Math 340 * Exam 2 * April 5, 2012 * Victor Matveev Please show all work for each problem. Simplify all answers as much as possible. All electronic devices must be turned off. Notes are not permitted.

- 1) (22pts) Compute the following approximations for $\int x^4 dx$:
 - a) Find the Simpson's approximations S_2 and S_4 using n=2 and n=4 subintervals, respectively. Compare each result with the exact value of the integral, up to three decimal digits.
 - b) Correct the value of S_2 (not S_4) using its asymptotic error, $-\frac{h^4}{180} \left[f^{(m)}(b) f^{(m)}(a) \right]$, where $f^{(m)}(x)$ is an appropriate derivative of f(x). Simplify as much as possible.
 - c) Find the Richardson's extrapolation using values S_2 and S_4 obtained in part (a). Simplify as much as possible.
- 2) (22pts) Find values w_1 , w_2 and x_2 so that the following integration rule has degree of precision of 2 by applying this rule to f(x) = 1, x, and x^2 , and use the resulting integration rule to estimate $\int_{0}^{5\pi/9} \frac{\cos(x)}{\sqrt{x}} dx$. Why shouldn't you use the

Simpson's or Gaussian integration rules to estimate this integral?

$$\int_{0}^{h} \frac{f(x)}{\sqrt{x}} dx = w_1 f(0) + w_2 f(x_2)$$

3) (22pts) What does the following expression approximate for small values of *h*? To answer this question, expand the first and the third terms in the numerator in a Taylor series about x_0 , up to third order in *h*. You may leave out the remainder term. What is the error of this finite difference? To check your answer, apply this formula to $f(x)=x^2$

$$Df(x_0) = \frac{f(x_0 - 3h) - 4f(x_0) + 3f(x_0 + h)}{6h^2}$$

- 4) (22pts) Consider the function $f(x) = \frac{1}{1+x}$ on the interval [-0.5, 0.5]:
 - a) Use Newton's divided differences to find the quadratic interpolating polynomial approximation for f(x) using its values at $x_0 = -0.5$, $x_1 = 0$ and $x_2 = 0.5$. Make a rough sketch of this interpolating polynomial
 - b) Compare this interpolating polynomial with the quadratic Taylor polynomial for f(x) about $x_1=0$. Without doing any calculations, explain which of these two quadratic polynomials is a more accurate approximation to f(x) at x=0.47.

You may choose between problems 5 and 5':

5) (12pts) Find and make a rough sketch of the **piece-wise quadratic spline** q(x) on the interval [0, 2] that satisfies conditions listed below (note that q(x) is formed by two quadratic polynomials with domains [0, 1] and [1,2], respectively, and recall that a quadratic spline has a continuous first derivative):

$$q(0) = 1, q(1) = 0, q(2) = 2, \frac{dq}{dx}(2) = -1$$

5') (12pts) Derive the formula for Richardson's extrapolation of Simpson's integration rule using values

 S_{2n} and S_{3n} instead of S_n and S_{2n}