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Abstract 

Ca2+-dependent cell processes such as neurotransmitter or endocrine vesicle fusion are inherently 

stochastic due to large fluctuations in Ca2+ channel gating, Ca2+ diffusion and Ca2+ binding to buffers and 

target sensors. However, prior studies revealed closer-than-expected agreement between deterministic 

and stochastic simulations of Ca2+ diffusion, buffering and sensing, as long as Ca2+ channel gating is not 

Ca2+-dependent. To understand this result more fully, we present a comparative study complementing 

prior work, focusing on Ca2+ dynamics downstream of Ca2+ channel gating. Specifically, we compare 

deterministic (mean-field / mass-action) and stochastic simulations of vesicle exocytosis latency, 

quantified by the probability density of the first-passage time (FPT) to the Ca2+-bound state of a vesicle 

fusion sensor, following a brief Ca2+ current pulse. We show that under physiological constraints, the 

discrepancy between FPT densities obtained using the two approaches remains small even if as few as 

⁓50 Ca2+ ions enter per single channel-vesicle release unit. Using a reduced two-compartment model for 

ease of analysis, we illustrate how this close agreement arises from the smallness of correlations 

between fluctuations of the reactant molecule numbers, despite the large magnitude of the fluctuation 

amplitudes. This holds if all relevant reactions are heteroreaction between molecules of different species, 

as is the case for the bimolecular Ca2+ binding to buffers and downstream sensor targets. In this case 

diffusion and buffering effectively decorrelate the state of the Ca2+ sensor from local Ca2+ fluctuations. 

Thus, fluctuations in the Ca2+ sensor’s state underlying the FPT distribution are only weakly affected by 

the fluctuations in the local Ca2+ concentration around its average, deterministically computable value. 

Summary 

Many fundamental Ca2+-dependent cell processes are triggered by local Ca2+ elevations involving only a 

few hundred Ca2+ ions. Therefore, one expects large Ca2+ concentration fluctuations, which are ignored 

by deterministic reaction-diffusion modeling approaches. However, more accurate stochastic approaches 

require tracking trajectories of individual Ca2+ ions and its binding targets, which is very computationally 

expensive. This study reveals conditions under which Ca2+-dependent processes like secretory vesicle 

fusion can be modeled using efficient deterministic approaches, without sacrificing significant accuracy. 

We find that deterministic methods can accurately predict the delay to the fusion of a neurotransmitter-

containing vesicle, as long as the number of Ca2+ ions is above about 50. We reveal factors that explain 

the limited impact of stochastic fluctuations in this case. 
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I. INTRODUCTION 

Many fundamental cell processes such as myocyte contraction and synaptic and endocrine secretory 

vesicle fusion are controlled by highly localized Ca2+ signals resulting from the opening of  

transmembrane Ca2+ channels (1-5). Imaging local Ca2+ concentration required for the study of these 

processes is a great challenge due to physical limitations on the spatial and temporal resolution of optical 

imaging, and necessarily perturb the Ca2+ signals being measured. Therefore, Ca2+ modeling continues to 

play a crucial role in the study of a variety of Ca2+-dependent cell mechanisms. The main decision facing 

a modeler is whether to choose a deterministic or a stochastic solver (5-10). While deterministic mass-

action reaction-diffusion approach offers superior computational efficiency, it completely ignores local 

fluctuations in Ca2+ resulting from the stochastic Ca2+ channel gating, diffusion, and biochemical reactions. 

For processes controlled by single-channel Ca2+ domains, fluctuations are considerable: a typical Ca2+ 

current of 0.2 pA and duration of 0.2 ms translates to an influx of only about 120 Ca2+ ions, many of which 

become bound to mobile buffers and transmembrane proteins before reaching their downstream target 

sensors (11-13). Thus, one should expect large Ca2+ concentration fluctuations at the location of a 

relevant Ca2+ sensor that only a few Ca2+ ions will reach (13,14). Stochastic fluctuations were shown to 

have functional consequences in reaction-diffusion models of a variety of cell processes (see e.g. (15-

18)).  For Ca2+-controlled processes, such stochastic effects are especially pronounced in the presence of 

Ca2+–induced Ca2+ release (CICR) responsible for excitation-contraction coupling in myocytes, since 

CICR introduces a direct feedback between Ca2+ fluctuations and Ca2+ influx (19-28). 

Despite the widely recognized importance of stochastic effects, comparative studies suggest that 

downstream of stochastic channel gating, the discrepancy between deterministic and stochastic 

simulations of Ca2+ diffusion, buffering and binding can be surprisingly small (24,29). Therefore, in the 

absence of CICR, computationally inexpensive simulations of Markovian stochastic channel gating can be 

combined with deterministic models of Ca2+ diffusion and binding (either compartment-based or spatially 

resolved), leading to computationally inexpensive methods that avoid simulations of particle-based 

Brownian motion and/or stochastic reactions (7,27-30). This in fact has often been the approach even in 

the modeling of CICR, where Ca2+ channel gating is the primary source of fluctuations (5,19-21,31-39). 

Various forms of this hybrid approach has also proved useful in the study of vesicle fusion (40-42), 

Ca2+ signaling in dendrites (43), and Ca2+-dependent K+ channels (44). 

Despite a large number of relevant studies, in particular a comprehensive comparative computational 

study by Modchang et al. (29), a deep understanding of the discrepancy between stochastic and 

deterministic simulations downstream of stochastic Ca2+ channel gating effects is still lacking. As a result, 

as has been noted previously (24), the choice between deterministic and stochastic solvers is usually 

made on a completely ad hoc basis. In particular, it is widely accepted that deterministic reaction-diffusion 

methods are highly inaccurate in the modeling of any biochemical process involving a small number of 

molecules (e.g. the number of Ca2+ ions, NCa). This expected inaccuracy is due to the well-known 

discrepancy between mass-action and stochastic representations of any nonlinear process (45,46). 

However, here we show that the size of this discrepancy between deterministic and stochastic 
approaches is not always as large as expected from an often-used naïve 1/√𝑁஼௔ scaling, and depends 

not only on the size of the Ca2+ fluctuations, but also on the type of observable targeted by the modeling, 

and the type of reactions involved. In particular, following several recent studies, we focus on the first 

passage time distribution (FPTD) to full finding of a model Ca2+ sensor for vesicle fusion in the presence 

of bimolecular Ca2+ buffering reactions (13,14,47-52). We consider a maximally reduced but spatially 

resolved model that contain only two sources of fluctuations: (1) the diffusive fluctuations in Ca2+ 
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concentration, and (2) the fluctuations due to Ca2+ binding and unbinding to Ca2+ buffers and sensors. 

Considering such a reduced model reveals more clearly the interplay between fluctuations due to 

diffusion and reaction in limiting the accuracy of the mean-field modeling of Ca2+ sensor binding time. Our 

main finding is that the discrepancy between deterministic and stochastic estimates of FPTD can be 

negligible as long as the number of Ca2+ ions is above about ⁓50. Finally, to clarify our conclusions, we 

will also analyze an even simpler two-compartment model of Ca2+ diffusion and binding, following the 

approach of Smith and Weinberg (26,49,53). Our results further elucidate how the interplay between the 

diffusion and the reaction time scales affects the accuracy of the deterministic approach 

(15,23,24,29,38,49). 

