
Encyclopedia for Computational Neuroscience, 2nd Edition, Springer, 2020 

Biophysical Models of Calcium-Dependent Exocytosis 

Victor Matveev 
Department of Mathematical Sciences, NJIT, Newark, NJ 

Definition 

Calcium Dependent Exocytosis is the biochemically controlled fusion of the bilipid secretory 

vesicle membrane with the bilipid cell membrane, triggered by the binding of several calcium ions 

(Ca2+) to control proteins such as synaptotagmins anchored at the interface between these two 

membranes. Exocytosis results in the release of vesicle contents into the extracellular space, 

namely the release of neurotransmitter into the synaptic cleft in the case of neuronal synapses 

and neuromuscular junctions, or the secretion of hormone into the blood stream in the case of 

endocrine cells. Exocytosis also allows the transmembrane proteins contained in the vesicle 

membrane to be incorporated into the cell membrane, although such membrane protein trafficking 

is more characteristic of Ca2+-independent, constitutive exocytosis. 

Synonyms 

Non-constitutive exocytosis, regulated exocytosis 

Detailed Description 

In synapses, neuromuscular junctions and endocrine cells, exocytosis of a neurotransmitter or 

hormone containing vesicle occurs through the interaction of the fast-binding isoforms of the Ca2+-

sensing protein synaptotagmin (namely Syt1, Syt2 and Syt9) with the molecules of the SNARE 

(soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex spanning the cell 

and vesicle membranes (Jahn & Fasshauer, 2012, Moghadam & Jackson, 2013). The main 

elements of the secretory channel-vesicle complex are schematically illustrated in Fig. 1. Despite 

their highly specialized morphology, a similar exocytosis triggering mechanism is found at most 

high-throughput ribbon sensory synapses (Cho & von Gersdorff, 2012, Sterling & Matthews, 

2005), except for the cochlear hair cells. Those auditory synapses may differ in both the molecular 

exocytosis machinery and their Ca2+ sensitivity (Nouvian et al., 2011), and may involve non-

neuronal isoforms of synaptotagmin (Johnson et al., 2010) or a distinct Ca2+ sensor, otoferlin 

(Michalski et al., 2017, Pangrsic et al., 2012, Roux et al., 2006). The mechanism of exocytosis of 

hormone-containing large dense-core vesicles in endocrine cells is very similar to the 

mechanisms of neurotransmitter vesicle release (Chow et al., 1992, Heinemann et al., 1994, 

Voets, 2000), but typically proceeds at slower rates due to a somewhat different morphology of 

the release site, slower Ca2+ binding kinetics of the relevant synaptotagmin isoforms, and looser 



coupling between voltage-dependent Ca2+ channels and release-ready vesicles (Kasai, 1999, 

Martin, 2003, Moghadam & Jackson, 2013, Verhage & Toonen, 2007, Wu et al., 2009). It should 

be noted however that certain classes of endocrine cells such as pancreatic beta cells exhibit a 

close channel-vesicle coupling similar to that of neuronal synapses (Barg et al., 2001).  

The dependence of the neurotransmitter or hormone release rate on Ca2+ concentration is known 

to be steeply non-linear, as was first observed (Dodge & Rahamimoff, 1967) when examining 

neuromuscular junction potentials at different extracellular Ca2+ concentrations, and later 

confirmed in studies that directly varied intracellular Ca2+ concentration using caged-Ca2+ release 

in endocrine cells, the giant calyx of Held synapse, and other synaptic terminals (Gentile & 

Stanley, 2005, Neher & Sakaba, 2008, Stanley, 2016). For low, sub-saturating concentrations of 

Ca2+, this nonlinear relationship can be summarized as 

([ ]) [ ] nR Ca Ca                        (1) 

Here [Ca] denotes Ca2+ concentration at the vesicle fusion site, R denotes instantaneous 

neurotransmitter release rate and n is the intrinsic (biochemical) Ca2+ cooperativity of exocytosis, 

which varies from 3-5 in most preparations. Note however that a significantly less cooperative, 

near-linear Ca2+ dependence has been reported in mature auditory hair cells, possibly because 

of differences in molecular exocytosis sensors mentioned above (Cho & von Gersdorff, 2012, 

Johnson et al., 2010, Nouvian et al., 2011), although it has been suggested that the linear 

dependence could potentially arise from the averaging across synaptic contacts (Heil & 

Neubauer, 2010). 

