Math 340 * Exam 2 * April 5, 2012 * Victor Matveev
Please show all work for each problem. Simplify all answers as much as possible. All electronic devices must be turned off. Notes are not permitted.

1) (22pts) Compute the following approximations for $\int_{-1}^{1} x^{4} d x$:
a) Find the Simpson's approximations S_{2} and S_{4} using $n=2$ and $n=4$ subintervals, respectively. Compare each result with the exact value of the integral, up to three decimal digits.
b) Correct the value of \boldsymbol{S}_{2} (not S_{4}) using its asymptotic error, $-\frac{h^{4}}{180}\left[f^{(m)}(b)-f^{(m)}(a)\right]$, where $f^{(m)}(x)$ is an appropriate derivative of $f(x)$. Simplify as much as possible.
c) Find the Richardson's extrapolation using values S_{2} and S_{4} obtained in part (a). Simplify as much as possible.
2) (22pts) Find values w_{1}, w_{2} and x_{2} so that the following integration rule has degree of precision of 2 by applying this rule to $f(x)=1, x$, and x^{2}, and use the resulting integration rule to estimate $\int_{0}^{5 \pi / 9} \frac{\cos (x)}{\sqrt{x}} d x$. Why shouldn't you use the Simpson's or Gaussian integration rules to estimate this integral?

$$
\int_{0}^{h} \frac{f(x)}{\sqrt{x}} d x=w_{1} f(0)+w_{2} f\left(x_{2}\right)
$$

3) (22pts) What does the following expression approximate for small values of h ? To answer this question, expand the first and the third terms in the numerator in a Taylor series about x_{0}, up to third order in h. You may leave out the remainder term. What is the error of this finite difference? To check your answer, apply this formula to $f(x)=x^{2}$

$$
D f\left(x_{0}\right)=\frac{f\left(x_{0}-3 h\right)-4 f\left(x_{0}\right)+3 f\left(x_{0}+h\right)}{6 h^{2}}
$$

4) (22pts) Consider the function $f(x)=\frac{1}{1+x}$ on the interval $[-0.5,0.5]$:
a) Use Newton's divided differences to find the quadratic interpolating polynomial approximation for $f(x)$ using its values at $x_{0}=-0.5, x_{1}=0$ and $x_{2}=0.5$. Make a rough sketch of this interpolating polynomial
b) Compare this interpolating polynomial with the quadratic Taylor polynomial for $f(x)$ about $x_{1}=0$. Without doing any calculations, explain which of these two quadratic polynomials is a more accurate approximation to $f(x)$ at $x=0.47$.

You may choose between problems 5 and 5':

5) (12pts) Find and make a rough sketch of the piece-wise quadratic spline $q(x)$ on the interval $[0,2]$ that satisfies conditions listed below (note that $q(x)$ is formed by two quadratic polynomials with domains $[0,1]$ and $[1,2]$, respectively, and recall that a quadratic spline has a continuous first derivative):

$$
q(0)=1, q(1)=0, q(2)=2, \frac{d q}{d x}(2)=-1
$$

5') (12pts) Derive the formula for Richardson's extrapolation of Simpson's integration rule using values $S_{2 n}$ and $S_{3 n}$ instead of S_{n} and $S_{2 n}$

