Lecture Notes – Math 240-002
Victor Matveev

March 30, 2005
Application of Difference Equations:

Root Finding

Last week we learned that a 1st order difference equation
[image: image1.wmf]1

()

nn

yfy

+

=

 approaches an equilibrium value determined by
[image: image2.wmf]()

eqeq

yfy

=

, if such an equilibrium is stable, for a wide range of initial conditions. It’s as if our difference equation was “trying to solve” an equation of form
[image: image3.wmf]()

yfy

=

.

We can use this observation when trying to solve equations of form
[image: image4.wmf]()

yfy

=

. To do this, consider a difference equation
[image: image5.wmf]1

()

nn

yfy

+

=

, and pick a “rough guess” y0 as the initial condition. Then, each successive value yn (n = 1, 2, 3…) will give an improved approximation of the root of our equation. We know that that our sequence yn will approach the root value yroot , provided that this root is the stable equilibrium of our original equation (that is, if
[image: image6.wmf]'()1

root

fy

<

).
Example 1: Solve numerically equation x = cos(x).
This is a transcendental equation that cannot be solved algebraically; it is easy to see that the root of this equation is some irrational number between 0 and π/2 [show graph]. Let’s consider the difference equation xn+1 = cos(xn), and pick x0 =1 as the initial guess. Then

x1 = cos(x0) = cos(1) = 0.5403

x2 = cos(x1) = cos(0.5403) = 0.8576

x3 = cos(x2) = cos(0.8576) = 0.6543
x4 = cos(x3) = cos(0.6543) = 0.7935

This sequence converges oscillatorily to the exact solution xroot=0.7391… radian. Note that our root is a stable fixed point of our difference equation: the derivative of the right-hand side is a negative sine function, which is less than one in absolute value on the interval (0, π/2) containing our root.
You may think that there aren’t that many equations that have the form
[image: image7.wmf]()

xfx

=

, but it is easy to show that any other equation can be modified to look this way. Any algebraic equation can be written in the form g(x)=0. If we introduce a new function f(x)=g(x)+x, then g(x)=f(x)-x, and it is clear that the original equation g(x)=0 is transformed into f(x)=x.
[image: image8.jpg]Solving x=cos(x) by iteration

Example 2.

You may not realize it, but last week we already used this method to find a square root of a number. To find a square root of say number 5 means to solve an equation
[image: image9.wmf]2

5

x

=

, or, written differently,
[image: image10.wmf]2

50

x

-=

. Multiplying this equation by a constant such as -1/5 will not change it, so we have
[image: image11.wmf]2

()/510

gxx

=-+=

. Now introduce f(x)=g(x)+x=
[image: image12.wmf]2

/51

xx

-+

, and we end up with a familiar equation
[image: image13.wmf]2

/51

xxx

=-+

, which we can solve iteratively by considering a difference equation

[image: image14.wmf]2

1

/51

nnn

xxx

+

=-+

(You can check yourselves that the multiplication by -1/5 was needed to ensure stability of the fixed point √5). Let’s pick x0 =2 as our initial guess; then
x1 = x0 - x02/5 + 1 = 2 – 4/5 + 1 = 2.2
x2 = x1 – x12/5 + 1 = 2.2 – 2.22/5 + 1 = 2.232
This sequence converges very fast to the correct result √5=2.2361…

Newton’s Method

Newton’s method also belongs to the class of iterative methods. It relies on the fact that a smooth (differentiable) function can be approximated by a line in a vicinity of any given point. In other words, this method involves a linear approximation of a function, given by the first two terms in the Taylor series [show a graph]

Let’s start with a general equation of the form g(x)=0, and take an initial guess, x0. Now, expanding g(x) in a Taylor series around point a=x0, we obtain
 g(x) ≈ g(x0) + g’(x0) (x – x0)

If we neglect higher-order terms, we get an equation of a line tangent to the graph of g(x) function at point x0:
 y = g(x0) + g’(x0) (x – x0)

As our next, improved guess for the root, x1, we simply pick the intersection of this line with the x-axis: g(x1)=0 → g(x0) + g’(x0) (x1 – x0) = 0 → x1 – x0 = - g(x0) / g’(x0), so we have:

 x1 = x0 - g(x0) / g’(x0)