 

The release (exocytosis) rate R is usually given in units of vesicles per second, and measured as 

a membrane capacitance increase or by electrochemical detection of released molecules, using 

a carbon fiber electrode, but often assessed only indirectly by measuring postsynaptic currents 

Figure 1. Secretory channel-vesicle release 
complex. The vesicle is shown in a fully docked 
state preceding fusion. The opening of a 
voltage-gated Ca2+ channel leads to the entry of 
Ca2+ ions (red circles) into the cell, resulting in a 
“domain” of elevated Ca2+ concentration, which 
can reach tens of M close to the vesicle, some 
20-30 nm away from the channel. The SNARE 
protein complex (green polygon) interacts with 
synaptotagmin (magenta polygon) that serves 
as the fast Ca2+-sensitive trigger of the vesicle-
membrane fusion. Multiple SNARE complexes 
around the base of the vesicle are involved in 
exocytosis, only one of which is shown. At many 
synapses, the tight co-localization of Ca2+ 
channels and SNARE proteins is promoted by 
direct interactions between the relevant proteins 
(orange bar). 

10 M 



or potentials. The steep non-linear dependence given by Eq. (1) indicates that simultaneous 

binding of several Ca2+ ions to synaptotagmin Ca2+ sensors is needed for release. In fact, the 

biochemical cooperativity provides a lower bound on the number of Ca2+ binding events required 

for exocytosis. Although the C2A and C2B domains of a given synaptotagmin molecule do 

possess a total of five Ca2+ ion binding sites (Chapman, 2002), not all of these sites are 

necessarily involved in fast (phasic) Ca2+-triggered exocytosis. Therefore, it is likely that the 

relevant Ca2+ binding sites are distributed among several synaptotagmin molecules, which 

dimerize and bind Ca2+ simultaneously to trigger vesicle fusion (Mutch et al., 2011). In fact, studies 

suggest that more than 10 synaptotagmin molecules typically associate with a single 

neurotransmitter vesicle (Takamori et al., 2006). However, in accordance with the above-

mentioned Ca2+ cooperativity measurements, most models reviewed below assume about 5 Ca2+ 

binding sites, all of which have to be occupied for vesicle fusion to occur. An alternative detailed 

model that assumes an excess of Ca2+ binding sites and includes Monte-Carlo simulation of Ca2+ 

ion diffusion and binding have been examined (Dittrich et al., 2013; Luo et al., 2015b).  

While the main characteristics of exocytosis outlined above are in general understood, and the 

molecular components of exocytosis have been identified, the precise sequence of molecular 

steps leading to exocytosis is still being debated, which explains the high degree of interest in 

biophysical models of this phenomenon. We also note that this process involves spatial scales of 

tens of nanometers, and sub-millisecond temporal resolution, well beyond the resolution of optical 

imaging methods, which underscores the important role of biophysical modeling in understanding 

exocytosis and in interpreting indirect measurements of its properties. 

A complete biophysical model of secretory vesicle exocytosis requires specifying the following 

model components: (1) the morphology of the synaptic vesicle docking site, namely the spatial 

channel-vesicle arrangement; (2) the properties of endogenous Ca2+ buffers and other Ca2+ 

homeostasis mechanisms, (3) a method for simulating Ca2+ diffusion and buffering to endogenous 

aCa2+ buffers, and (4) a model of Ca2+ binding by the synaptotagmin release sensors. Here we 

focus on the latter component of the model. Examples of comprehensive models of this process 

are given at the end of this entry. 

Sequential Ca2+-binding model 

Assuming for concreteness five distinct Ca2+ binding sites comprising the putative exocytosis gate 

(sensor) X, the most general Ca2+-sensitive exocytosis process can be described by the following 

reaction (Heidelberger et al., 1994, Kasai, 1999): 

                                  

(2)

 
where [Ca] is the Ca2+ concentration at the vesicle site, jk  are the binding and unbinding rates 

of each binding site, and the final irreversible reaction represents the actual vesicle fusion event. 



In Eq. 2 and below, Ca2+ binding is indicated by a product between the relevant binding rate and 

the Ca2+ concentration variable, [Ca]. In a deterministic simulation, this reaction is converted to a 

system of ordinary differential equations, using the principle of mass action: 

   

 

1 1

5
5 4 5 5

[ ]
[ ][ ] [ ]

...

[ ]
[ ][ ] [ ]

d X
k Ca X k CaX

dt

d Ca X
k Ca Ca X k Ca X

dt


 

 

   



   


                      (3) 

where [Ca
n
X] represents the fraction of exocytosis gates with n binding sites occupied by a Ca2+ 

ion. The fusion rate is given by the product  [Ca5X]. Note that the Ca2+ concentration, [Ca], should 

be modeled independently; in the simplest case of global Ca2+ elevation produced by caged Ca2+ 

release, it is approximately constant. When modeling exocytosis triggered by action potentials, 

[Ca] can be represented as a brief pulse of a certain width and amplitude; more detailed models 

of Ca2+ dynamics are reviewed below. 

In Eqs. 2-3, the binding and unbinding rates jk  are in general distinct, and if the earlier unbinding 

rates are slow, a significant accumulation of partially bound states [CanX] can result during a train 

of stimuli; such accumulation due to slow unbinding is the basis for the so-called bound-Ca2+ 

model of synaptic facilitation (Bertram et al., 1996; Matveev, 2006). 

