, 2)| · |∆|) = 1/(h(2, 2)! |∆|). Thus,

a4 =
1

h(2, 2)(h(2, 2)− 1)|∆|

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

×
h(1,2)∑
i=1

h(2,2)∑
k=2

2

(
k

2

)
(h(2, 2)− k + h(1, 2)− 2)!

(h(2, 2)− k)! (h(1, 2)− 2)!
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=
h(1, 2)

h(2, 2)(h(2, 2)− 1)|∆|

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

×
h(2,2)∑
k=2

2

(
k

2

)
(h(2, 2)− k + h(1, 2)− 2)!

(h(2, 2)− k)! (h(1, 2)− 2)!

=
h(1, 2)B

h(2, 2)(h(2, 2)− 1)|∆|

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2),

where for any i,

B =
∑
D∈∆

2

(
Di+1 −Di

2

)
=

h(2,2)∑
k=2

2

(
k

2

)
(h(2, 2)− k + h(1, 2)− 2)!

(h(2, 2)− k)! (h(1, 2)− 2)!

= 2
(h(2, 2) + h(1, 2)− 1)!

(h(2, 2)− 2)! (h(1, 2) + 1)!
. (24)

To establish the last equality, note that if h(2, 2) < 2, then both sides of the equality
are zero. If h(1, 2) = 1, then both sides are equal to h(2, 2)[h(2, 2) − 1]. Making the
substitutions m ≡ h(2, 2) − 2 and n ≡ h(1, 2) − 2, both assumed nonnegative, and
removing the common factor of 2, we need to show that

m∑
k=0

(
k + 2

2

)(
m− k + n

m− k

)
=

(
m+ n+ 3

m

)
(25)

for all m,n ≥ 0. This follows from
m∑
k=0

(
k + 2

2

)(
m− k + n

m− k

)
=

m∑
k=0

(−1)k
(
−3

k

)
(−1)m−k

(
−n− 1

m− k

)
= (−1)m

(
−n− 4

m

)
=

(
m+ n+ 3

m

)
,

where we used “upper negation” for the first and last equalities (see Graham et al.
[1994], p. 164), and Vandermonde’s convolution for the second equality (see Graham
et al. [1994], p. 174).

Note that
h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2) =

h(2,2)∑
p=1

Yp(2, 2)

h(2,2)∑
q=1

Yq(2, 2)−
h(2,2)∑
p=1

Y 2
p (2, 2)

= S2
1(2, 2)− S2(2, 2). (26)

Also,

|∆| = (h(2, 2) + h(1, 2)− 1)!

h(2, 2)! (h(1, 2)− 1)!
, (27)

so

a4 =
2h(1, 2) (h(2, 2) + h(1, 2)− 1)!h(2, 2)! (h(1, 2)− 1)!

[
S2

1(2, 2)− S2(2, 2)
]

h(2, 2)(h(2, 2)− 1) (h(2, 2)− 2)! (h(1, 2) + 1)! (h(2, 2) + h(1, 2)− 1)!
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=
2

h(1, 2) + 1

[
S2

1(2, 2)− S2(2, 2)
]
. (28)

Therefore, from (17), (18), (19), (20), (23), and (28), we get

α̂U ( ~Xm) =
1

m

[
S2(1, 1) + S2(1, 2) + S2(2, 1) +

2

h(1, 2)
S1(1, 2)S1(2, 1)

+
2

h(1, 2)
{S1(1, 2) + S1(2, 1)}S1(2, 2) + S2(2, 2)

+
2

h(1, 2) + 1

[
S2

1(2, 2)− S2(2, 2)
]]
, (29)

which, when comparing with (5), shows that α̂U ( ~Xm) = α̂P( ~Xm).

B. PROOF OF THEOREM 5.1: DERIVATION OF α̂V ( ~XM )

We now show that α̂V ( ~Xm) defined in (8) can be expressed as in (9). The derivation is
similar to that for α̂U ( ~Xm), but there are a few key differences since averaging is now
done with replacement, and we include the derivation of α̂V ( ~Xm) for completeness.

