1) (12pts) Use the known Taylor series of the exponential and cosine functions to find two leading terms in the Taylor approximation for the function $f(x)$ near $x=0$, and use your result to estimate $f(0.2)$:

$$
\begin{aligned}
f(x)= & \frac{2 x^{3}}{\exp (2 x)-\cos (2 x)}=\frac{2 x^{3}}{\left(\not 1+2 x+\frac{(2 x)^{2}}{2}+O\left(x^{3}\right)\right)-\left(\not 1-\frac{(2 x)^{2}}{2}+O\left(x^{4}\right)\right)}=\frac{2 x^{3}}{2 x+4 x^{2}+O\left(x^{3}\right)}= \\
& =\frac{x^{2}}{1+2 x+O\left(x^{2}\right)}=\mathbf{x}^{2}(\mathbf{1}-2 \mathbf{x})+O\left(x^{4}\right) \quad \text { where in the last step we used geometric series: } \frac{1}{1+u} \approx 1-u
\end{aligned}
$$

We can now use this series to estimate $f(0.2) \approx 0.2^{2}(1-0.4)=0.04 * 0.6=\mathbf{0 . 0 2 4}$
This is fairly accurate: true value is $\doteq 0.028$
2) (18pts) Consider the function $f(x)=x^{3}+x+1$
a) Make a rough sketch of the function $f(x)$, find an interval of x containing its root, $f(x)=0$, and use two iterations of the Newton's method to approximate this root, starting with $x_{0}=0$.
b) Explain why this root may also be obtained by the iteration $x_{n+1}=x_{n}+c f\left(x_{n}\right)$, where \boldsymbol{c} is a constant. Find at least one value of c for which this iteration does converge. What value of c would give the fastest convergence?

Solution:

a) The root is enclosed within ($-1,0$), since $f(-1)=-1<0$, and $f(0)=1>0$
(A better/tighter interval is $(-1,-1 / 2)$, since $f(-1 / 2)=-1 / 8+1 / 2>0$)
Two iterations of the Newton's method, starting with $x_{0}=0$:

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}+x_{n}+1}{3 x_{n}^{2}+1} \\
& x_{1}=0-\frac{0+0+1}{0+1}=-1 ; \quad x_{2}=-1-\frac{-1-1+1}{3+1}=-1+\frac{1}{4}=-\frac{3}{4}
\end{aligned}
$$

b) Consider the fixed point of this iteration, $x_{n+1}=g\left(x_{n}\right)=x_{n}+c f\left(x_{n}\right)$:
 $x^{*}=x^{*}+c f\left(x^{*}\right) \Rightarrow c f\left(x^{*}\right)=0 \Rightarrow f\left(x^{*}\right)=0$: Therefore, if this iteration converges, it converges to the root x^{*} Now, examine the convergence condition: $\quad\left|g^{\prime}\left(x^{*}\right)\right|=\left|1+c f^{\prime}\left(x^{*}\right)\right|=\left|1+c\left(3\left(x^{*}\right)^{2}+1\right)\right|<1$ $-1<1+c\left\{3\left(x^{*}\right)^{2}+1\right\}<1 \Rightarrow-2<c\left\{3\left(x^{*}\right)^{2}+1\right\}<0 \Rightarrow-\frac{2}{3\left(x^{*}\right)^{2}+1}<c<0 \Rightarrow-2<c<0$
where the last inequality follows from the fact that the root x^{*} is within $(-1,0)$, and therefore $3\left(x^{*}\right)^{2}+1>1$
The simplest choice satisfying this convergence condition is $c=-1: \quad x_{n+1}=g\left(x_{n}\right)=x_{n}-f\left(x_{n}\right)=-x_{n}^{3}-1$
For *fast* (better than linear) convergence we want $\left|g^{\prime}\left(x^{*}\right)\right|=0$, which requires $c=-\frac{1}{f^{\prime}\left(x^{*}\right)}=-\frac{1}{3\left(x^{*}\right)^{2}+1}$
Note that this yields an iteration which is very close to the Newton's iteration!
3) (18pts) Find and compare the following approximations of the integral $\int_{-1}^{1} \frac{d x}{2+x}$ (it's exact value is $\ln (3) \doteq \mathbf{1 . 0 9 8 6}$)
a) Find the midpoint approximation with 2 subintervals, M_{2}, and Simpson's approximation with 4 subintervals, S_{4}.