II. METHODS 

II.1 Deterministic 3D mass-action / mean-field approach 

Let us first describe the deterministic model of Ca2+-dependent exocytosis. For the sake of simplicity, we 

consider the case of a single dominant Ca2+ buffer with a single Ca2+ ion binding site, as described by the 

reaction 
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Here B and B* represents the free buffer and Ca2+-bound buffer molecules, respectively (i.e. B*=CaB), and 

k+ (k) are the Ca2+-buffer binding (unbinding) rates. Assuming isotropic diffusion and mass-action 

kinetics, this yields the following mass-action reaction-diffusion system (54-56): 
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where DB , D*
B  and DC are the diffusivities of the free buffer, bound buffer and Ca2+, respectively, and Ca, 

B and B* denote concentrations of Ca2+, free buffer and Ca2+-bound buffer, respectively. The delta 

function indicates a point source (channel) centered at location rCa, with amplitude Ca =ICa/(2F) where ICa  

is the Ca2+ current strength, and F is the Faraday constant. The sink term S describes Ca2+ binding to 

the model exocytosis sensor, as will be explained further below (see Eqs. 6-7). 

We take a simple cube as the diffusion domain, with zero flux boundary conditions for Ca2+ and buffer on 

all boundaries. Reflective boundary conditions are well suited for simulating an array of Ca2+ channels on 

a large section of a flat cell membrane. Further, reflective boundary conditions ensure non-negligible 

probability of Ca2+ binding to a model exocytosis Ca2+ sensor (see below) within a short time after the 

channel opening, even if only 20 Ca2+ ions enter the model volume during the 1ms-long current pulse 

(see Figs. 1-2). Replacing no-flux conditions with Robin boundary conditions simulating Ca2+ pumps and 

exchangers on the part of the boundary containing the channel would be more realistic, but would 

introduce the same type of bimolecular Ca2+-binding reactions already present in this model, and 

therefore would not substantially impact the comparison of stochastic and deterministic simulation results. 
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The reaction-diffusion system given by Eqs. 2 is locally coupled to reactions describing a single stationary 

Ca2+ binding exocytosis sensor, with parameters inferred from the studies of neurotransmitter release at 

the calyx of Held synapse (57,58): 
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The rate parameters are k=8.43 ms1; k+=0.116 M1ms1; b=0.25; γ=7.0 ms1 (except Figure S1 of the 

Supporting Material, where the binding rate k+ is increased by a factor of 10). This reaction is converted to 

a system of deterministic ODEs describing the Markovian transitions between distinct sensor states: 
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Here CaS is the time-dependent [Ca2+] averaged over a small spherical volume describing the sensor, 

obtained by numerically solving Eq. 2, whereas S1..5 and R are the time-dependent occupancy 

probabilities of the distinct states of the single-copy sensor. In this simplified approach, all rates in Eq. 4 

are deterministic, with the forward binding rates proportional to the time-dependent but deterministic local 

Ca2+ concentration, CaS. Thus, Eq. 4 represents a mean-field description, neglecting stochasticity in the 

binding rates caused by local Ca2+ fluctuations (42). Nevertheless, this deterministic mean-field approach 

allows to estimate the fluctuation in the FPT to the fully-bound state R by computing its probability 

density, given by the transition rate to this final absorbing state (59): 

       . FPT

d R
t

dt
                                                                              (5) 

The primary goal of this study is to compare the FPT density (FPTD) given by Eq. 5 with the one obtained 

using fully stochastic simulation explained in the next subsection (see Figs. 1-3), in order to  reveal the 

quantitative impact of various fluctuation sources on the latency to vesicle release. 

In the simplest deterministic implementations of Ca2+ signaling models, the sink term in Eq. 2 is usually 

ignored, and therefore Ca2+ is not fully conserved. However, the binding of Ca2+ to exocytosis sensor can 

become significant when the Ca2+ influx current is small. As has been pointed out previously (24,29), 

failure to account for the binding-induced Ca2+ depletion is not an inherent deficiency of the deterministic 

approach, and can be corrected by restoring full Ca2+ conservation. In our implementation, this is 

achieved by adding a localized Ca2+ sink term in Eqs. 2: 

                       , .S St g q tr r r                           (6) 

Here g(rrS) has a finite support defined by the sensor volume, centered at the sensor location rS, with a 

total volume integral of 1, whereas q(t) is the total Ca2+ flux induced by the sensor reactions in Eq. 4:    
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In our model, the sensor position rS  in Eq. 6 is close to the channel location rCa, as shown in Fig. 1A,B. 

The distance between the two is either 33 nm (Figs. 1-3 and Fig. S2 of the Supporting Material) or 83 nm 

(Fig. S1 of the Supporting Material). The deterministic simulation system is described by Eqs. 2-7, and 

satisfies exact Ca2+ conservation. However, in order to fully quantify the impact of this binding-induced 

Ca2+ depletion, we will repeat all simulations with and without the S sink term in Eq. 2.  

Note that Eqs. 2-7 describe the Ca2+ sensor as a volume reactivity (Doi) model, whereby the binding 

reaction takes place within a certain finite volume at a given time-dependent rate. In contrast, the same 

sensor binding is treated as a surface reactivity (Smoluchowski) model in the stochastic simulation 

described in the next subsection, whereby the reaction takes place with certainty when the Ca2+ ion is 

within the binding distance of the sensor (60,61). Nevertheless, the two sets of results are remarkably 

close to each other (see Figs. 1-2), with the sensor’s binding radius (the support of g(r) in Eq. 6) 

constituting one free matching parameter, set to roughly equal the Smoluchowski binding radius in the 

stochastic approach. We note that the exact Ca2+ conservation is exactly satisfied for any value of this 

parameter. In principle this extra parameter could be avoided by using the surface reactivity model in the 

deterministic approach as well, but at the expense of greater complexity of implementing the prescribed 

flux given by Eq. 7 as a time-dependent boundary condition on the sensor’s surface.  

Biologically, exocytosis sensors are positioned around the base of a vesicle, the latter acting as an 

obstacle to diffusion (13). However, we deliberately excluded vesicles and other obstacles from our 

comparative analysis, since they would not contribute to the discrepancy between deterministic and 

stochastic simulations arising from the neglect of local Ca2+ fluctuations, unless molecular crowding 

effects are taken into account. The effect of diffusion obstacles on exocytosis has already been explored 

in detail (13,47,62-67). 

All deterministic reaction-diffusion simulations are performed using the CalC (“Calcium Calculator”) 

software (68,69). 