Using the representation of the function g in (6), we will compute the average of each
term in g(K,D) over all (K,D) ∈ Γ̂. First observe that

1

|Γ̂|

∑
(K,D)∈Γ̂

h(1,1)∑
i=1

Y 2
Ki(1,1)(1, 1)

=
1

|Λ̂(1, 1)|

h(1,1)∑
i=1

∑
K(1,1)∈Λ̂(1,1)

Y 2
Ki(1,1)(1, 1)

=
1

[h(1, 1)]h(1,1)

h(1,1)∑
i=1

∑
K(1,1)∈Λ̂(1,1)

h(1,1)∑
j=1

Y 2
j (1, 1) I(Ki(1, 1) = j)

=
1

[h(1, 1)]h(1,1)

h(1,1)∑
j=1

Y 2
j (1, 1)

h(1,1)∑
i=1

∑
K(1,1)∈Λ̂(1,1)

I(Ki(1, 1) = j)

=
1

[h(1, 1)]h(1,1)

h(1,1)∑
j=1

Y 2
j (1, 1)

h(1,1)∑
i=1

[h(1, 1)]h(1,1)−1

=

h(1,1)∑
j=1

Y 2
j (1, 1) = S2(1, 1). (30)
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If h(1, 2) = 0, then all of the other terms in (6) vanish, so now assume h(1, 2) > 0. Then
applying arguments as above yields

1

|Γ̂|

∑
(K,D)∈Γ̂

h(1,2)∑
i=1

(
Y 2
Ki(1,2)(1, 2) + Y 2

Ki(2,1)(2, 1)
)

=

h(1,2)∑
i=1

(
Y 2
i (1, 2) + Y 2

i (2, 1)
)

= S2(1, 2) + S2(2, 1). (31)

Also, note that

1

|Γ̂|

∑
(K,D)∈Γ̂

h(1,2)∑
i=1

2YKi(1,2)(1, 2)YKi(2,1)(2, 1)

=
2

|Λ̂(1, 2)× Λ̂(2, 1)|

∑
K(1,2)∈Λ̂(1,2)

∑
K(2,1)∈Λ̂(2,1)

h(1,2)∑
i=1

YKi(1,2)(1, 2)YKi(2,1)(2, 1)

=
2

|Λ̂(1, 2)| · |Λ̂(2, 1)|

h(1,2)∑
i=1

∑
K(1,2)∈Λ̂(1,2)

YKi(1,2)(1, 2)
∑

K(2,1)∈Λ̂(2,1)

YKi(2,1)(2, 1)

=
2

[h(1, 2)]h(1,2) [h(2, 1)]h(2,1)

h(1,2)∑
i=1

[h(1, 2)]h(1,2)−1

h(1,2)∑
j=1

Yj(1, 2)


×

[h(2, 1)]h(2,1)−1

h(2,1)∑
`=1

Y`(2, 1)


=

2

h(1, 2)

h(1,2)∑
j=1

Yj(1, 2)

h(1,2)∑
`=1

Y`(2, 1) =
2

h(1, 2)
S1(1, 2)S1(2, 1) (32)

since h(1, 2) = h(2, 1).
In addition, if h(2, 2) = 0, then any terms in (6) that include YKj(2,2)(2, 2) vanish.

Now assume h(2, 2) > 0, so

1

|Γ̂|

∑
(K,D)∈Γ̂

h(1,2)∑
i=1

2YKi(1,2)(1, 2)

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

=
2

|Λ̂(1, 2)× Λ̂(2, 2)×∆|

∑
K(1,2)∈Λ̂(1,2)

∑
K(2,2)∈Λ̂(2,2)

∑
D∈∆

h(1,2)∑
i=1

YKi(1,2)(1, 2)

×
Di+1−1∑
j=Di

YKj(2,2)(2, 2)
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=
2

[h(1, 2)]h(1,2) [h(2, 2)]h(2,2)|∆|

h(1,2)∑
i=1

∑
K(1,2)∈Λ̂(1,2)