$$
\begin{aligned}
n=2, h & =1: \\
M_{2} & =h\left[f\left(-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)\right]=1 \cdot\left[\frac{1}{3 / 2}+\frac{1}{5 / 2}\right]=\frac{2}{3}+\frac{2}{5}=\frac{16}{15} \doteq \mathbf{1 . 0 6 7} \\
n=4, h & =\frac{1}{2}: \\
S_{4} & =\frac{h}{3}\left[f(-1)+4 f\left(-\frac{1}{2}\right)+2 f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right]=\frac{1}{6}\left[1+4 \cdot \frac{2}{3}+\frac{2}{2}+4 \cdot \frac{2}{5}+\frac{1}{3}\right]=\frac{1}{6}\left[5+\frac{8}{5}\right]=\frac{\mathbf{3 3}}{\mathbf{3 0}}=\mathbf{1 . 1}
\end{aligned}
$$

b) Find values of constants w_{1}, w_{2} and x_{1} so that the following integration rule has degree of precision of 5 , and apply this integration rule to the integral given above (make sure to simplify the integration result):

$$
\int_{-h}^{h} f(x) d x=w_{1} f\left(-x_{1}\right)+w_{2} f(0)+w_{1} f\left(x_{1}\right)
$$

Note that when $f(x)$ equals any odd power of x, we obtain $0=0$, so we only need to check even powers:

Exact integral:
$f=1: \quad \int_{-h}^{h} f(x) d x=\int_{-h}^{h} d x=2 h$
$\left.\begin{array}{l}f=x^{2}: \int_{-h}^{h} f(x) d x=\int_{-h}^{h} x^{2} d x=\frac{2}{3} h^{3} \\ f=x^{4}: w_{1} f\left(-x_{1}\right)+w_{2} f(0)+w_{1} f\left(x_{1}\right)=2 w_{1} x_{1}^{2}=\frac{2}{3} h^{3} \\ -h(x) d x=\int_{-h}^{h} x^{4} d x=\frac{2}{5} h^{5} \\ w_{1} f\left(-x_{1}\right)+w_{2} f(0)+w_{1} f\left(x_{1}\right)=2 w_{1} x_{1}^{4}=\frac{2}{5} h^{5}\end{array}\right\} \nLeftarrow \Rightarrow \begin{gathered}x_{1}^{2}=\frac{3 h^{2}}{5} \Rightarrow x_{1}=\sqrt{\frac{3}{5}} h \\ w_{1}=\frac{h^{3}}{3 x_{1}^{2}}=\frac{5}{9} h\end{gathered}$
$\Rightarrow \int_{-h}^{h} f(x) d x \approx \frac{h}{9}\left[5 f\left(-\sqrt{\frac{3}{5}} h\right)+8 f(0)+5 f\left(\sqrt{\frac{3}{5}} h\right)\right]$
$\Rightarrow \int_{-1}^{1} \frac{d x}{2+x} \approx \frac{5}{9}\left[\frac{1}{2-\sqrt{3 / 5}}+\frac{1}{2+\sqrt{3 / 5}}\right]+\frac{8}{9 \cdot 2}=\frac{5}{9}\left[\frac{4}{4-3 / 5}\right]+\frac{4}{9}=\frac{1}{9}\left[\frac{100}{17}+4\right]=\frac{168}{9 \cdot 17}=\frac{\mathbf{5 6}}{\mathbf{5 1}} \doteq \mathbf{1 . 0 9 8}$
4) (12pts) Find values of constants A, B and C so that the following finite difference approximates the second derivative of function $f(x)$ at x_{0}. Find also the error of this approximation. Check your answer by computing $D^{(2)} f\left(x_{0}\right)$ for $f(x)=x^{2}$:

$$
D^{(2)} f\left(x_{0}\right)=A f\left(x_{0}-h\right)+B f\left(x_{0}\right)+C f\left(x_{0}+4 h\right)
$$

Expand the 1st and 3rd terms in Taylor series up to 3rd order, and sum the right-hand side:

$$
\begin{array}{ccc|}
& A \times \| & f\left(x_{0}-h\right) \approx f\left(x_{0}\right)-h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(x_{0}\right) \\
+\quad & B \times \| & f\left(x_{0}\right) \\
& C \times \| & f(x+4 h) \approx f\left(x_{0}\right)+4 h f^{\prime}\left(x_{0}\right)+\frac{(4 h)^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{(4 h)^{3}}{6} f^{\prime \prime \prime}\left(x_{0}\right)
\end{array}
$$