Parallel Ca2+-binding model 

It is instructive to first consider the simplest scenario where all five release sites comprising 

exocytosis gate X are identical and can bind Ca2+ independently, leading to the following simplified 

version of the reaction given by Eq. 2 (Kasai, 1999, Voets, 2000) 

                   

(4)

 

Here the final reaction representing vesicle fusion is irreversible, and is triggered when all 5 

binding sites are occupied; exocytosis proceeds at rate r =  [Ca5X]. Even though Eq. 4 appears 

to describe a series of five consecutive binding reactions, it is equivalent to five identical reactions 

occurring in parallel, with fusion taking place when all five sites are bound. 

The following alternative version of the exocytosis model by (Bollmann & Sakmann, 2005, 

Bollmann et al., 2000) partially decouples the vesicle pool variable undergoing release and the 

Ca2+ sensor state variables, and also postulates the existence of an independent final release-

promoting conformational transition reaction occurring after the release sensor is fully Ca2+ bound: 



                        

(5)

 

Here V represents the vesicle pool undergoing fusion, with vesicle fusion rate given by the product 

𝜌𝑉[𝐶𝑎ହ𝑋
∗], where  is the maximal vesicle fusion rate.  The inclusion of an additional post-binding 

step helps to achieve more constant shape of the release time-course at different amplitudes of 

Ca2+ influx seen in experiments (Bollmann et al., 2000, Yamada & Zucker, 1992). In (Bollmann et 

al., 2000) the parameter values that were found to fit well the data from the calyx of Held synaptic 

terminal are given by =40 ms-1, k+=0.3 μM1ms1 , k =3 ms1, =30 ms1, δ=8 ms1. 

We note that most of the Ca2+ binding rates quoted in the literature are inferred from the studies 

on the calyx of Held synapse and other synapses that primarily involve the faster Syt2 isoform of 

synaptotagmin in its natural physiological environment. Other isoforms of synaptotagmin may 

have significantly different values of the Ca2+ binding and unbinding rates (Bornschein & Schmidt, 

2018, Moghadam & Jackson, 2013). For example, the following model by (Voets, 2000) 

accurately predict exocytosis of the readily-releasable pool of vesicles in chromaffin cells caused 

by the Ca2+ binding to synaptotagmin isoform Syt1: 

  

(6)

 

where k+=4.4103 μM1ms1, k =0.056 ms-1, =1.45 ms-1. 

Cooperative Ca2+-binding model 

Some studies suggest that the Ca2+-sensitive exocytosis triggers exhibit strong cooperativity, 

whereby the target protein undergoes a conformational change with each successive Ca2+ ion 

binding, which in turn leads to an increase in the Ca2+ affinity of the remaining (yet unoccupied) 

Ca2+ binding sites. The following widely-used modification of reaction given by Eq. 2 has been 

proposed to implement this possibility (Beutner et al., 2001, Felmy et al., 2003, Heidelberger et 

al., 1994, Kochubey et al., 2009, Sakaba, 2008, Schneggenburger & Neher, 2000): 

              

(7)

 

Note that cooperative binding can be represented as either a progressive increase in forward 

binding rates or decrease of backward rates; Eq 7 corresponds to the latter possibility.  The 

cooperativity parameter should satisfy b < 1, with a typical value used in the literature of 0.25, 

indicating that the final Ca2+-binding reactions are only slowly reversible. In (Schneggenburger & 

Neher, 2000, Wolfel & Schneggenburger, 2003) quantifying the Ca2+-dependence of vesicle 



release at the calyx of Held synaptic terminal, the following parameter values were obtained: 

k+=0.09 μM-1ms-1, k =9.5 ms-1, =6 ms-1, and the cooperativity parameter b=0.25. 

We note that the use of the term “cooperativity” is ambiguous in the context of exocytosis 
mechanisms. Cooperativity may refer to the high number of Ca2+ binding sites (as inferred from 
the log-log slope of the Ca2+ concentration-response curve given by Eq. 1), or may indicate that 
the Ca2+ binding affinities of these sites are not equal but increase as the first sites become Ca2+ 
bound.  

Models with independent sets of Ca2+-binding sites 

Several recent biophysically detailed models of exocytosis take into account the possibility that 

Ca2+ may bind to several different proteins or to different domains of the same protein, such as 

the C2A and C2B domains of synaptotagmin, each characterized by a distinct set of rates and 

cooperativity values. Examples of such models are given further below in the context of more 

comprehensive models of exocytosis – see model schemes 16 and 20. 

