Lecture 11: Linear flows in 2D

Before solving non-linear 2D problems arising in modeling neuronal activity, it is important to review the solution of a linear system, since the behavior of a non-linear system near its equilibrium can sometimes be determined by its linear approximation near equilibrium (see below). Therefore, let's review linear systems:

Method 1: Matrix exponentiation (the only general method that works for any linear system!)

Consider a 2D flow field, where the velocity is a linear function of position $(x, y):\left\{\begin{array}{l}x^{\prime}(t)=a x+b y \\ y^{\prime}(t)=c x+d y \\ x(0)=x_{o} ; y(0)=y_{o}\end{array}\right.$
Using vector-matrix product rule, this can be written as $\left\{\begin{array}{l}\frac{d}{d t}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x(t)}{y(t)} \\ \binom{x(t)}{y(t)}_{t=0}=\binom{x_{o}}{y_{o}}\end{array}\right.$

Denoting $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $Y(t)=\binom{x(t)}{y(t)}$, this yields $\left\{\begin{array}{l}\frac{d Y}{d t}=A Y \\ Y(0)=Y_{o}\end{array}\right.$

It is quite easy to prove that the solution is the same as for a similar linear scalar equation, namely:

$$
Y(t)=e^{A t} Y_{o}
$$

The order of terms in this product is important: initial condition must be multiplied from the left, since the exponential of a matrix is a matrix; it is defined in the familiar way as:

$$
e^{A t}=I+A t+\frac{t^{2}}{2} A^{2}+\frac{t^{3}}{3!} A^{3}+\ldots=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}
$$

Here I is called the "identity matrix", $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, satisfying an important and easily verifiable matrix product property $A \cdot I=I \cdot A=A$. Thus, it is a matrix product analogue of a scalar unity, 1 .

In the exponential series, any power of a square matrix, A^{k}, is a matrix of the same dimension as A, so all terms in this series are 2×2 square matrices (otherwise this expression wouldn't make sense).

In some cases matrix exponentiation is very simple and efficient, as in the important example below:

Example 1: solve the linear system $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=0 \\ x(0)=1 ; \quad y(0)=2\end{array}\right.$
Step 1: Write in vector form: $\left\{\begin{array}{l}\frac{d Y}{d t}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) Y(t) \\ Y(0)=\binom{1}{2}\end{array}\right.$
Step 2: Examine powers of system matrix $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right): A^{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=0 \Rightarrow A^{k>1}=0$
Matrices with this interesting property are called "nilpotent"
Step 3: Exponentiate the matrix: $e^{A t}=I+A t+\underbrace{\frac{t^{2}}{2} A^{2}+\ldots}_{=0}=I+A t=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) t=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$
Step 4: Multiply by initial condition to obtain the solution:

$$
Y(t)=\binom{x(t)}{y(t)}=e^{A t} Y_{o}=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\binom{x_{o}}{y_{o}}=\binom{x_{o}+t y_{o}}{y_{o}}=\binom{1+2 t}{2} \quad \text { We are done! }
$$

As we saw from the flow sketch done in class, $y(t)$ is constant, and $x(t)$ is linearly increasing with velocity $=y$ 。

The matrix exponential method is also very useful when analyzing rotating flows. In general however, matrix exponentiation is a computationally expensive and indirect way to describe the solution. This brings us to the next method:

Method 2: Solution using eigenvectors and eigenvalues

Eigenvectors / eigenvalues (the "self"-vectors/"self"-values) of a given matrix A are solutions of equation

$$
A \mathbf{v}_{1,2}=\lambda_{1,2} \mathbf{v}_{1,2} \Leftrightarrow A \mathbf{v}_{1,2} \text { is parallel to } \mathbf{v}_{1,2} \text { (or zero) }
$$

- "Eigenvector" is a misnomer, since it is not a vector: it has a direction, but arbitrary length. Therefore, a more proper term for an eigenvector would be an eigendirection (or linear vector space)
- Since λ is a scalar, an eigendirection is a direction which is not changed by matrix multiplication: for our purposes, this means that eigendirections are directions where the velocity $\left(A \mathbf{v}_{1,2}\right)$ is parallel to the position vector ($\mathbf{v}_{1,2}$), keeping the flow linear (an important exception is $\lambda=0$, in which case velocity is zero).
- Thus, eigenvectors are one-dimensional linear vector spaces invariant under the flow
- Non-zero $N \times N$ matrix A has at least one, and no more than N linearly independent eigenvectors

To find the eigenvalues, one has to solve the "characteristic equation" $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right)=0$

Once eigenvalues are known, one can find eigenvectors directly, by solving $A \mathbf{v}_{1,2}=\lambda_{1,2} \mathbf{v}_{1,2}$. Since eigenvectors are really eigendirections with no fixed length, when looking for solutions one can set one of the vector components to 1 : look for solutions of form $\binom{1}{c}$ or $\binom{c}{1}$: one of the two is bound to work (there are also some convenient shortcuts for 2×2 systems).

