MATH 211- EXAM III -NOVEMBER 17, 2004

- 1) For the function $f(x,y,z) = \frac{x}{y} yx + \frac{z}{x}$
- a) Determine the directional derivative in the direction V = i 3j 2k at the point $(1,1,\pm 1)$
- b) Determine the equation of a plane tangent to the surface $\frac{x}{y} yx + \frac{z}{x} = 1$ at the point (1,1,+1)
- 2)Determine, using Lagrange multipliers, the maximum Profit for a company whose profit is given by the equation $P = \frac{xy^3}{810}$ and the total budget is given by x + y = 12, where x and y are the research and production costs allocated (in millions of dollars)
- 3) For the integral $\int_{0}^{1} \int_{\frac{y}{2}}^{\frac{1}{2}} e^{-x^2} dx dy$
- a)Sketch the region of integration
- b)Reverse the order of integration
- c)Evaluate the integral
- 4)Evaluate the integral $\int \int (y+1)dxdy$ over the region described by the triangle formed by the points (0,0), (1,1), (3,0)
- 5) Evaluate the integral $\iint xy \, dA$, over the region enclosed in the first quadrant, outside the circle r = 1 and inside the circle $r = 2\cos\theta$.
- 6)Using triple integration and cylindrical coordinates, find the mass $(\iint \int \delta(x,y,z) dV)$ of the ellipsoidal solid $4x^2 + 4y^2 + z^2 = 16$ lying above the x-y plane. The density at any point in the solid is given by $\delta(x,y,z) = 10z$.