Exocytosis rate at a steady Ca2+ concentration 

To understand the exocytosis rate during prolonged Ca2+ elevation, for instance to reproduce 

caged-Ca2+ release experiments, it is of interest to consider the equilibrium point of the Ca2+-

binding reactions summarized above. Since all release models contain an irreversible transition 

to the fusion state, in the absence of endocytosis or vesicle refill from a reserve pool, the true 

equilibrium is achieved only when all vesicles are fused and release rate equals zero. Therefore, 

below we will assume a model with decoupled sensor binding state and vesicle pool state 

variables, as in Eq. 5, or consider a quasi-equilibrium in the case where resource depletion is 

small on the time scale of Ca2+ binding. 

The equilibrium occupancy of a single first-order Ca2+-binding reaction 𝐶𝑎 + 𝑋 ⇋ 𝐶𝑎𝑋 with forward 

rate k+ and backward rate k is found by setting the rate of the first reaction in Eqs. 3 to zero, 

which yields 
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where the ratio of the backward and backward rates K= k-/k+ is referred to as the Ca2+ affinity or 

dissociation constant, and is an important Ca2+-sensitivity parameter: the lower the K, the higher 

is the affinity (sensitivity) of the release sensor. It follows from Eq. 8 that K represents the Ca2+ 

concentration at which half the sensors become bound. If the final fusion reaction requires the 

binding of all five sensors, in the absence of vesicle depletion the release rate at equilibrium will 

be proportional to the 5th power of the steady-state binding occupancy given by Eq. 8: 



5
[ ]

([ ])
[ ]

Ca
R Ca

Ca K

 

   
                      (9) 

At low Ca2+ concentration, this agrees with the cooperativity condition given by Eq 1.  Note that 

the release rate equals 1/25 of its maximal value when [Ca2+]=K.  

For the case of cooperative binding, Eq. 7, the steady-state fusion rate R in the absence of 

resource depletion ( << 1) is proportional to the equilibrium value of fully bound state Ca
5
X, which 

yields (Weiss, 1997) 
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where [Ca] is the Ca2+ concentration at the release site. In the limit of very small values of b 

(strong cooperativity limit), the above expression approaches the well-known and widely used Hill 

function: 
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where n=5 and KD  b2K  (b << 1). The dissociation constant KD quantifies the Ca2+ sensitivity of 

the entire 5-step process, as opposed to the sensitivity of any individual Ca2+-binding site: when 

[Ca]= KD =b2K , the exocytosis rate reaches its half-maximal value. Note that this is the most 

constrained and most important model parameter, since extensive experimental data on Ca2+ 

sensitivity has been collected at various types of synaptic terminals. In general, physiological rates 

of release are found when [Ca2+] at the vesicle location reaches the range of 10-50 μM (Neher & 

Sakaba, 2008), although there are reports that highly-sensitive vesicle pools exist at some 

endocrine cells, possibly controlled by distinct isoforms of the synaptotagmin sensor with Ca2+ 

affinity of several μM (Pedersen & Sherman, 2009). 

Note that the Hill functional form given by Eq. 11 should only be viewed as a crude qualitative 

approximation of the true Ca2+-dependence of exocytosis rate, even at equilibrium, and tends to 

be somewhat overused (Weiss, 1997). This is because the agreement between Eqs. 10 and 11 

becomes sufficiently accurate only for values of cooperativity parameter satisfying b<0.1; in the 

absence of firm experimental evidence for such a strong cooperativity, the Hill function should be 

avoided.  Assuming a more moderate but still strong cooperativity corresponding to the typically 

used value b=0.25, fitting the data to a Hill function would lead to a gross underestimate of the 

true number of Ca2+ binding sites, as illustrated in Fig. 2.  This underestimate is mostly due to the 

poor match of the saturating part of the Hill curve, and can be greatly improved by omitting the 

data from saturating levels of [Ca2+]. Therefore, the most model-independent way of estimating 

the cooperativity factor n is to fit only the log-log slope of the experimentally obtained Ca2+ 

sensitivity curve below the saturation inflection, which is often done in practice. 



 

Cumulative release during prolonged Ca2+ elevation 

The Ca2+-dependence of release rate can be used to quantify the total cumulative release with 

prolonged Ca2+ elevation, as measured by the total membrane capacitance increase or the total 

amount of released neurotransmitter.  In the case of prolonged and approximately steady Ca2+ 

elevation of duration Δt, the amount of fused vesicles is given by (Kasai, 1999, Quastel et al., 

1992): 

      max([ ]) 1 exp ([ ])eqF Ca F R Ca t          (12) 

where F
max

 represents the total amount of available exocytosis resources (say, vesicles), and 

Req([Ca]) represents the equilibrium reaction rate at Ca2+ concentration [Ca] attained at the vesicle 

location. We note once again that this analysis assumes that the vesicle depletion is decoupled 

from the sensor binding state, as in the model given by Eq. 5. The exponential term can be 

interpreted as the probability of release failure.  For pulses raising [Ca2+] to sub-saturating levels, 

given Eq. (1) we have R  k[Ca]n, therefore (Quastel et al., 1992) 

 max([ ]) 1 exp [ ]nF Ca F k Ca t                          (13) 