II.2 Stochastic approach 

Stochastic approach allows a more realistic modeling of the biochemical pathways leading to vesicle 

release, taking into account relevant fluctuations, albeit at the computational expense of repeated trials of 

an appropriate Markov Chain Monte Carlo (MCMC) simulation. However, accurately combining diffusion 

with second-order bi-molecular reactions described by Eqs. 3 is an inherently complex issue for both the 

deterministic approach and the stochastic approach. Since this study aims to compare these two types of 

computation, it is important to recognize the different methods used to combine stochastic reaction and 

diffusion (6-9,45,60,70-76): 

1) First Passage-Time Kinetic Monte-Carlo method (FPKMC) (77-79) directly combines stochastic bi-

molecular binding with Brownian diffusion using an exact, event-based approach. This algorithm 

takes into account excluded volume and crowding effects. Approximate implementations include the 

Green’s Function Reaction Dynamics method (GFRD) (80,81)) and the Cellular Dynamics Simulator 

(82). FPKMC is also known as eGFRD (“enhanced GFRD”), and is variants are implemented in the e-
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Cell software (83). FPKMC has also been extended to the Doi volume reactivity model of bimolecular 

binding (61). 

2) Discrete-time particle-based Brownian reaction dynamics (BRD) simulators (e.g. Smoldyn (84), MCell 

(85), GridCell (86)) can be viewed as approximations of the FPKMC/GFRD method. Advanced 

versions of this algorithm such as ReaDDy (71) also implement interaction potentials and excluded 

volumes. Since bi-molecular binding probability is not modeled exactly by a finite time-step method 

(70), convergence of results with time step size must be carefully checked.  

3) Course-grained stochastic simulation algorithm referred to as the Reaction-Diffusion Master Equation 

(RDME) method  (e.g. SmartCell (87), MesoRD (88), URDME (89), STEPS (90), Lattice Microbes 

(91)) implement reactions exactly in elementary sub-volumes using the Gillespie stochastic simulation 

algorithm (92), assuming that reactants are well-mixed in each sub-volume (74). Diffusion is treated 

as an exchange reaction between neighboring voxels. Spatial resolution is limited by sub-volume 

size, which cannot be arbitrarily reduced without losing all reactions (60,61,74,93-95). A convergent 

modification of this approach resolves the latter problem by allowing reactions between neighboring 

cells (96). 

A large variety of hybrid methods have also been developed (reviewed in (75)), for instance methods 

combining the advantages of RDME and BRD algorithms (27,97,98), as well as hybrid methods 

combining in various ways the stochastic and deterministic reaction-diffusion components (14-

16,30,42,99-104). Finally, for larger number of reactants, the Langevin approximation and formulations 

based on stochastic partial differential equations can be used (8,75,76,105-107). 

For our comparative study, we will use Smoldyn (84), a particle-based BRD method, because of its 

flexibility, ease of use, and computational efficiency. This algorithm uses the Smoluchowski surface-

reactivity model of bi-molecular reaction, with binding radii calibrated by approximate matching of the 

corresponding macroscopic mass-action reaction rates, making this method particularly well-suited for 

comparing with the deterministic mass-action simulation approach. This allows us to use the same 

reaction and diffusion parameters values in the stochastic and in the deterministic model of Ca2+ buffering 

and diffusion, without modification. It should be remembered however that the relationship between the 

macroscopic binding rates (“propensities”) and the underlying microscopic binding radius is a separate, 

nontrivial problem (8,60,61,84,94,108-110). Moreover, the functional form of mass-action bimolecular 

reaction rate is known to be violated at large densities (111,112). However, it is precisely the sum of all 

sources of quantitative discrepancy between straightforward mass-action and stochastic approaches that 

we want to investigate in this study.  

To check the convergence of results with respect to the time step size, we repeated Smoldyn simulations 

for a range of time steps. In the results shown in Figs. 1,2,S2, the time step size is set to t=1s, while 

t=0.2s was used for the case of larger Ca2+-sensor binding rates in Fig. S1. Stochastic simulations 

corresponding to Figs. 1,2,S1,S2 took several weeks of computation time on two multi-core workstation 

with 24 simultaneous Smoldyn threads, while the corresponding deterministic simulations take less than 

one CPU-minute. 
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III. RESULTS 

III.1 Spatially resolved 3D model 

From a practical point of view, local fluctuations in Ca2+ concentration ultimately reveal themselves 

through the fluctuations in the latency to vesicle membrane fusion or other macroscopic Ca2+-dependent 

effects, which is the most important observable in the modeling of Ca2+-dependent exocytosis. Therefore, 

in our comparison of deterministic and stochastic modeling of vesicle release, we will focus on the latency 

between the opening of a Ca2+ channel, and the time of fusion of nearby vesicle(s). This latency is given 

by the first passage time (also known as the waiting time or hitting time) to the fully bound final “release” 

state R of the vesicle’s putative Ca2+ sensor (13,14,47-52). We assume that the binding kinetics are 

described by Eqs. 3-5, inferred from the studies of the calyx of Held synapse (57,58). The qualitative 

conclusions of this work however do not depend on the type of model used for the sensor. In our 

simulations of 3D Ca2+ diffusion, buffering and binding, illustrated in Fig. 1, the sensor is located at a 

distance of 33nm away from the channel, within the channel’s “nanodomain”. The sensor position is 

marked by a square in the bottom-left corner of the diffusion volume in Fig. 1A,B: the two panels illustrate 

one time frame of the deterministic and stochastic simulation, respectively, as described in Methods and 

the figure caption. 

In the full stochastic approach, each MCMC trial provides one sample of the Markovian sensor state 

transition time series shown in Fig. 1D, driven in turn by the stochastic Brownian motion of Ca2+ and 

buffer particles illustrated in Fig. 1B. The simulation is repeated to construct a histogram estimate of 

FPTD. In Fig. 1E, the resulting FPTD estimate is shown as a black curve, and was obtained using about 

108 Smoldyn iterations, each of which in turn comprises thousands of elementary MCMC iterations 

updating particle positions and binding states. In contrast, in the deterministic mean-field approach the 

FPTD is computed as the rate of change of the occupancy of the final absorbing state of the exocytosis 

sensor, obtained by numerically solving the coupled PDE-ODE reaction-diffusion problem (Eqs. 2-5). In 

Fig. 1E we directly compare FPTDs obtained using these two approaches, for the case when only 
NCa=100 ions enter the model volume during a 1ms-long Ca2+ channel current pulse. In this first 

comparison we set the binding sink term S in Eq. 2 to zero, ignoring the depletion of Ca2+ ions due to 

their binding to the sensor. Figure 1E reveals a surprisingly good agreement between stochastic and 

deterministic simulations of FPTD, despite this simplification. Note that no curve scaling is involved, or 

would be appropriate, in comparing the FPTD obtained using the two methods. In fact, the total integral of 

FPTD is conserved and equals one: given a closed domain with reflective boundary conditions, full 

sensor binding eventually happens, with certainty. In instances when the stochastic FPTD appears 

smaller in amplitude compared to the deterministically computed FPTD (see Fig. 2B-D), the former must 

eventually become bigger than the latter later in the simulation. However, for the case of open boundary 

conditions and zero resting [Ca2+], the integral of FPTD would represent total probability of release, which 

would be smaller than one. 