YKi(1,2)(1, 2)

×
∑

K(2,2)∈Λ̂(2,2)

∑
D∈∆

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

=
2 [h(1, 2)]h(1,2)−1

[h(1, 2)]h(1,2) [h(2, 2)]h(2,2)|∆|

h(1,2)∑
`=1

Y`(1, 2)

×
∑

K(2,2)∈Λ̂(2,2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

h(2,2)∑
k=1

Yk(2, 2)I(Kj(2, 2) = k)

=
2

h(1, 2) [h(2, 2)]h(2,2)|∆|

h(1,2)∑
`=1

Y`(1, 2)

×
∑

K(2,2)∈Λ̂(2,2)

∑
D∈∆

h(2,2)∑
j=1

h(2,2)∑
k=1

Yk(2, 2)I(Kj(2, 2) = k)

=
2

h(1, 2) [h(2, 2)]h(2,2)|∆|

h(1,2)∑
`=1

Y`(1, 2)

h(2,2)∑
k=1

Yk(2, 2)

×
∑
D∈∆

h(2,2)∑
j=1

∑
K(2,2)∈Λ̂(2,2)

I(Kj(2, 2) = k)

=
2

h(1, 2) [h(2, 2)]h(2,2)|∆|

h(1,2)∑
`=1

Y`(1, 2)

h(2,2)∑
k=1

Yk(2, 2)
∑
D∈∆

h(2,2)∑
j=1

[h(2, 2)]h(2,2)−1

=
2

h(1, 2)

h(1,2)∑
`=1

Y`(1, 2)

h(2,2)∑
k=1

Yk(2, 2) =
2

h(1, 2)
S1(1, 2)S1(2, 2).

Moreover, we can similarly show that

1

|Γ̂|

∑
(K,D)∈Γ̂

h(1,2)∑
i=1

2
{
YKi(1,2)(1, 2) + YKi(2,1)(2, 1)

}Di+1−1∑
j=Di

YKj(2,2)(2, 2)

=
2

h(1, 2)
{S1(1, 2) + S1(2, 1)}S1(2, 2). (33)
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Finally, letting Ĉ = 1/(|Λ̂(2, 2)×∆|) and using arguments similar to those applied to
establish (22), we get

1

|Γ̂|

∑
(K,D)∈Γ̂

h(1,2)∑
i=1

Di+1−1∑
j=Di

YKj(2,2)(2, 2)

2

= Ĉ

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

∑
K(2,2)∈Λ̂(2,2)

I(Kj(2, 2) = p) (34)

+ Ĉ

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

∑
K(2,2)∈Λ̂(2,2)

I(Kj(2, 2) = p,K`(2, 2) = p)

+ Ĉ

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)
∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

∑
K(2,2)∈Λ̂(2,2)

I(Kj(2, 2) = p,Kj(2, 2) = q)

+ Ĉ

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

×
∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

∑
K(2,2)∈Λ̂(2,2)

I(Kj(2, 2) = p,K`(2, 2) = q).

We now separately analyze the four terms, in (34), which we denote as b1, b2, b3, b4.
For the first term, note that

b1 = Ĉ

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(1,2)∑
i=1

Di+1−1∑
j=Di

[h(2, 2)]h(2,2)−1

= Ĉ [h(2, 2)]h(2,2)−1

h(2,2)∑
p=1

Y 2
p (2, 2)

∑
D∈∆

h(2,2)∑
j=1

1

= Ĉ [h(2, 2)]h(2,2) |∆|
h(2,2)∑
p=1

Y 2
p (2, 2)

=

h(2,2)∑
p=1

Y 2
p (2, 2) = S2(2, 2). (35)