However, if [Ca2+] is high enough to saturate the release sensor during the long depolarizing 

pulse, the total amount of released neurotransmitter will become limited by the duration of 

stimulation only: 

 max max1 expF F R t                (14) 
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Figure 2. Hill-function fit underestimates true biochemical cooperativity and affinity of a 5th-order Ca2+-
binding reaction (Eqs. 7,10), even in the case of moderately strong cooperativity  parameter (b=0.25). 
Note that the low quality of the fit is mostly a result of poor matching of the saturating part of the curve by 
the Hill function: the cooperativity is more accurately predicted if only the non-saturating part of the data 
is considered (right panel) 



As was explained above, Eqs. (12-13) only apply to the situation where [Ca2+] is elevated for a 

long time relative to the kinetics of the Ca2+-binding sites, as for instance during whole-cell [Ca2+] 

elevation produced by Ca2+ uncaging experiments. If on the other hand [Ca2+] is understood as 

the peak concentration achieved in the vicinity of the vesicle during a brief action potential, the 

above steady-state results would over-estimate the true release, and could only serve as an upper 

bound on release rate (Shahrezaei & Delaney, 2005). The "true" neurotransmitter release rate 

would be given by a solution to the differential equation (5), with [Ca2+] representing the time-

dependent Ca2+ concentration at the vesicle release site, which has to be modeled independently, 

using simulations of Ca2+ entry through Ca2+ channels, diffusion and binding to intracellular Ca2+ 

buffers. 

Asynchronous synaptic transmission 

Many synapses display a delayed phase of neurotransmitter release that persists after the 

stimulating presynaptic depolarization has ceased. This delayed component of exocytosis is 

termed asynchronous or delayed exocytosis, and at some synapses it makes a significant 

contribution to the over-all neurotransmitter release under physiological conditions (Rozov et al., 

2019). There is continued debate whether the asynchronous component of synaptic transmission 

is a result of synaptic Ca2+ accumulation, or whether it is caused by a distinct vesicle pool released 

via special mechanisms independent of the synchronous release component (Chung & Raingo, 

2013, Smith et al., 2012). The connection between delayed release and the so-called 

spontaneous release seen in the absence of stimulation is also not fully understood. Biophysical 

modeling is used extensively in testing different hypotheses about the mechanisms of 

asynchronous and spontaneous neurotransmitter release. 

An intriguing feature of asynchronous release is that it seems to exhibit a lower, almost linear 

Ca2+ dependence (Kochubey & Schneggenburger, 2011, Lou et al., 2005, Sun et al., 2007). The 

so-called allosteric model proposed by (Lou et al., 2005) explains the observed decrease in 

apparent cooperativity of Ca2+ action at low Ca2+ concentration by the presence of a slow 

conformational change of the release proteins, leading to a second route of vesicle fusion, which 

becomes progressively less likely at higher Ca2+ concentration. This is implemented by the 

following scheme with a reverse-cooperativity parameter f < 1: 

               

(15)

 

A more detailed model proposed by (Sun et al., 2007) and referred to as the dual sensor model 

provides an improved quantitative description of release at low Ca2+ concentrations, since it 

reproduced more accurately the latency of synaptic response at very low levels of Ca2+. This 



model assumes two independent Ca2+ sensors acting in parallel and each triggering a distinct 

mode of neurotransmitter release:  

                          

(16)

 

Here the synchronous release involves a sensor “X” with Ca2+-cooperativity of five, while a 

different and independent sensor “Y” is responsible for asynchronous release, and possesses a 

cooperativity of two. Note that in this model implementation both sensors bind Ca2+ cooperatively, 

with equal cooperativity parameter b. The existence of two distinct sensors is supported by recent 

evidence that in some synapses asynchronous release is controlled by distinct Ca2+ binding 

proteins. Among the candidates for such a specialized asynchronous release regulator are the 

non-synaptotagmin sensor Doc2 (Yao et al., 2011), a distinct isoform of vesicle SNARE protein 

VAMP4 (Raingo et al., 2012), and the Syt7 isoform of synaptotagmin characterized by slow but 

high-affinity Ca2+ binding (Luo et al., 2015a, Turecek & Regehr, 2018, Weber et al., 2014). An 

alternative possibility is that asynchronous release becomes prominent when the faster 

synaptotagmin isoforms like Syt1 are depleted, which removes their release-clamping influence 

(Turecek & Regehr, 2019). However, as mentioned above, the mechanisms of asynchronous as 

well as spontaneous release are still under debate and may well vary across synaptic types 

(Chung & Raingo, 2013, Kaeser & Regehr, 2014, Smith et al., 2012).  

