- Consider the Morris-Lecar model (see the hand-out, lecture notes, and section 4.1), and assume that *I*=0. For each of the three sets of model parameters given in the hand-out, pick any *V*(0) above the threshold (assume *n*(0)=0), obtaining a single spike. Then, within the same figure, plot the following panels using command "subplot" (make a separate figure for each of the three parameter sets):
 - Phase plane with the nullclines, the flow field, and the single-spike trajectory
 - Plot of V(t) as a function of time, showing a single spike
 - Plot of n(t) and $m(t) = m_{\infty}(V(t))$ as functions of time
 - Plot of $I_{Ca}(t) = g_{Ca}m_{\infty}(V(t))(V(t) V_{Ca})$ as a function of time
 - Plot of $I_{\kappa}(t) = g_{\kappa}n(t)(V(t) V_{\kappa})$ as a function of time

You can use any subplot layout that you like, but I recommend the following 3x2 layout:

subplot(3, 2, [3, 5]);	% Phase plane plot goes here
subplot(3, 2, 1);	% V(t) plot
subplot(3, 2, 2);	% m(t) and n(t) plot
subplot(3, 2, 4);	% ICa(t) plot
subplot(3, 2, 6);	% IK(t) plot

- 2. Determine which of the three parameter sets lead(s) to a more pronounced all-or-none threshold behavior.
- 3. Pick any one of three parameter sets. On the same figure panel, plot the equilibrium "I-V" curves for the leak, K⁺ and the Ca²⁺ currents, which are steady state current vs. potential relationships given by $I_{Ca}(V) = g_{Ca}m_{\infty}(V)(V-V_{Ca})$,

 $I_{K}(V) = g_{K}n_{\infty}(V)(V-V_{K})$ and $I_{L}(V) = g_{L}(V-V_{L})$. Finally, plot also the sum of all these ionic currents as a function of voltage, within the same panel.

4. For each of the three parameter sets, find the critical value of current producing a transition from rest to tonic spiking, with precision of two decimal digits. Make sure to keep a small step size *h* when you use the Euler method.