Math 430 * Math 635 * Fall 2015 * Victor Matveev

Equivalent circuit of a "passive" cell

Let's assume only K^{+}channels are present:

Kirchhoff law:
total applied current (from outside to inside) = sum of currents through two branches of the circuit

$$
I_{C}+I_{K}=I
$$

$$
\Rightarrow \quad I=C \frac{d V}{d t}+G_{K}\left(V-V_{K}\right) \Rightarrow C \frac{d V}{d t}=I-G_{K}\left(V-V_{K}\right)
$$

Here $V_{K}=\frac{R T}{z F} \ln \frac{\left[K^{+}\right]_{\text {out }}}{\left[K^{+}\right]_{\text {in }}}=\frac{k_{B} T}{q} \ln \frac{\left[K^{+}\right]_{\text {out }}}{\left[K^{+}\right]_{\text {in }}}$ is the potassium reversal potential (Nernst potential)

- NOTE: $\mathrm{V}_{\mathrm{K}}<0$, since a very negative potential is required to force K^{+}ions to move into the cell against their concentration gradient. See proof of this expression in another file...

We can easily generalize to two different channel types are present, K^{+}and Cl^{-}:

$$
\begin{aligned}
& I_{C}+I_{K}+I_{C l}=I \\
& \Rightarrow I=C \frac{d V}{d t}+G_{K}\left(V-V_{K}\right)+G_{C l}\left(V-V_{C l}\right) \Rightarrow C \frac{d V}{d t}=I-G_{K}\left(V-V_{K}\right)-G_{C l}\left(V-V_{C l}\right)
\end{aligned}
$$

Let's who that the two (or any number) of ionic currents can be combined into a single term:
$C \frac{d V}{d t}=I-G_{K}\left(V-V_{K}\right)-G_{C l}\left(V-V_{C l}\right)$

$$
\begin{aligned}
& =I-\left(G_{K}+G_{C l}\right) V+G_{K} V_{K}+G_{C l} V_{C l} \\
& =I-\left(G_{K}+G_{C l}\right)\left(V-\frac{G_{K} V_{K}+G_{C l} V_{C l}}{G_{K}+G_{C l}}\right) \\
& =I-G_{L}\left(V-V_{R}\right)
\end{aligned}
$$

- Total "leak" / "input" conductance: $G_{L}=G_{K}+G_{c l}$

Where we introduce two quantities:

- "Resting" / "equilibrium" potential: $\mathrm{V}_{R}=\frac{G_{K} V_{K}+G_{C l} V_{C l}}{G_{K}+G_{C l}}$
$=$ average of reversal potentials weighted by their conductances

We may perform another simplification:

$$
\begin{aligned}
C \frac{d V}{d t} & =I-G_{L}\left(V-V_{R}\right) \\
& =-G_{L}\left(V-V_{R}-\frac{I}{G_{L}}\right) \quad \text { Now let's denote } \frac{1}{G_{L}}=R_{L} \quad \text { ("Input resistance") } \\
& =-G_{L}\left(V-\left(V_{R}+R_{L} I\right)\right) \\
& =-G_{L}\left(V-V_{R I}\right) \quad \text { where equilibium potential in non-zero current is } \quad V_{R I}=V_{R}+R_{L} I
\end{aligned}
$$

Finally, we can divide both sides of the equation by C, and note that $G_{L} / C=1 /\left(R_{L C}\right)=1 / \tau_{m}$

$$
\frac{d V}{d t}=-\frac{V-V_{R I}}{\tau_{m}}
$$

Denoting the deviation from equilibrium as $v=V-V_{R I}$, and noting that $d v=d V$, we obtain:

$$
\begin{aligned}
& \frac{d v}{d t}=-\frac{v}{\tau_{m}} \Rightarrow v(t)=v_{o} e^{-t / \tau_{m}} \Rightarrow V(t)-V_{R I}=\left(V_{o}-V_{R I}\right) e^{-t / \tau_{m}} \\
& \Rightarrow V(t)=V_{R I}+\left(V_{o}-V_{R I}\right) e^{-t / \tau_{m}} \\
& \text { potential decays exponentially to } V_{\mathrm{RI}} \text { with characteristic time } \tau_{m}
\end{aligned}
$$