Multiple vesicle pool models 

Apart from the intrinsic heterogeneity in Ca2+ affinity and speed of exocytosis due to the existence 

of distinct release pathways guiding exocytosis of each vesicle, an additional explanation for the 

observed heterogeneous components of vesicle release is the existence of independent pools of 

vesicles with variable degree of “preparedness” for exocytosis. This heterogeneity is especially 

pronounced in endocrine cells, which exhibit a fast-decaying initial phase of release followed by 



a second, more slowly decaying component, but such behavior is also found in other high-

throughput neuronal synapses such as the calyx of Held synaptic terminal and in ribbon synapses 

(Neher, 2012, Neher & Sakaba, 2008, Pedersen & Sherman, 2009, Verhage & Toonen, 2007, 

Voets, 2000). The identity of such distinct vesicle pools is currently under debate: they could be 

distinguished either by the variations in the distance between vesicles and corresponding voltage 

gated Ca2+ channels (“positional priming”: (Wadel et al., 2007)) and/or by differences in the 

arrangement of the molecular machinery needed for exocytosis (“molecular priming” and “super-

priming”: (Chung & Raingo, 2013, Lee et al., 2013, Neher, 2017, Sorensen, 2004, Taschenberger 

et al., 2016, Verhage & Toonen, 2007)).  

Exocytosis models comprising multiple vesicle pools allow reproducing the observed 

heterogeneous release components. However, simple two-pool models comprising a readily 

releasable pool and a reserve pool of vesicles were already proposed in the earliest modeling 

studies of vesicle release, in order to account for the short-term depression of synaptic response 

arising from vesicle depletion (Elmqvist & Quastel, 1965, Liley & North, 1953, Neher, 1998, Zucker 

& Regehr, 2002). 

Most quantitative models of exocytosis that include multiple releasable vesicle pools are based 

on the two-pool model of (Heinemann et al., 1993, Voets, 2000, Voets et al., 1999) that was put 

forward to quantify two temporal components of secretory vesicle release in adrenal chromaffin 

cells. One implementation of such a two-pool model was explored by (Sorensen, 2004): 

                    

(17)

 

In this model exocytosis proceeds with cooperativity value of three from both the slow 

(“sustained”) and fast synchronous pools, which are replenished via two preparatory steps, 

docking and priming, from the reserve pool.  

There are indications that in some cells, the slowly releasing pool may in fact have a much higher 

sensitivity to Ca2+, in the range of several μM rather than 10s of μM, which allows it to participate 



in exocytosis despite a much longer separation from the Ca2+ channels compared to the 

immediately-releasable fast pool (reviewed in (Pedersen & Sherman, 2009)). The delay in the 

release of the highly-sensitive vesicles is explained by the longer diffusional distance and 

therefore longer time required for Ca2+ concentration to reach μM range far from the Ca2+ 

channels. Such so-called Highly Ca2+ Sensitive Pool (HCSP) has been described in adrenal 

chromaffin cells (Yang et al., 2002), rod photoreceptor ribbon synapses (Thoreson et al., 2004) 

and in insulin secreting beta cells (Yang & Gillis, 2004). A recent multiple-pool model that includes 

the HCSP pool along with the lower-affinity immediately-releasable pool (IRP), and implements a 

deterministic bi-domain model of [Ca2+] dynamics, can be found in (Pedersen & Sherman, 2009). 

This model is based on an earlier model of (Chen et al., 2008), and it accurately predicts the 

characteristic bi-phasic release of insulin from pancreatic beta cells. The first phase of secretion 

is mostly due to the docked vesicles that are rapidly recruited to the immediately releasable pool 

(IRP) and exocytosed in response to local “micro-domain” [Ca2+] ([Ca]MD) entering through L-type 

Ca2+ channels. In contrast, the second, delayed phase of insulin release builds up more slowly 

due to the recruitment of the reserve vesicles into the HCSP, and gradual accumulation of 

cytosolic Ca2+ ([Ca]
Cyt

) entering through R-type Ca2+ channels:   

                        

(18)

 

Here Ca2+-dependent transitions are indicated in color, according to the primary source of Ca2+ 

for the corresponding transition. The R-type and L-type voltage-dependent Ca2+ channels 

(VDCCs) contribute respectively to the cytosolic and the microdomain pools of Ca2+, [Ca]
Cyt

 and 

[Ca]
MD

 (the diffusional exchange between these two Ca2+ pools is not shown). The Ca2+-

dependent exocytosis steps lead to the two “fused” states, FHCSP
 and FIRP, which in turn feed into 

the final released insulin states RHCSP and RIRP through a final Ca2+-independent pore-expansion 

transition. 