$f^{\prime \prime}(x) \boxminus \underbrace{(A+B+C)}_{=0} f(x)+\underbrace{(4 C-A)}_{=0} h f^{\prime}(x)+\underbrace{(A+16 C) \frac{h^{2}}{2}}_{=1} f^{\prime \prime}(x)+\underbrace{(64 C-A) \frac{h^{3}}{6} f^{\prime \prime \prime}(x)}_{\text {ERROR }}$

$$
\left\{\begin{array} { l }
{ A + B + C = 0 } \\
{ A = 4 C } \\
{ A + 1 6 C = 2 0 C = \frac { 2 } { h ^ { 2 } } \Rightarrow C = \frac { 1 } { 1 0 h ^ { 2 } } }
\end{array} \Rightarrow \left\{\begin{array}{l}
B=-A-C=-\frac{5}{10 h^{2}} \\
A=4 C=\frac{4}{10 h^{2}} \\
C=\frac{1}{10 h^{2}}
\end{array} \Rightarrow f^{\prime \prime\left(\left(x_{0}\right) \approx \frac{4 f\left(x_{0}-h\right)-5 f\left(x_{0}\right)+f\left(x_{0}+4 h\right)}{10 h^{2}}\right.}\right.\right.
$$

The error of this numerical second derivative is given by the cubic term:
$E \approx \underbrace{(64 C-A)}_{6 / h^{2}} \frac{h^{3}}{6} f^{\prime \prime \prime}\left(x_{0}\right)=h f^{\prime \prime \prime}\left(x_{0}\right) \quad$ More accurate error formula is $h f^{\prime \prime \prime}(c)$, where $c \in\left[x_{0}-h, x_{0}+4 h\right]$

Check by applying this finite difference to $f(x)=x^{2}$: we obtain $f^{\prime \prime}\left(x_{0}\right)=2$, as we should:

$$
\frac{4 f\left(x_{0}-h\right)-5 f\left(x_{0}\right)+f\left(x_{0}+4 h\right)}{10 h^{2}}=\frac{\left(x_{0}-h\right)^{2}-5 x_{0}^{2}+\left(x_{0}+4 h\right)^{2}}{10 h^{2}}=\frac{4 x_{0}^{2}-8 h x_{0}+4 h^{2}-5 x_{0}^{2}+x_{0}^{2}+8 h x_{0}+16 h^{2}}{10 h^{2}}=\frac{20 h^{2}}{10 h^{2}}=2
$$

5) (18pts) Consider the following autonomous initial value problem: $\left\{\begin{array}{l}\frac{d Y}{d x}=f(Y)=\frac{1}{1+Y} \\ Y(0)=0\end{array}\right.$
a) Without solving this equation, sketch the solution $Y(x)$ as a function of x (to do this, examine the graph $f(Y)$).

Since $f(Y)>0$ when $Y>0$, solution is monotonically increasing, but the rate of increase (velocity) is progressively smaller as \boldsymbol{Y} grows, which results in downward concavity (see Figure below):

b) Euler Method $h=0.5: \quad Y(0.5) \approx \tilde{y}_{1}=y_{0}+h f\left(y_{0}\right)=0+0.5 \cdot 1^{2}=\mathbf{0 . 5}$

$$
Y(1) \approx \tilde{y}_{2}=\tilde{y}_{1}+h f\left(\tilde{y}_{1}\right)=0.5+0.5 \cdot \frac{1}{1+0.5}=\frac{1}{2}+\frac{1}{3}=\frac{\mathbf{5}}{\mathbf{6}} \doteq 0.833
$$

c) Euler Method $h=0.1: \quad Y(1) \approx y_{1}=y_{0}+h f\left(y_{0}\right)=0+1 \cdot 1=\mathbf{1}$

Richardson's Extrapolation: $Y(1) \approx 2 \tilde{y}_{2}-y_{1}=\frac{10}{6}-1=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}} \doteq 0.666$
d) One step of the midpoint Runge-Kutta method with $h=1$:

$$
Y(1) \approx y_{1}=y_{0}+h f\left(y_{0}+0.5 h f\left(y_{0}\right)\right)=0+1 \cdot \frac{1}{1+0+1 \cdot 0.5 \frac{1}{0+1}}=\frac{2}{3} \doteq 0.666
$$