Note that the peak of FPTD occurs soon after the end of the pulse because the Ca2+ sensor is close to 

the channel location, and because the pulse is sufficiently short so that the sensor is far from saturation 

during the pulse. However, Figure S1A of the Supporting Material shows that the peak of FPTD can occur 

before the end of the pulse for larger values of the sensor’s Ca2+ binding rate.  
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Figure 1. Deterministic vs. stochastic simulation of buffered Ca2+ diffusion and binding to a stationary sensor. 

Ca2+ and buffer molecules diffuse within a (0.2μm)3 cube, with diffusivities DCa=0.2μm2/ms and DB=0.05μm2/ms, 

respectively. Ca2+ sensor is 33nm away from a point Ca2+ source (Ca2+ channel) in the corner of the cube. Ca2+ 

current pulse of 0.032 pA lasts 1ms, letting in a total of 100 Ca2+ ions. Buffer has a concentration of 20μM and 

affinity of 1μM, corresponding to a total of 96 ions.  (A) One time frame of a 2D slice of the mass-action simulation 

of [Ca2+] on a color-coded logarithmic scale, 0.2ms after Ca2+ channel opening. (B) One time frame of the 

stochastic Smoldyn iteration shows the locations of all tracked particles 0.2ms after Ca2+ channel opening 

(magenta square: Ca2+ sensor; red squares: Ca2+ ions; gray and blue squares: free and bound buffer molecules, 

respectively). Symbol sizes are not to scale. (C) Stationary vesicle fusion sensor undergoes 5 Ca2+ binding steps 

with progressively decreasing unbinding rate, i.e. increasing binding cooperativity (Eq. 4) (57,58),  (D) Sensor 

state transition sequence illustrates a single MCMC trial of the stochastic Smoldyn simulation. FPT is computed 

from the start of the Ca2+ current pulse to the time of sensor transition to the final state R. (E) Comparison of 

FPTD obtained from the histogram of stochastic trials shown in D (black curve), or from deterministic reaction-

diffusion simulation (Eqs. 2-5) (red dotted curve), with binding depletion ignored (S=0 in Eq. 2). 

Part of the discrepancy between the two methods seen in Fig. 1E is explained by the depletion of five 

Ca2+ ions as they bind to the Ca2+ sensor, which is absent from a straightforward implementation of the 

mass-action approach that doesn’t include the feedback from the Ca2+-sensor binding onto the local Ca2+ 
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concentration (24,29). To reveal the effect of this Ca2+ ion depletion, in Fig. 2 we repeat the numerical 

solution of Eqs. 2-5 with and without the Ca2+ sink term, given by Eqs. 6-7. Simulations are then repeated 

for several values of Ca2+ current strength corresponding to different number of total Ca2+ ions entering 

the volume during a 1ms-long channel opening, from NCa=200 (Fig. 2A) down to NCa=20 (Fig. 2D). Note 

that the depletion correction almost fully abolishes the discrepancy between stochastic and deterministic 

simulations for the case of 100 Ca2+ ions, but not for smaller number of ions. These results suggest that 

deterministic results become unreliable when only ⁓40 or less Ca2+ ions enter the simulation volume 

(Figs. 2B-D).   

 
Figure 2. Mass-action vs stochastic estimation of FPTD in response to a 1ms-long Ca2+ current pulse of varying 

amplitudes. All parameters as in Fig. 1, except for the varying Ca2+ current values and the total number of 

Ca2+ ions entering during the 1-ms current pulse (NCa), as indicated in text labels. In all panels, black solid curves 

represent the histograms of FPT to full sensor binding, the dotted red curves show the corresponding 

deterministic estimate of FPTD (Eq. 5), with binding depletion ignored (S=0 in Eq. 2), while the solid blue curves 

show the deterministic estimate of FPTD, with binding depletion taken into account (Eqs. 6-7). Note the great 

difference in scale: the cumulative probability of full binding within 1.5 ms of channel opening is about 18% in A 

(NCa=100), while in D (NCa=20) it is on the order of 104, explaining the large number of MCMC trials required in 

the latter case, since most binding events happen in the long tail of this distribution. 

While full parameter sensitivity analysis is prohibitive in view of the computational cost of the full 

stochastic approach, we repeated the comparison of deterministic and stochastic simulations for two 

more combination of parameters, with results shown in Supporting Material. Namely, Figure S1 repeats 

this comparison after the sensors’ Ca2+ binding rate is increased by a factor of 10, corresponding to an 
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unrealistically large sensor binding radius. To compensate for such a large Ca2+ binding rate, we also 

increased the distance from the Ca2+ channel to the release sensor, from 33nm to 83nm. As Fig. S1 

shows, in this case the depletion correction (Eqs. 6-7) is critical for achieving good agreement between 

the two approaches even for a relatively large number of Ca2+ ions, and peak FPTD occurs before the 

end of the pulse, due to faster saturation of the Ca2+ sensor caused by the larger binding rate. Finally, in 

Figure S2 we compare stochastic and deterministic simulations for the same parameters as in Fig. 2, but 

for the case of a Ca2+ sensor that only binds two Ca2+ ions. Despite significant difference in parameters 

used in Figs. 2, S1 and S2, in particular very different release probability and FPTD profile, in all three 

cases the discrepancy between stochastic and depletion-corrected mean-field simulations becomes 

apparent only when the total number of entering Ca2+ ions falls below about 40-50.  

Figs. 2B-D show that the stochastically computed FPTD is smaller in amplitude compared to the one 

computed using mean-field methods during and shortly after the Ca2+ current pulse, which indicates that 

the deterministic approach overestimates true release probability over physiological time scales. 

However, as mentioned above, this relationship between the FPTD curves obtained using the two 

approaches is bound to invert later after the pulse, since the cumulative probability of full binding equals 

one. 

  

Figure 3. Correlation between the state of the Ca2+ sensor, Sk, and the number of Ca2+ ions, nCa, in a box of size 

(20nm)3 surrounding the sensor. All parameter values are the same as in Fig. 2A,B,D. (A) Average nCa at t=0.1ms 

after channel closing, conditional on the sensor state S0 through S5. The corresponding unconditional average values 

of nCa at the same time point, ⟨nCa⟩, are shown as dashed lines. (B) The ratio of the conditional and unconditional 

average of nCa as a measure of correlation between nCa and the sensor state. The absolute size of the correlation 

reaches 50% for NCa=20 (red curve), while it is no greater than 10% for NCa=100 (black curve). Error bars indicate 

statistical uncertainty obtained by standard bootstrap resampling of the simulated data set. (C) Statistical properties 

of nCa quantified by the dispersion (variance-to-mean ratio) remains very close to 1 for all three values of NCa, 

indicating Poisson statistics. 

