Homework #5, Problem 2a.
We will now prove that 
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Taking the logarithm of above, we have to prove that 
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Let us simplify this long expression by introducing variable 
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Now, it is obvious that z→0 as N→∞. Therefore, we can use the Taylor series expansion 
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. Substituting the definition of z into this expansion, we obtain:
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Note that the two terms quadratic in x/N cancelled each other. Now the last two terms we should drop, since they are as small or smaller than the Taylor series term z3/3 that we neglected. Now we only have to multiply by N to obtain the result we wanted to prove:
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Since we obtained this approximation from the Taylor series of ln(1+z) around a=0, this approximation gives limiting behavior for z→0, which is equivalent to the limit N→∞. This completes our proof.
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