Note that the existence of multiple vesicle pools can also serve as a potential explanation for 

asynchronous release reviewed above (Chung & Raingo, 2013, Neher, 2017). Another possibility 



is that the intrinsic sources of heterogeneity in release properties captured by the allosteric and 

the dual-sensor models (Eqs. 15,16) are present in each vesicle (Kaeser & Regehr, 2014, Sun et 

al., 2007). In particular, as reviewed above, in some synapses asynchronous release may be 

mediated by specialized Ca2+ sensors. Further, both the synchronous and the delayed 

components are observed with global (whole-terminal) Ca2+ elevations that activate vesicles in all 

pools. Therefore, both sources of heterogeneity, the ones intrinsic to each vesicle and the 

extrinsic ones (existence of distinct pools), may be relevant in many synapses (Kaeser & Regehr, 

2014). In order to take into account all factors of vesicle release heterogeneity and predict more 

accurately the exocytosis rate under low Ca2+ conditions, one can combine the dual-pool model 

with the allosteric model of (Lou et al., 2005) or the dual-sensor model of (Sun et al., 2007). This 

was done for instance by (Wolfel & Schneggenburger, 2003), who considered allosteric Ca2+ 

binding for both pools, as in Eq. 15 (neglecting however the exchange between the two pools due 

to the short time scales considered in that work).  Finally, it should be noted that the separation 

of releasable vesicles into only two pools instead of a larger set of pools or a continuum of states 

is most probably a simplification, but this level of detail is sufficient to accurately quantify release 

under most physiological conditions (Neher, 2017). Including more than two pools should be done 

with great care to avoid an underdetermined model and data over-fitting. 

Models with Ca2+-dependent vesicle priming 

Vesicle docking and priming steps in reactions 17-18 most likely include multiple molecular 

processes (involving Munc18 and other proteins) and morphological steps (e.g. positional 

priming), the identity and sequence of which are still under investigation (Lee et al., 2013, Verhage 

& Toonen, 2007). Experimental evidence suggests that at least some of these vesicle priming 

steps are Ca2+ dependent in many synapses, albeit with a lower Ca2+ cooperativity compared to 

exocytosis itself, with a near-linear dependence on intracellular Ca2+ concentration (Neher & 

Sakaba, 2008). Depending on the balance between the different vesicle pools at resting Ca2+, the 

Ca2+-dependent priming can manifest itself in two different properties of short-term synaptic 

plasticity (Zucker & Regehr, 2002): 

1) Under conditions of low initial release-ready vesicle pool size, Ca2+-dependent priming 
would cause the secretion rate to increase during stimulation as a result of an increase in 
vesicle “mobilization” to the release-ready primed pool, which can serve as a mechanism of 
short-term synaptic facilitation (Dittman et al., 2000, Millar et al., 2005, Pan & Zucker, 2009, 
Worden et al., 1997) (see also encyclopedia entry on “Facilitation, Biophysical Models”). 

2) Under conditions of high vesicle release probability, Ca2+-dependent priming would manifest 
itself through activity-dependent acceleration of recovery from short-term synaptic 
depression (Dittman & Regehr, 1998, Hosoi et al., 2007, Stevens & Wesseling, 1998, von 
Ruden & Neher, 1993, Wang & Kaczmarek, 1998) 



The simplest model of release that includes  a Ca2+-dependent priming step can be obtained by 

modifying reaction 7: for instance, (Millar et al., 2005) considered the following scheme (see also 

(Bornschein et al., 2013, Brachtendorf et al., 2015, Sakaba, 2008) for a slightly modified version 

of this scheme): 

                         

(19)

 

The study of (Millar et al., 2005) also considered a more detailed version of this model that takes 

into account the independence of Ca2+ binding to C2A and C2B domains of synaptotagmin, 

leading to the following modification of above (see also (Pan & Zucker, 2009)): 

        

(20)

 

Here the horizontal state transitions represent the binding of the three C2A sites of synaptotagmin, 

while the vertical transitions correspond to the binding of the C2B sites, which is assumed to be 

independent of the Ca2+ binding of the C2A domain. Both domains are assumed to bind Ca2+ 

cooperatively (with cooperativity parameter b
1
=b

2
=0.5). These models were successful in 

explaining the difference between release properties of the facilitating “tonic” and depressing 

“phasic” crustacean neuromuscular junctions (Millar et al., 2005, Pan & Zucker, 2009) 

Vesicle priming has also been considered in the context of more detailed models that include 

multiple releasable vesicle pools. In such models, the priming step is usually assumed to occur 

upstream of the process of exchange between the slow-releasing and the fast-releasing vesicle 

pools. Adding the priming step to the scheme  17 leads to the following class of models (Verhage 

& Toonen, 2007): 



                  

(21)

 

In this scheme, “super-priming” refers to the conversion of the slowly releasable pool to the fast 

releasable pool, the nature and the Ca2+-dependence of which is currently unknown.  Note that 

the use of the term “super-priming” is model-dependent; recently it has been used to describe a 

newly identified additional kinetic step in the priming of the fast pool at the calyx of Held synaptic 

terminal (Lee et al., 2013). The possible Ca2+ dependence of the conversion of the slow pool to 

the fast pool is unknown; it is possible that this conversion may even be retarded by Ca2+ at some 

synapses (Neher & Sakaba, 2008).  At the calyx of Held, the contribution of the fast component 

of release is observed to increase with increasing Ca2+ levels, at the expense of the slow 

component (Wolfel et al., 2007). An explanation of this observation was suggested that the slow 

pool may be small at rest but increases due to activity-dependent conversion of vesicles from the 

fast pool, and that this conversion is less pronounced at high Ca2+ levels, so it is not able to reduce 

the fast pool at more intense stimulation levels (Neher & Sakaba, 2008). 