The close agreement between the two approaches for such small total numbers of Ca2+ ions is a priori 

surprising. As will be explained more fully below, the reason is the small size of the correlation between 

the local number of Ca2+ ions in the vicinity of the exocytosis sensor on the one hand, and the Ca2+-

binding state of the sensor on the other hand. Figure 3 compares the size of this correlation for the same 

parameter values as in Fig. 2A,B,D, when to the total number of Ca2+ ions entering during the 1ms-long 

pulse is either NCa=20, 50, or 100. Figure 3A shows the average number of Ca2+ ions within a small 

(20nm)3 box surrounding the exocytotic sensor, nCa, measured shortly (t=0.1ms) after the channel 
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closing, measured when the sensor is in one of 6 states (see Eq. 3), S0 through S5. This conditional 

average of nCa, ⟨nCa | Sk⟩, is compared to the unconditional average of nCa at the same time point, shown 

as dashed curves. The ratio between the conditional and unconditional average values of nCa is an 

appropriate measure of correlation between nCa  and Sk, and is shown in in Fig. 3B. Note that this ratio 

deviates from 1 by no more than 10% when NCa=100, explaining the good agreement between stochastic 

and deterministic simulations in this case. In contrast, ⟨nCa | S4⟩ and ⟨nCa | S5⟩ are up to 50% smaller than 

⟨nCa⟩ when NCa=20, violating the crucial assumption of the deterministic mean-field approach that nCa and 

the sensor state are independent quantities.  

To see even more clearly the connection between the correlation size and the discrepancy between 

stochastic vs. mean-field results, we will now turn to a simplified compartment-based model of this 

reaction-diffusion process. 

III.2 Analysis of a simplified two-compartment model 

To gain an intuitive understanding of the factors affecting the relative accuracy of the deterministic mean-

field approach, we will analyze a highly simplified model of Ca2+ diffusion and binding shown in Fig. 4, 

similar to the one analyzed by S.H. Weinberg (49) (see also (26,53)). This reduced model consists of two 

well-mixed compartments of Ca2+ ions, with the Ca2+ sensor for exocytosis contained within the inner 

compartment. We assume that the sensor can bind two Ca2+ ions before triggering exocytosis, according 

to the reaction  

 
0 1 2

1 2

21

 ,
k n k n

k k
S S S

 

 
 R    (8) 

where n is the number of free Ca2+ ions in the sensor sub-compartment. For the sake of simplicity, the 

stoichiometric factors of 2 are absorbed into the definitions of the forward and backward binding rates, 
𝑘ଵ,ଶ
  We set 𝑘ଵ

ା = 2, 𝑘ଵ
ି = 1, 𝑘ଶ

ା = 1, 𝑘ଶ
ି = 2, 𝛾 = 2.  

Diffusion is represented as transitions between the two compartments, with forward and backward 

transitions rates equal to   and , respectively: 

 



 ,Bulkn n   (9) 

where the nBulk is the number of free Ca2+ ions in the bulk compartment, given by 

    .Bulk Bndn N n n  (10) 

Here N=const is the total number of Ca2+ ions in both compartments, and nBnd is the number of sensor-

bound Ca2+ ions, determined by the occupancies of all Ca2+-bound sensor states, indicated by angled 

brackets (for precise notation description, see Appendix, Eq. 16): 

   1 22 2 2Bndn S S R                (11) 

The ratio of diffusion rates  and β in Eq. 9 implicitly defines the ratio of the volumes of the two 

compartments. The total number of Ca2+ ions, N, is a constant parameter: initial condition is set by adding 

N ions to the bulk compartment. Therefore, initially there are no ions in the sensor compartment, nor 

bound to the sensor: n(0)=nBnd(0)=0 (alternative initial conditions were also explored, but did not provide 

significant new insights). Even though Ca2+ buffering is not explicitly implemented in this simplified model, 
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buffering can be viewed as being part of the exchange reaction with the bulk compartment described by 

Eq. 9, whereby buffer-bound Ca2+ ions are to be understood as belonging to the bulk (non-sensor) 

compartment. 

 

The stochastic implementation of this model is given by the following continuous-time Markov chain, with 

(n, Sk) and (n, R) denoting a state with n Ca2+ ions in the sensor sub-compartment, and the sensor in 

state Sk or in the final fusion state R: 
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This model is almost equivalent to the one analyzed by S.H. Weinberg (49) (see Eq. 2.8 therein), except 

that we compare this model with a similar two-compartment deterministic representation of the same 

process, rather than its single-compartment reduction, allowing us to clearly separate the effects of 

binding-induced Ca2+ ion depletion from the impact of stochastic fluctuations. Another difference of our 

approach is that we consider the bulk compartment of a finite volume. Therefore, no particle number 

truncation is required, since the total number of Ca2+ ions is conserved and set equal to N.  

The Markov Chain described by Eqs. 12 is readily converted to linear Chemical Master Equations (CME) 

describing the evolution of state probabilities, dp/dt = Wp, where vector p has 4N1 states shown in Eq. 

12. We note parenthetically that the number of states can be further reduced using sensor state 

  

Figure 4. Two-compartment model of Ca2+ diffusion and sensor 

binding. The inner compartment contains n ions of Ca2+, which can 

bind to the Ca2+ sensor. The inner compartment exchanges ions with 

the bulk compartment with diffusive rates   and . The total number of 

ions equals N and is conserved, therefore there are nBulk=N n  nBnd 

ions in the bulk compartments, where nBnd is the number of ions bound 

to the sensor, as described by Eq. 11. At initial time, all N particles are 

added to the bulk compartment. 

“Bulk” compartment: 
nBulk = N  n  nBnd  ions 

Sensor sub-compartment 
with n free Ca2+ ions 

2

Bnd

Ca sensor with

n  bound ions
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conservation law and by collapsing together all (n, R) states. The CME system is shown explicitly in Eq. 

15 of the Appendix. The CME system can in turn be converted (using appropriate summations) to the 

ODEs for the moments of the state variables, i.e. the occupancy probabilities of sensor states Sk and 

R, and the moments of the Ca2+ ion number n conditional on the state of the sensor, denoted as nm |Sk 
(see Appendix). The first five of these moment equations read: 
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     (13) 

Here nBnd is given by Eq. 11 and denotes the total number of Ca2+ ions bound to the sensor, while FPT 

denotes the FPTD. The evolution equations for the first moments n | Sk are not shown, but are easily 

derived from the CME system; they depend in a somewhat complex way on higher moments n2 | Sk. 
Since we consider a finite number of Ca2+ ions, the system of moments is closed and always solvable in 

closed form due to the linearity of the CME system. 