The third term in (34) is b3 = 0 since I(Kj(2, 2) = p,Kj(2, 2) = q) = 0 because
p 6= q and Kj(2, 2) cannot take on 2 different values. However, contrary to what we
saw in the expression (22) for the U -statistic estimator in the previous section, the
second term b2 in (34) is no longer zero since I(Kj(2, 2) = p,K`(2, 2) = p) 6= 0 for j 6= `
since K(2, 2) is an h(2, 2)-dimensional vector in which the components are selected
from {1, 2, . . . , h(2, 2)} with replacement. Thus, for the second term in (34), we have

b2 = Ĉ

h(2,2)∑
p=1

Y 2
p (2, 2)

h(1,2)∑
i=1

∑
D∈∆

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

[h(2, 2)]h(2,2)−2
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= Ĉ [h(2, 2)]h(2,2)−2

h(2,2)∑
p=1

Y 2
p (2, 2)

h(1,2)∑
i=1

∑
D∈∆

2

(
Di+1 −Di

2

)

= B Ĉ [h(2, 2)]h(2,2)−2 h(1, 2)

h(2,2)∑
p=1

Y 2
p (2, 2)

=
B h(1, 2)

[h(2, 2)]2 |∆|
S2(2, 2) (36)

since Ĉ = 1/([h(2, 2)]h(2,2)|∆|), where B is defined in (24).
For the fourth term in (34),

b4 = Ĉ

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

h(1,2)∑
i=1

∑
D∈∆

Di+1−1∑
j=Di

Di+1−1∑
`=Di
` 6=j

[h(2, 2)]h(2,2)−2

= Ĉ [h(2, 2)]h(2,2)−2

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

h(1,2)∑
i=1

∑
D∈∆

2

(
Di+1 −Di

2

)

= B Ĉ [h(2, 2)]h(2,2)−2 h(1, 2)

h(2,2)∑
p=1

h(2,2)∑
q=1
q 6=p

Yp(2, 2)Yq(2, 2)

=
B h(1, 2)

[h(2, 2)]2 |∆|
[
S2

1(2, 2)− S2(2, 2)
]

(37)

by (26).
Therefore, from (24), (27), (30), (31), (32), (33), (35), (36), and (37), we get

α̂V ( ~Xm) =
1

m

[
S2(1, 1) + S2(1, 2) + S2(2, 1) +

2

h(1, 2)
S1(1, 2)S1(2, 1)

+
2

h(1, 2)
{S1(1, 2) + S1(2, 1)}S1(2, 2) + S2(2, 2)

+
2(h(2, 2)− 1)

h(2, 2) (h(1, 2) + 1)
S2

1(2, 2)

]

= Q+
2(h(2, 2)− 1)

mh(2, 2) (h(1, 2) + 1)
S2

1(2, 2), (38)

where Q is defined in (4).
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Online Appendix to:
Resampled Regenerative Estimators

JAMES M. CALVIN, New Jersey Institute of Technology
MARVIN K. NAKAYAMA, New Jersey Institute of Technology

A. DERIVATION OF SEMI-REGENERATIVE ESTIMATOR IN (3)
Let T = T1, and for x ∈ A, note that

α(x) = Ex


T−1∑
k=0

f(Xk) +
∑
y∈A

I(τ > T,XT = y)

τ−1∑
k=T

f(Xk)

2


= Ex

(T−1∑
k=0

f(Xk)

)2
+ 2

∑
y∈A

Ex

I(τ > T,XT = y)

τ−1∑
k=T

f(Xk)

T−1∑
j=0

f(Xj)


+
∑
y∈A

Ex

I(τ > T,XT = y)

(
τ−1∑
k=T

f(Xk)

)2
 , (39)

where the last term does not include another sum over z ∈ A since I(τ > T,XT =
y)I(τ > T,XT = z) = 0 when y 6= z. We now derive new expressions for the second and
third terms in (39).

Each summand in the second term in (39) satisfies

Ex

I(τ > T,XT = y)

τ−1∑
k=T

f(Xk)

T−1∑
j=0

f(Xj)

 = F (x, y) e(y),

with

F (x, y) = Ex

[
I(τ > T,XT = y)

T−1∑
k=0

f(Xk)

]
and e(y) = Ey

[
τ−1∑
k=0

f(Xk)

]
.