Spatially resolved exocytosis models and the vesicle-channel coupling 

Models of Ca2+ binding by synaptotagmin sensors controlling the release of one or more vesicle 

pools are often combined with simplified models of intracellular Ca2+ dynamics that involve only 

one or two well-mixed spatial Ca2+ compartments. This level of detail is sufficient to simulate 

exocytosis in response to global elevations of Ca2+ produced by caged-Ca2+ compounds. 

However, deep understanding of physiological synaptic or endocrine transmission requires full 

three-dimensional simulation of intracellular Ca2+ diffusion and buffering. This in turn requires 

taking into account the latest data on the spatial arrangement of voltage-dependent Ca2+ channels 

and membrane-docked vesicles, which varies considerably across distinct cell types and stages 

of development (Bornschein & Schmidt, 2018, Eggermann et al., 2012, Gentile & Stanley, 2005, 

Matveev et al., 2011, Moser et al., 2006, Oheim et al., 2006, Stanley, 2015, Stanley, 2016, Walter 

et al., 2018). In fact, the heterogeneous release probability of secretory vesicles captured by the 

multiple vesicle pools models reviewed above can be a result of heterogeneous distance between 

vesicles and the presynaptic Ca2+ channels. 

Since the geometric arrangement of vesicles and functional Ca2+ channels at the release sites is 

hard to probe using existing experimental techniques, testing the hypotheses on channel-vesicle 

distance has been one of the primary aims of the more comprehensive biophysical models of 



exocytosis. To simulate three-dimensional Ca2+ dynamics, such detailed models use either 

stochastic simulation (Bennett et al., 2004, Dittrich et al., 2013, Glavinovic & Rabie, 2001, Ma et 

al., 2015, Nadkarni et al., 2012, Scimemi & Diamond, 2012, Shahrezaei et al., 2006, Shahrezaei 

& Delaney, 2005), deterministic solution of reaction-diffusion equations (Bohme et al., 2018, 

Bucurenciu et al., 2008, Gandasi et al., 2017, Matveev et al., 2009, Matveev et al., 2011, 

Meinrenken et al., 2002, Meinrenken et al., 2003, Schmidt et al., 2013, Weber et al., 2010, Zucker 

& Fogelson, 1986), or steady-state approximations of Ca2+ distribution near an array of open Ca2+ 

channels (Bertram et al., 1999, Coggins & Zenisek, 2009, Matveev, 2016, Montefusco & 

Pedersen, 2018). 

Several particularly detailed modeling studies combine together many of the mechanisms 

reviewed above to build a comprehensive model of secretory vesicle exocytosis: 

1) The model implemented in (Dittrich et al., 2013, Luo et al., 2015b) and (Ma et al., 2015) is 
one of the most complete recent models of exocytosis that includes stochastic simulations of 
Ca2+ ions diffusion, buffering and binding to synaptotagmin sensors, taking into account the 
copy number of synaptotagmin molecules and SNARE complexes per vesicle (Chapman, 
2002, Han et al., 2004, Mutch et al., 2011). This is the first modeling study that considered 
the possibility that only a subset of synaptotagmin sites have to be Ca2+-bound to trigger 
exocytosis, and (Dittrich et al., 2013) examines the effective Ca2+ cooperativity of exocytosis 
as an emergent characteristic of such partial binding of a subset of Ca2+ sensors.  

2) The study of (Pan & Zucker, 2009) builds a comprehensive model of release and short-term 
plasticity at tonic and phasic crustacean neuromuscular junctions, based on Eq. 20 above, 
but adds positional priming, leading to a transition scheme describing vesicle exchange 
between the following distinct vesicle pools: reserve, docked, primed channel-detached and 
primed channel-attached. One of the main aims of this study was to build a model that most 
fully accounts for the properties of short-term synaptic facilitation observed at crustacean 
tonic neuromuscular junctions, as well as the properties of short-term depression and 
asynchronous release at phasic neuromuscular junctions. 

These models are just two representatives of a class of comprehensive models of Ca2+-dependent 

exocytosis that go beyond the simulation of vesicle release in response to a single presynaptic 

depolarization, aiming to reproduce short-term changes in synaptic transmission strength in 

response to prolonged or repeated stimulation.  Such modeling work is reviewed in more detail in 

the entry “Facilitation, Biophysical Models”. 
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