If the number of Ca2+ ions in the sensor compartment is independent of the sensor state, n|Sk=n, then 

Eq. 13 reduces to the deterministic, mean-field description of the same process,  
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                     (14) 

Thus, this mean-field description is the simplest moment-closure of the stochastic description given by 

Eqs. 13 under the assumption of zero correlation between the state of the sensor and the number of ions 

in the sensor compartment. Therefore, the high variance in the local number of Ca2+ ions only indirectly 

affects FPTD, as long as the number of ions in the sensor sub-compartment is weakly correlated with the 

binding state of the release sensor.  
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Figure 5. Comparison between mass-action and stochastic simulation of the two-compartment model in Fig. 4, for 

different ratios between diffusion and reaction time scales:  τdiff /τR=100 (A1-C1), τdiff /τR=3 (A2-C2), and 

τdiff/τR=0.01 (A3-C3). This ratio is controlled by varying the diffusion rate =β=1/τdiff, while keeping reaction rates 

constant.  (A1,A2,A3) First-passage time to full binding probability density (FPTD). (B1,B2,B3) Average number 

of Ca2+ ions in the sensor compartment. For the stochastic simulation, also shown are the average number of 

Ca2+ ions conditional on the sensor state, nCa|Sk. Note that the number of ions in the sensor compartment 

approaches n=1 in all cases, since the total number of Ca2+ ions is N=4. (C1,C2,C3) Correlation between the 

number of Ca2+ ions in the sensor compartment and the sensor state, given by the ratio of conditional and 

unconditional expectations nCa|Sk/nCa (k=0,1,2). 

This intuition is confirmed by the results shown in Fig. 5, where we compare the exact solution of the 

stochastic two-compartment model described by Eqs. 12-13 with the solution of the mean-field 

description given by Eq. 14. To reveal fully the impact of stochastic fluctuations, we will focus on the case 

where the number of Ca2+ ions is very small, and stochastic effects are expected to be most pronounced, 

namely N=4. The diffusion rates α and β are set to equal each other, to ensure that exactly one Ca2+ ion 

remains free (on average) inside the sensor sub-compartment upon equilibration, after 2 out of the 4 

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

Slow diffusion: 
  τdiff / τR = 100 

Intermediate 
case: τdiff / τR = 3 

Fast diffusion: 
τ
diff 

/ τ
R

 = 0.01 



15 

 

available Ca2+ ions are bound by the sensor. Figure 5 shows this comparison between stochastic and 

mean-field results for three distinct ratios between diffusion and reaction rates: τdiff / τR=100 (Fig. 5A1-

C1), τdiff / τR = 3 (Fig. 5A2-C2)  and τdiff / τR =0.01 (Fig. 5A3-C3). This ratio is controlled by varying the 

diffusion rate α =  = 1/τdiff, while keeping the reaction rates constant (τR = 1 / k1
 = 1 / k2

+ = 1). As Figure 

5 demonstrates, the difference between the FPTD distributions obtained using the mean-field and 

stochastic approaches can be surprisingly small even for N=4~O(1). In agreement with the arguments 

above, the discrepancy between the FPTD obtained using the two approaches is the smallest for the 

case when the absolute correlation between the sensor state and the number of Ca2+ ions in the sensor 

sub-compartment shown in Fig. 5C1,C2,C3 is also the smallest, which happens for τdiff / τR  3.  In this 

case diffusive fluctuations are sufficiently fast to partially “smooth out” the correlations between the 

sensor state and the number of Ca2+ ions in the sensor compartment. As in our 3D simulations (Fig. 3B), 

in Fig. 5C1-C3 the correlations are quantified in terms of the ratio of conditional and unconditional 

expectations of the Ca2+ ion number inside the sensor compartment, which are shown in Fig. 5B1,B2,B3. 

The dependence of correlations on the τdiff /τR ratio can be quite non-trivial, but intuitive. For example, in 

the case of slow diffusion (Fig. 5C1), n | S1,2≪n, so the corresponding correlation is negative and close 

to -1. In this case there is only a small probability of any ions remaining in the sensor compartment when 

at least one ion is bound to the sensor: the fact that the sensor is still not fully bound indicates that the 

remaining ions are most likely outside of the sensor compartment. In contrast, for fast diffusion (Fig. 5C3), 

the largest correlation approaches n | S0 / n   1  1, or n | S0   2n : when the sensor is unbound, 

there are on average n=N/2=2 Ca2+ ions inside the sensor compartment, which is twice as many as there 

will remain upon full sensor binding. Recall that we set  =, so ions quickly equipartition between the 

sensor compartment and the bulk in the limit of fast diffusion. 

Interestingly, results shown in Fig. 5C1,C2,C3 suggest that the dependence of the maximal correlation 

size on the diffusive time scale is non-monotonic. This is confirmed by a more detailed comparison shown 

in Figure 6 as a function of the diffusive time scale, diff=1/β (assuming again a constant reaction rate and 

 =, for the sake of simplicity). 

Intuition suggests that in the limit diff, diffusion is very slow on the time scale of the reaction, and 

therefore the correlation between the sensor state and the number of Ca2+ ions in the sensor 

compartment imposed by the Ca2+-binding reaction is strong, resulting in a large error of the mean-field 

reduction of the problem. Figure 6 confirms this intuition, showing the growth of the discrepancy between 

stochastic and deterministic computation of FPTD as the diffusion rate decreases. However, Fig. 6C1,C2 

also reveals that the dependence of FPTD discrepancy on diffusive time scale is non-trivial, reaching a 

minimum for certain fixed relationship between the rates of diffusion and reaction. Therefore, correlations 

between the sensor state and the number of Ca2+ ions in the sensor sub-compartment do not disappear 

as diff0. In this limit, the numbers of Ca2+ ions in the bulk compartment and the sensor sub-

compartment are in instantaneous equilibrium with each other, so a Ca2+ binding reaction leads to an 

immediate reduction of the latter. Thus, in the case of very fast diffusion, Ca2+-binding reactions create 

strong negative correlations between the sensor state and the number of Ca2+ ions, which is lower in 

absolute magnitude than in the case of very slow diffusion, but still significant. Therefore, in the 

compartmental model, the discrepancy between mean-field and stochastic computations of FPTD 

achieve minimum for certain intermediate value of the ratio between the diffusion and reaction time 
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scales. However, for larger number of Ca2+ ions, NCa=20, this non-monotonic relationship is less 

pronounced, as shown in Fig. 6A2,B2,C2. 

 

Figure 6. Comparison of the central moments of FPTD obtained using deterministic mean-field vs stochastic 

approaches, as a function of diffusive time constant diff=1/β, for two values of total particle number, N=4 (A1-C1) 

and N=20 (A2-C2). (A1, A2): FPT average, (B1, B2): coefficient of variance of FPT, (C1, C2): total normalized 

discrepancy of first 3 central moments of FPTD between stochastic and deterministic simulations. Diffusive rates 

satisfy /=1 for all simulation conditions, ensuring that the average number of ions in the sensor compartment 

upon full sensor binding is n=1 in (A1-C1) and n=9 in (A2-C2). 

Another way to understand the growing inaccuracy of the mean-field approach as diff0 is that the two-

compartment mean-field description given by Eq. 14 does not approach the physically correct model in 

this limit, since it does not take into account the immediate reduction of the free Ca2+ ion number n upon 

binding. In other words, in the limit diff0 (𝛼 → ∞, 𝛽 → ∞), the number of ions in the sensor compartment 

is no longer an independent variable, and is directly determined by the sensor’s binding state: 𝑛 → 𝛼(𝑁 −

𝑛஻௡ௗ)/(𝛼 + 𝛽). Unlike the mean-field description, the stochastic description given by Eq. 13 remains 

meaningful for any values of rate parameters. 