Also, note that

e(x) = Ex

[
T−1∑
k=0

f(Xk)

]
+
∑
y∈A

Ex [I(τ > T,XT = y)] e(y),

and defining

q(x) = Ex

[
T−1∑
k=0

f(Xk)

]
, G(x, y) = Ex [I(τ > T,XT = y)] ,

e = (e(x) : x ∈ A), q = (q(x) : x ∈ A), and G = (G(x, y) : x, y ∈ A), we get e = q + Ge,
or (I − G)e = q. It is straightforward to show that X being irreducible and positive
recurrent implies that I −G is nonsingular, so e = (I −G)−1q. Thus, each summand in

c© 2013 ACM 1049-3301/2013/07-ARTxx $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000
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the second term in (39) satisfies

Ex

I(τ > T,XT = y)

τ−1∑
k=T

f(Xk)

T−1∑
j=0

Xj

 = F (x, y) ((I −G)−1q)(y). (40)

Now for each summand in the third term in (39), note that

Ex

I(τ > T,XT = y)

(
τ−1∑
k=T

f(Xk)

)2
 = G(x, y)α(y). (41)

Define

c(x) = Ex

(T−1∑
k=0

f(Xk)

)2
 ,

and let α = (α(x) : x ∈ A), c = (c(x) : x ∈ A), and F = (F (x, y) : x, y ∈ A). Then, putting
together (39)–(41), we get α = c+ 2F (I −G)−1q +Gα, so

α = (I −G)−1(c+ 2F (I −G)−1q)

since I − G is nonsingular. Note that G, c, F and q are all conditional expectations,
and we obtain the semi-regenerative estimator of α(1) by replacing each conditional
expectation with a sample average obtained from a simulated sample path.

Now since A = {1, 2} and w = 1, note that G(x, 1) = F (x, 1) = 0 for x ∈ A. Let
J = (J(x, y) : x, y ∈ A) with J = (I −G)−1, and observe that

J =

(
1 −G(1, 2)
0 1−G(2, 2)

)−1

=

(
1 G(1, 2)/(1−G(2, 2))
0 1/(1−G(2, 2))

)
. (42)

It then follows that

α =

(
1 J(1, 2)
0 J(2, 2)

)[(
c(1)
c(2)

)
+ 2

(
0 F (1, 2)
0 F (2, 2)

)(
1 J(1, 2)
0 J(2, 2)

)(
q(1)
q(2)

)]
=

(
c(1) + J(1, 2)c(2)

J(2, 2)c(2)

)
+ 2

(
(F (1, 2) + J(1, 2)F (2, 2))J(2, 2)q(2)

J2(2, 2)F (2, 2)q(2)

)
,

so

α(1) = c(1) + J(1, 2)c(2) + 2[F (1, 2) + J(1, 2)F (2, 2)]J(2, 2)q(2). (43)

This was previously shown in Calvin and Nakayama [2002].
Now for x ∈ A, we use (S2(x, 1) + S2(x, 2))/H(x) and (S1(x, 1) + S1(x, 2))/H(x) as our

estimators of c(x) and q(x), respectively. Also, we use h(x, 2)/H(x) and S1(x, 2)/H(x) as
estimators for G(x, 2) and F (x, 2), respectively. By (42) our estimator of J(1, 2) is then

Ĵ(1, 2) =
h(1, 2)

H(1)

(
1− h(2, 2)

H(2)

)−1

=
H(2)

H(1)

since h(2, 1) + h(2, 2) = H(2) and h(1, 2) = h(2, 1). Similarly, our estimator of J(2, 2) is
Ĵ(2, 2) = H(2)/h(1, 2) by (42). Thus, substituting our estimators into (43) yields (3) as
the semi-regenerative estimator of α(1) based on the sample path ~Xm with A = {1, 2}.
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