Fall 2016 Course Syllabus: Math 331-004

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. Unless explicit instructions for group work are given, all assignments should represent your individual effort. There must not be any forms of plagiarism, copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor. Any indications of violation of the Academic Integrity Code will be forwarded to the Dean of Students.

Course Title:	Introduction to Partial Differential Equations	
Textbook:	Applied Partial Differential Equations by Richard Haberman (5th Ed) <i>Pearson Prentice-Hall</i> , ISBN: 978-0321797056	
Prerequisites:	(Math 211 or Math 213) and Math 222, with a grade of C or higher	
Website:	http://web.njit.edu/~matveev/Courses/M331_F16/	

	Course Outline				
Lecture	Sections Topic				
1 (1-18)	3.1-3.3	Intro to PDEs; Review: ODEs, Calculus III, Fourier Series			
2 (1-23)	3.4-3.6	Fourier Series and term-by-term operations			
3 (1-25)	1.2-1.3	Heat Equation: 1D Derivation & Boundary Conditions			
4 (1-30)	1.3-1.4	Heat Equation: Equilibrium temperature Distribution			
5 (2-1)	1.4-1.5	Heat Equation: Equilibrium temperature Distribution; Higher Dimensions			
6 (2-6)	2.3	Method of Separation of Variables & Solving Heat Equation in 1D Rod			
7 (2-8)	2.4.1-2.4.2	Solving Heat Equation in 1D Rod: Insulated Ends			
8 (2-13)	2.4.3	Heat Equation in a Circular Ring			
9 (2-15)	2.5.1	Laplace's Equation Inside a Rectangle			
10 (2-20)	2.5.2, 2.5.4	Laplace's Equation Inside a Disk; Qualitative properties			
11 (2-22)	4.1-4.2, 4.4	Wave Equation: 1D Derivation and Vibrating String with Fixed Ends			
12 (2-27)	4.3	Wave Equation: Boundary Conditions and Vibrating String Continued			
13 (3-1)	4.5, 5.1	Wave Equation: Vibrating Membrane and Introduction to Chapter 5			
14 (3-6)	Exam Review				
15 (3-8)	Midterm Examination				
March 13-17	Spring Break				
16 (3-20)	5.2-5.4	Sturm-Liouville Eigenvalue Problems			
17 (3-22)	5.5	Sturm-Liouville Problems: Self-Adjointness and proofs of properties			
3-27	Last Day to Withdraw				
18 (3-27)	5.6, 5.8	Rayleigh Quotient and Robin Boundary Conditions			
19 (3-29)	5.6, 6.1	More Rayleigh Quotient examples; Chapter 6: Finite Differences			
20 (4-3)	6.2-6.3.2	Finite Difference Numerical Methods for PDEs			
21 (4-5)	6.3.4, 7.1-7.2	Finite differences: stability analysis; PDE's in 2+1 dimensions			
22 (4-10)	7.1-7.3	PDE's in 2+1 dimensions: vibration of a rectangular membrane			
23 (4-12)	7.7	Vibration of a Circular Membrane			
24 (4-17)	7.8	More on Bessel Functions			
25 (4-19)	10.1-10.3	Heat Equation on the Line; Nonhomogeneous Problems			
26 (4-24)	10.4-10.5	Eigenfunction Expansion; Heat Equation on a Half-Line			
27 (4-26)	10.6	Fourier Transform: Applications			
28 (5-1)	Final Exam Review				

Grading Policy

Assignment Weighting		
Homework	15 %	
Quiz	15 %	
Midterm Exam	30 %	
Final Exam	40 %	

Tentative Grading Scale		
A	87 100	
B+	81 - 86	
В	75 – 80	
C+	68 - 74	
С	62 - 67	
D	55 – 61	
F	0 - 54	

Course Policies

Email: it is important that you regularly check your NJIT email account for class assignments and announcements from your instructor. Rutgers students should email the instructor their preferred email address at the start of the semester.

Homework and Quizzes: Homework problem sets will be emailed by the instructor each week, and may include problems requiring basic MATLAB coding. Homework is in general due each Wednesday; late work is not accepted. Short quizzes will also be given about once per week, on a pre-announced topic.

Attendance: attendance in this class is mandatory.