To show that these conclusions about the accuracy of mean-field approach in the compartmental model 

do not depend on the details of the Ca2+ binding reaction, in Figures S3 and S4 of Supporting Material we 

repeat our analysis for the case of a Ca2+ sensor with five cooperative binding sites, which we also used 

in our 3D simulations (Eq. 3). Figs. S3,S4 show that the general trends illustrated in Figs. 5,6 also hold for 

this more complex sensor model. 
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IV. Discussion 

Our main finding is that the discrepancy between stochastic and deterministic simulation of Ca2+ diffusion 

and bi-molecular binding/unbinding reactions can in certain cases be much smaller than expected from 
naïve intuition (i.e., naïve application of 1/√𝑁஼௔ scaling). This result has very practical significance, since 

stochastic Ca2+ channel gating (and more generally, fluctuating Ca2+ current) is computationally 

inexpensive to simulate and combine with deterministic mass-action reaction-diffusion equations, 

providing an efficient hybrid method for the modeling of Ca2+-dependent phenomena (7,14,30). 

However, we want to emphasize once again that the accuracy of such an approach was shown to be 

greatly reduced in the presence of positive feedback on Ca2+ influx provided by CICR (19-28,113). We 

should point out that recent studies suggest that CICR does contribute to both pre- and post-synaptic 

processes (114-118). Still, it is useful and important to explore the impact of fluctuations on each part of 

the biochemical pathways to vesicle release, including those not involving CICR. 

To complement prior work on the role of stochastic fluctuations in Ca2+-dependent mechanisms, we 

considered a maximally reduced model to focus on two sources of stochasticity downstream of Ca2+ 

influx, namely the diffusive fluctuations in Ca2+ concentration, and the fluctuations due to Ca2+ binding and 

unbinding reactions. Further, following several prior studies (13,14,47-52), we focused on the modeling of 

FPTD, which can be considered as the true “output observable” whose uncertainty combines all upstream 

sources of stochasticity in this biochemical process. The temporal convolution of FPTD and the 

postsynaptic current evoked by single-vesicle fusion constitutes the observable postsynaptic response 

(42). Considering such maximally simplified, reduced model allowed us to study more directly the 

interplay between fluctuations due to diffusion and reaction in determining the final fluctuations in the Ca2+ 

sensor binding time. 

Simulations of the reduced spatially-resolved model revealed that the distribution of FPT to full binding of 

the exocytotic Ca2+ sensor is accurately predicted by the mass-action / mean-field approach, as long as 

the number of Ca2+ ions is above about 50. This rough estimate of the threshold of accuracy seems to be 

relatively stable with respect to several parameters of the model, as seen by comparing Figs. 2, S1 and 

S2, which differ considerably in several critical model parameters. We note that this is a surprising result, 

given the presence of multiple bimolecular reactions, since the associated nonlinearities are expected to 

amplify the impact of fluctuations in the local Ca2+ ion concentration (45). Intuition may suggest that 

buffering “washes out” stochastic fluctuations in the local Ca2+ ion numbers. Interestingly, it has been 

shown (53) that exactly the opposite is the case: namely, mobile buffers typically increase stochastic 

fluctuation amplitude. Therefore, another explanation for the close agreement between the two 

approaches is needed. 

Our analysis of the simple two-compartment model suggests such an explanation. Namely, the 

inaccuracy of the deterministic description of FPTD is primarily determined by the correlations between 

fluctuations in the reactant molecule numbers, rather than the size of these fluctuations. This in turn 

follows from the fact that all reactions relevant to the Ca2+ buffering and sensing are hetero-species rather 

than homo-species: reactions occur between molecules of different types (60). In this case the mean-field 

description of the Ca2+ sensor approximates its stochastic description, under the simplifying assumption 

of zero correlations (cf. Eqs. 13-14). This correspondence would break down had Ca2+ sensing involved 

simultaneous binding of two Ca2+ ions to the exocytosis sensor, as opposed to a sequence of two binding 

reactions. This scenario would correspond to a larger ratio between reaction and diffusion rates, which is 
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expected to amplify the discrepancy between deterministic and stochastic approaches. These results are 

quite general and apply to the modeling of a wide class of biochemical cell processes. The significance of 

the relative magnitudes of reaction and diffusion rates have also been pointed out by prior studies (see 

e.g. (16,23,24,38,49)).  

It is important to emphasize that the partial decorrelation between local Ca2+ fluctuations and the sensor 

state fluctuations does not imply a small uncertainty in FPT: in fact, FPTD is still quite “wide” (i.e. has a 

large variance) even in cases where the mean-field results achieve significant accuracy (see Figs. 1-2,S1-

S2). We note that this finding is similar to, but somewhat distinct from the concept of stochastic shielding, 

whereby stochastic fluctuations of upstream reactions in a given biochemical pathway are effectively 

shielded from fluctuations of observable variables (such as open states of an ion channel), which are 

more sensitive to fluctuations in downstream parts of the pathway (119,120).  

The fact that small correlation between model variables leads to accurate mean-field description was also 

recently noted in the context of a single-compartment vesicle cycling model (121). Further, a recent study 

of vesicle release driven by deterministic [Ca2+] has shown that the linear nature of the resulting reaction 

network ensures that the mean-field description is sufficient to fully characterize the postsynaptic 

response and its variability (42). 

The above-mentioned threshold of NCa=50 inferred from our 3D simulations may seem to contradict our 

analysis of the reduced two-compartment model, which showed that good agreement between stochastic 

and deterministic (mean-field) estimates of FPTD can be achieved even for NCa~O(1). However, Fig. 3A 

shows that the local number of Ca2+ ions in the vicinity of the Ca2+ sensor, n, is much smaller than the 

total number of ions NCa in the full 3D simulation.  

It should also be noted that independently varying the diffusion and reaction rates, as we did in Figs. 5-6 

in the two-compartment model, would be conceptually problematic in the 3D model, since bi-molecular 

binding reactions are inherently limited by diffusion. Therefore, it would be useful to bridge the conceptual 

gap between compartmental and fully spatially resolved models, while retaining the ability for rigorous 

analysis. The most promising approach in this direction is to use recent simplified models of Ca2+ 

diffusion, buffering and binding that allow closed-form computation of FPTD (50-52). Although the latter 

studies involve certain simplifications, particularly in their reduced descriptions of Ca2+ buffering, it would 

be promising to examine the discrepancy between stochastic and deterministic FPTD obtained in the 

framework of such simplified models. 

It is possible that part of the discrepancy between the mean-field and fully stochastic approaches could 

arise from the inherent difference in their treatment of bimolecular binding, as reviewed in Methods. 