(Same as Richardson's extrapolation of Euler results)
6) (12pts) Find the value of constant α for which the following method for solving $\mathrm{d} Y / \mathrm{d} x=f(x, Y)$ has a local error of order h^{3} (to do this, compare its Taylor expansion up to $2^{\text {nd }}$ order in h with the Taylor expansion of exact solution):

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{h}{3}\left[f\left(x_{n}, y_{n}\right)+2 f\left(x_{n}+\alpha h, y_{n}+\alpha h f\left(x_{n}, y_{n}\right)\right)\right] \\
& =y_{n}+\frac{h}{3}\left[f\left(x_{n} y_{n}\right)+2\left(f\left(x_{n}, y_{n}\right)+\alpha h \frac{\partial f}{\partial x}\left(x_{n} y_{n}\right)+\alpha h f\left(x_{n}, y_{n}\right) \frac{\partial f}{\partial Y}\left(x_{n}, y_{n}\right)+O\left(h^{2}\right)\right)\right] \\
& =y_{n}+h f\left(x_{n}, y_{n}\right)+\frac{2 \alpha h^{2}}{3}\left[\frac{\partial f}{\partial x}\left(x_{n}, y_{n}\right)+f\left(x_{n}, y_{n}\right) \frac{\partial f}{\partial Y}\left(x_{n}, y_{n}\right)\right]+O\left(h^{3}\right)
\end{aligned}
$$

Compare this with the Taylor expansion of exact solution:

$$
Y_{n+1}=Y_{n}+h Y_{n}^{\prime}+\frac{h^{2}}{2} Y_{n}^{\prime \prime}+O\left(h^{3}\right)=Y_{n}+h f\left(x_{n}, Y_{n}\right)+\frac{h^{2}}{2} \frac{d f}{d x}\left(x_{n}, Y_{n}\right)+O\left(h^{3}\right)
$$

Now, use the chain rule to find the "full" x-derivative of $f\left(x_{n}, Y\left(x_{n}\right)\right): \frac{d f}{d x}(x, Y(x))=\frac{\partial f}{\partial x}(x, Y)+\frac{\partial f}{\partial Y}(x, Y) \frac{d Y(x)}{d x} \underbrace{}_{f(x, Y)}$
$\Rightarrow Y_{n+1}=Y_{n}+h f\left(x_{n}, Y_{n}\right)+\frac{h^{2}}{2}\left[\frac{\partial f}{\partial x}\left(x_{n}, Y_{n}\right)+\frac{\partial f}{\partial Y}\left(x_{n}, Y_{n}\right) f\left(x_{n}, Y_{n}\right)\right]+O\left(h^{3}\right)$

The equations for y_{n} and Y_{n} agree up to terms of order h^{3} if $\frac{2 \alpha h^{2}}{3}=\frac{h^{2}}{2} \Rightarrow \alpha=\frac{3}{4}$
Thus, the 2nd order accurate method is:

$$
y_{n+1}=y_{n}+\frac{h}{3}\left[f\left(x_{n}, y_{n}\right)+2 f\left(x_{n}+\frac{3}{4} h, y_{n}+\frac{3}{4} h f\left(x_{n}, y_{n}\right)\right)\right]
$$

7) (10pts) Find values of \boldsymbol{a} and \boldsymbol{b} that minimize the sum of squares of residuals (deviations) between the curve $\boldsymbol{y}(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{b} / \boldsymbol{x}$ and the data poins $(1 / 3,2) ;(1 / 2,0) ;(1,1)$. Sketch the data points and the best-fit curve $y(x)$.

Find the sum of squares of residuals:
$G(a, b)=\sum_{i=1}^{3}\left(y\left(x_{i}\right)-y_{i}\right)^{2}=(a+3 b-2)^{2}+(a+2 b)^{2}+(a+b-1)^{2}$
2) Minimize the sum of squares of residuals:
$\left\{\begin{array}{l}\frac{1}{2} \frac{\partial G}{\partial a}=(a+3 b-2)+(a+2 b)+(a+b-1)=3 a+6 b-3=0 \| \times 2 \\ \frac{1}{2} \frac{\partial G}{\partial b}=3(a+3 b-2)+2(a+2 b)+(a+b-1)=6 a+14 b-7=0\end{array} \Rightarrow\left\{\begin{array}{l}6 a+12 b=6 \\ 6 a+14 b=7\end{array} \Rightarrow \begin{array}{l}b=\frac{1}{2} \\ a=0\end{array}\right.\right.$

Thus, the curve of given form that fits data the best is $y(x)=\frac{1}{2 x}$