Here is why eigenvectors are important: if two linearly independent eigenvectors exist, then (and only then) the solution to the linear system $Y^{\prime}=A Y$ equals
$Y(t)=e^{A t} Y_{o}=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$ where $c_{1,2}$ are found from initial condition $Y_{o}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$
Example 2: solve the linear system $\left\{\begin{array}{l}x^{\prime}=2 x-y \\ y^{\prime}=-x+2 y \\ x(0)=2 ; \quad y(0)=1\end{array}\right.$
Step 1: Find eigenvalues: $\quad \operatorname{det}\left(\begin{array}{cc}2-\lambda & -1 \\ -1 & 2-\lambda\end{array}\right)=(2-\lambda)^{2}-1=0 \Rightarrow 2-\lambda= \pm 1 \Rightarrow \lambda_{1}=1, \lambda_{2}=3$

Step 2: Find the two eigenvectors (if they exist) in the form $\mathbf{v}_{1,2}=\binom{1}{c}$:
Find $\mathbf{v}_{1}:\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)\binom{1}{c}=\lambda_{1}\binom{1}{c}=\binom{1}{c} \Rightarrow\left\{\begin{array}{c}2-c=1 \\ -1+2 c=c\end{array} \Rightarrow c=1 \Rightarrow \mathbf{v}_{1}=\binom{1}{1}\right.$
Find $\mathbf{v}_{2}:\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)\binom{1}{c}=\lambda_{2}\binom{1}{c}=3\binom{1}{c} \Rightarrow\left\{\begin{array}{c}2-c=3 \\ -1+2 c=3 c\end{array} \Rightarrow c=-1 \Rightarrow \mathbf{v}_{2}=\binom{1}{-1}\right.$
[Note: in each case, the 2 equations for c are linearly dependent, so it is sufficient to consider one of them]

Step 3: Write down the vector solution:

$$
Y(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}=c_{1} e^{t}\binom{1}{1}+c_{2} e^{3 t}\binom{1}{-11}=\binom{c_{1} e^{t}+c_{2} e^{3 t}}{c_{1} e^{t}-c_{2} e^{3 t}}
$$

Step 4: Find the coefficients using the initial condition:

$$
Y(0)=\binom{2}{1}=\binom{c_{1}+c_{2}}{c_{1}-c_{2}} \Rightarrow\left\{\begin{array} { l }
{ c _ { 1 } = \frac { 3 } { 2 } } \\
{ c _ { 2 } = \frac { 1 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left\{\begin{array}{l}
x(t)=\frac{3 e^{t}+e^{3 t}}{2} \\
y(t)=\frac{3 e^{t}-e^{3 t}}{2}
\end{array}\right. \\
\hline
\end{array}\right.\right.
$$

Relationship between linear and non-linear systems: the Jacobian

The behavior of any non-linear system near its equilibrium cat be analyzed using its linear approximation near equilibrium, i.e. using the first terms in the Taylor series of the velocity field:

$$
\begin{aligned}
& \begin{array}{l}
\frac{d x}{d t}=f(x, y) \\
\frac{d y}{d t}=g(x, y)
\end{array} \Rightarrow \text { Express in terms of deviations from equilibrium } \Rightarrow\left\{\begin{array}{l}
x(t)=x^{*}+\delta x(t) \\
x(t)=y^{*}+\delta y(t)
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{d}{d t} \delta x=f\left(x^{*}+\delta x, y^{*}+\delta y\right)=\underbrace{f\left(x^{*}, y^{*}\right)}_{0 \text { at equilibrium }}+\frac{\partial f}{\partial x}\left(x^{*}, y^{*}\right) \delta x+\frac{\partial f}{\partial y}\left(x^{*}, y^{*}\right) \delta y \\
\frac{d y}{d t}=\frac{d}{d t} \delta y=g\left(x^{*}+\delta x, y^{*}+\delta y\right)=\underbrace{g\left(x^{*}, y^{*}\right)}_{0 \text { at equilibrium }}+\frac{\partial g}{\partial x}\left(x^{*}, y^{*}\right) \delta x+\frac{\partial g}{\partial y}\left(x^{*}, y^{*}\right) \delta y
\end{array}\right.
\end{aligned}
$$

We obtained a linear system with coefficients equal to the partial derivatives of the velocity field, which we can write more succinctly in vector-matrix product form:

$$
\frac{d}{d t}\binom{\delta x(t)}{\delta y(t)}=\underbrace{\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)_{\left(x^{*}, y^{*}\right)}}_{\text {"Jacobian" } D F}\binom{\delta x(t)}{\delta y(t)}
$$

This can be written simply as $\frac{d Y(t)}{d t}=D F \cdot Y(t)$ where $Y(t)=\binom{\delta x(t)}{\delta y(t)}$ and $F=\binom{f(x, y)}{g(x, y)}$
The matrix of partial derivatives of vector field $F(x, y)$ is denoted $D F(x, y)$ and called the Jacobian; note that it is a matrix of constants!

According to the method learned above, if the Jacobian has two distinct eigendirections, the behavior near equilibrium is approximated by

$$
Y(t) \approx Y^{*}+\underbrace{c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}}_{\delta Y(t)}
$$

If both eigenvalues of the Jacobian have positive real part, both terms diverge to infinity, and therefore the equilibrium is unstable; if the sign of the real part is negative, the equilibrium is stable, and if signs are distinct, the equilibrium is a saddle. For a full classification, see textbook sections 4.2.2-4.2.5