However, we believe it is important to compare the most straightforward and easily implementable 

approaches, as we have done here, since these are most often used in practice. Further study may be 

needed to confirm whether the discrepancy between the two approaches is significantly affected by the 

differences in the Ca2+ sensor binding implementation. In general, single-molecule scale effects can only 

be precisely computed using exact event-based stochastic methods like FPKMC/eGFRD (61,77-83) or 

more detailed molecular dynamics simulations (70,109). 
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APPENDIX: CME system for the two-compartment model 

Let  k
np t  denote the probabilities of Markovian states in Eq. 12, corresponding to n (n=0..N) Ca2+ ions in 

the sensor sub-compartment while the sensor is in state Sk, k=0..3, with k=3 indexing the terminal fused 

(release) state R in the sensor binding reaction, Eq. 8. Then the Markov Chain shown in Eq. 12 

corresponds to the following Chemical Master Equation (CME) system (Kolmogorov forward equations): 
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 (15) 

This is a linear system of form dp/dt = Wp, where the components of probability vector p correspond to 

the 4N1 states shown in Eq. 12, and the elements of Markov transition matrix W are constant rates 

indicated in Eqs. 12, 15. Therefore, it is readily integrated in closed-form: p(t) = exp[W t] p(0). Since our 

quantity of interest is FPTD, given by the rate of transition to the final absorbing (release) state R, all 

states (n, R) with probabilities  3
np t could be collapsed onto a single absorbing state by summing over n. 

Further, one more variable could be eliminated using the conservation law for the sum of all states of the 

sensor. However, we keep all states in Eqs. 12, 15, for the sake of clarity.  

This CME system can be converted to an ODE system of the same dimensionality describing the 

moments of the state variables, i.e. the occupancy probabilities of sensor states Sk and R, and the 

moments of n, which depend on the state of the sensor, and denoted as nm , Sk: 
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                                               (163) 

where  min , 2 kM N k  is the number of free (unbound) Ca2+ ions contained in both compartments 

when the sensor is in state k. Introducing conditional moments through the standard definition  

, | ,m m
k k kn S n S S  and performing appropriate summations of Eqs. 15 and algebraic 

simplifications, one obtains the moment system, part of which is shown in Eq. 13. The initial condition 

corresponding to Figs. 5, 6 is given by 𝑝଴
଴(0) = 1, with all other probabilities satisfying 𝑝௡

௞(0) = 0. 
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Supporting Material 
 

 

 

Figure S1. Mass-action vs stochastic simulation of FPTD for unphysiologically large sensor binding rate, and a 

greater distance between release sensor and the Ca2+ channel, in response to a 1ms-long Ca2+ current pulse of 

varying amplitude. Simulation parameters are similar to the ones in Figs. 1-2, except a factor of 10 faster 

exocytosis sensor binding rate k+, requiring a smaller MC simulation time step of t=0.1s, larger diffusion volume 

of (0.3μm)3, and larger distance from channel to sensor of 83 nm.  The Ca2+ current value and the total number of 

Ca2+ ions entering during the 1-ms long current pulse is indicated in the panel titles. In all panels, black solid 

curves represent the histograms of FPT to full sensor binding, the dotted red curves show the corresponding 

deterministic estimates of FPTD (Eq. 5), with binding depletion ignored (S=0 in Eq.2), while the solid blue curves 

show the deterministic estimate of FPTD, with binding depletion taken into account (Eqs. 6-7). Note the difference 

in scale: the cumulative probability of binding within 1.5ms is about 74% in A (NCa=200), while in D (NCa=20) it is 

⁓0.5%. 
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Figure S2. Mass-action vs stochastic simulation of FPTD for the case of Ca2+ sensor with only two Ca2+ binding 

sires, which bind Ca in a non-cooperative manner, so that the binding scheme is replaced with 

 

 

 0 1 2

2

2

 .
k C a k C a

k k

S S S R
  

Other parameters are the same as in Fig. 2 and Eq. 3. The Ca2+ current value and the total number of Ca2+ ions 

entering during the 1-ms long current pulse is indicated in the panel titles. In all panels, black solid curves 

represent the histograms of FPT to full sensor binding, and the dashed red curves show the corresponding 

deterministic estimates of FPTD (Eq. 5). The depletion correction (shown as blue curves in Figs. 2 and S1) has 

only a negligible impact on FPTD for the parameter values used in this Figure, and therefore is not shown. Note 

the difference in vertical axis scale for the 3 panels. 
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Figure S3. Comparison between mass-action and stochastic simulation of the two-compartment model as in Fig. 5, 
but for the case of a Ca2+ sensor with 5 biding sites, as in Eq. 3: 

    

    

    0 1 2 3 4 5

2 3 4
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 .
k C a k C a k C a k C a k C a

k bk b k b k b k

S S S S S S R
 

Here 𝑘ା = 𝑘ି = 1,  𝛾 = 2, 𝑏 = 0.25. The total number of Ca2+ ions is N=7, so that only 2 ions remain free upon full 
sensor binding. The ratios between diffusion and reaction time scales are as in Fig. 5:  τdiff / τR=100 (A1-C1), τdiff  / 
τR=3 (A2-C2), and τdiff / τR=0.01 (A3-C3). This ratio is controlled by varying the diffusion rate  = β = 1 / τdiff, while 
keeping reaction rates constant.  (A1,A2,A3) First-passage time to full binding probability density (FPTD). 
(B1,B2,B3) Average number of Ca2+ ions in the sensor compartment. For the stochastic simulation, also shown are 
the average number of Ca2+ ions conditional on the sensor state, nCa|Sk, for k=0 (dashed blue curve), k=2 (dotted 
blue curve), and k=5 (dashed-dotted blue curve). Note that the number of ions in the sensor compartment 
approaches n=1 in all cases, since the total number of Ca2+ ions is N=7. (C1,C2,C3) Correlation between the number 
of Ca2+ ions in the sensor compartment and the sensor state, given by the ratio of conditional and unconditional 
expectations nCa|Sk/nCa (k=0,2,5). 

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

Slow diffusion: 
  τdiff / τR = 100 

Fast diffusion: 
τ
diff 

/ τ
R

 = 0.01 

Intermediate 
case: τdiff / τR = 3 
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Figure S4. Comparison of the correlations and the central moments of FPTD obtained using deterministic mean-

field vs. stochastic approaches, as a function of diffusive time constant diff = 1/β, for two values of total particle 

number, N=7 (A1-D1) and N=20 (A2-D2). This Figure repeats simulations in Fig. 6, but for a Ca2+ sensor that 

binds 5 Ca2+ ions in a cooperative manner, as in Eq. 3 and Fig. S3. (A1, A2): FPT average, (B1, B2): coefficient 

of variance of FPT, (C1, C2): total normalized discrepancy of first 3 central moments of FPTD between stochastic 

and deterministic simulations. Diffusive rates satisfy /=1 for all simulation conditions, ensuring that the average 

number of ions in the sensor compartment after full sensor binding is n=1 in (A1-C1) and n=7.5 in (A2-C2). 

 

  

A1 

A2 

B1 

B2 

C1 
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