We may have to repeat this iteration several times to achieve desired accuracy:

 xn+1 = xn - g(xn) / g’(xn)

It is easy to see that the root of the equation xroot is a fixed point of this difference equation, since g(xroot)=0. It is also clear that this method fails if g’(xroot)=0 – in other words, the graph of function g(x) should not be tangent to the x-axis.
Example 3: Solve equation x = cos(x) using the Newton’s method:

g(x) = x - cos(x) = 0

Since g’(x) = 1 + sin(x), we have

 xn+1 = xn – (xn - cos(xn)) / (1 + sin(xn))
Now let us again pick x0 =1 as the initial guess. Then

x1 = 1 – (1 - cos(1)) / (1 + sin(1)) = 0.750
x2 = 0.75 – (0.75 - cos(0.75)) / (1 + sin(0.75)) = 0.739
Note how fast the convergence is to the exact solution xroot=0.7391 radian!

Example 4 [Let the students do this themselves]: Use the Newton’s method to find the square root of 5, by solving the equation g(x) = x2 – 5:

 xn+1 = xn - g(xn) / g’(xn) = xn – (x2n - 5) / (2 xn)

Starting with x0 =2 as our initial guess, we have

x1 = 2 – (22 – 5) / 4 = 2 + ¼ = 9/4 = 2.25

x2 = 9/4 – ((9/4)2 – 5) / 4.5 = 9/4 – (81–5*16) / (16*4.5) = 9/4 - 1/72 = 161/72 = 2.2361
We obtained a pretty accurate rational approximation of √5 in two iterations only!

Bisection method

Let me now describe the most straightforward and simple method there is – the so-called bisection method [show graph]. If we know the interval [a,b] that “brackets” our root, say g(a) < 0 and g(b) > 0, then we pick as our next approximation the mid-point between a and b values: xnew = (a+b) / 2. Now, if g(xnew) has the same sign as g(a), we set a= xnew, and if g(xnew) has the same sign as g(b), we set b=xnew. We repeat this process as many times as needed to find an accurate solution. During our PC lab session next week you will write a program that implements this method. The advantage of this method is its simplicity; it is easy to implement using Matlab or any other programming language.
Method of False Position
This method is in a way similar to the bisection method. It improves on the bisection method by taking as the next guess the x-axis intersection of the line connecting two points bracketing the root on the g(x) function curve. If the interval [a,b] brackets our root, then the equation of the line connecting points (a, g(a)) and (b, g(b)) is
 L(x) = g(a) + m (x – a), where the slope is m = (g(b) – g(a)) / (b – a)

The x-intercept of this line is our next guess for the root, and is given by L(x)=0, or xnew = a – g(a) / m. Next, we proceed as we did in the bisection method: if g(xnew) has the same sign as g(a), we set a= xnew, and if g(xnew) has the same sign as g(b), we set b=xnew. Repeat this process as many times as needed to find an accurate solution.

Next week we will compare the efficiency of these methods, by studying their convergence rates.

 Rate of Convergence

Not all of the methods we learned today are equally efficient. The efficiency of a given method is determined by the “speed” (rate) with which a sequence of “guesses” xn converges to the true root. The root finding method is said to have a convergence rate r if the following is true

[image: image15.wmf]1

lim

n

r

n

n

C

e

e

+

®¥

=

Here
[image: image16.wmf]n

e

 is the error at the n-th step (the difference between the n-th guess and the true root). This statement is easier to understand if re-written in the form
[image: image17.wmf]1

r

nn

ee

+

µ

, as
[image: image18.wmf]n

®¥

.
The iteration method, bisection method and the false position method all converge linearly (have an order of convergence of one), while the Newton method has quadratic convergence (r=2). Therefore, the Newton’s method is superior in most cases.
Exercise: prove that for the iteration method, r=1, and C=λ=
[image: image19.wmf]'()

root

fy

_1172941549.unknown

_1172945370.unknown

_1173375825.unknown

_1173376079.unknown

_1173376080.unknown

_1173513098.unknown

_1173375900.unknown

_1172945466.unknown

_1172945591.unknown

_1172945415.unknown

_1172943155.unknown

_1172945225.unknown

_1172941759.unknown

_1172940964.unknown

_1172941055.unknown

_1172940957.unknown

