Math 335-002 * Midterm \#2
 March 26, 2008

Please show all work to receive full credit. Notes and calculators are not allowed

1. (20pts) Use suffix notation to expand or simplify the following expressions, and convert the result into vector form:
a) $\vec{\nabla} \cdot(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{u}})$, where $\overrightarrow{\mathbf{r}}$ is the position vector, and $\overrightarrow{\mathbf{u}}$ is an arbitrary vector field
b) $\quad(((\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{a}})$
2. (20pts) Calculate the work done by the force $\overrightarrow{\mathbf{F}}=\left(e^{x}, \sqrt{y}, 0\right)$ along the following two paths connecting points $\mathrm{A}=(2,0,0)$ and $\mathrm{B}=(0,2,0)$:
a) A straight line
b) A circular arc around the origin of radius 2
c) Is this a conservative vector field? If yes, check your integration by finding the potential function.
3. (24pts) Verify the divergence theorem (by calculating the appropriate surface and volume integrals) for the field $\overrightarrow{\mathbf{u}}=(x, 0,0)$, with the volume in the $1^{\text {st }}$ octant defined by $x+2 y+2 z \leq 2$. Start your solution by sketching this surface (hint: find the intersection of the boundary $x+2 y+2 z=2$ with the three coordinate planes).
4. (20pts) Find the mass of an object enclosed between the surfaces $x^{2}-y^{2}+z^{2}+1=0$, $x=0$ and $y=2$, with the mass density $\rho(\overrightarrow{\mathbf{r}})=y^{2}+1$. Sketch this object [Hint: find the simplest cross-section]
5. (16pts) Which of the following integrals are always zero for any differentiable fields $\overrightarrow{\mathbf{u}}$ or f ? [Hint: the divergence theorem will help with some of these integrals].
a) $\oiint_{S} \vec{\nabla} \times \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{n}} d S$
b) $\oiint_{S} \vec{\nabla} f \cdot \overrightarrow{\mathbf{n}} d S$
c) $\oint_{C} \vec{\nabla} f \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$
d) $\iiint_{V} \vec{\nabla} \times \vec{\nabla} f d V$
