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a b s t r a c t

We study a network of m identical excitatory cells projecting excitatory synaptic connections onto a
single inhibitory interneuron, which is reciprocally coupled to all excitatory cells through inhibitory
synapses possessing short-term synaptic depression. We find that such a network with global inhibition
possesses multiple stable activity patterns with distinct periods, characterized by the clustering of the
excitatory cells into synchronized sub-populations. We prove the existence and stability of n-cluster
solutions in a m-cell network. Using methods of geometric singular perturbation theory, we show that
any n-cluster solution must satisfy a set of consistency conditions that can be geometrically derived. We
then characterize the basin of attraction of each solution. Although frequency dependent depression is
not necessary for multistability, we discuss how it plays a key role in determining network behavior.
We find a functional relationship between the level of synaptic depression, the number of clusters and
the interspike interval between neurons. This relationship is much less pronounced in the absence of
depression. Implications for temporal coding and memory storage are discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Considerable attention has been given to the idea that neurons
convey information in their patterns of activity to downstream
targets. There are two general ways in which this information is
transmitted. One way is through the firing rate of individual or
groups of neurons. In this scenario, downstream neurons interpret
the changes in firing rate to discern the behavior of the upstream
network. Place cells in the hippocampus of rats are one example
of cells that increase their firing rate when the animal is in a
certain place or location of a known environment [18]. The second
way that neurons may transmit information is through their spike
times [2]. For example, two neurons may fire at the same rate,
but a downstream target neuron may determine the degree of
synchrony of the cells based on the difference of their spike times.
Coincidence detection is a classic example of this phenomena
whereby a downstream target neuron will only fire if it receives
inputs from different neurons within a very small window of time.
The ability of a network of neurons to be able to conveymultiple

pieces of information (temporal codes) is of paramount importance
given that the brain is of finite size. For reasons of efficiency it
is advantageous for a single network to be able to create, store
and transmit multiple codes rather than just one. This leads to the
question of how these codes are constructed within the neuronal
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network and how does a network decide which code to transmit.
Mathematically, it is equivalent to asking a very straightforward
and general question: What are the circumstances under which a
neuronal network exhibits multistability of solutions, i.e. several
distinct stable activity states?
In this paper, we consider a globally inhibitory network of

spiking neurons that is loosely based on the CA1 hippocampal
structure. The network consists of m uncoupled pyramidal cells
that each has an excitatory synapse onto a common interneuron.
The interneuron sends inhibition that exhibits short-term synaptic
depression (STSD) to each of the pyramidal cells. STSD is a transient
activity-dependent decrease in synaptic strength observed in
a wide variety of neural systems, characterized by frequency
dependence of its effect [1]. Namely, if a pre-synaptic neuron
fires at a high-frequency, then the efficacy or strength of its
synapse onto post-synaptic neurons is weakened (depressed).
Alternatively, if the pre-synaptic cell fires at a lower frequency,
or if there is a long interspike interval, then the synapse has
a longer time to recover from depression between the spikes,
leading to larger synaptic efficacy, and the synapse is said to
be strong. The globally inhibitory network considered here is an
extension of the E − I model consider in Bose et al. [3]. There we
showed how STSD allows bistability between a low-frequency and
a hi-frequency periodic solution. STSD allowed the frequency of
these two solutions to be dependent on two sets of independent
parameters; one set is associated with the inhibitory synapse and
the other set is associated with the E cell.
In this paper, we show that a globally inhibitory network can

exhibitmultiple stable solutions, all for the same set of parameters.
In particular, we show that in a network ofm pyramidal cells, there
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Fig. 1. Anm-cell globally inhibitory network. Each synapse from P to I is excitatory,
and each synapse from I to P is inhibitory and displays short-term synaptic
depression.

can exist stable cluster solutions of size n ≤ m for any n. A n-cluster
solution is one in which the network breaks up into n out-of-phase
groups. Within each group the cells are fully synchronized, but the
clusters are separated by a well defined interspike (intercluster)
interval. Although themultistability of solutions does not explicitly
depend on STSD, synaptic depression plays an important role
in the properties of the ensuing solutions. In particular, STSD
increases the difference between the interspike intervals and the
corresponding periods of distinct clustered solutions. We will
show that the equilibrium interspike interval is fully determined
by the extent of synaptic depression associated with each solution,
and in general decreases with the number of clusters. Thus, STSD
allows there to be m different interspike intervals corresponding
to m different clustered solutions, implying that the network can
transmit m different codes. We will show that in the absence of
depression, the separation of interspike intervals is not necessarily
guaranteed. STSD also allows the network to display a further
bistability of distinct solutions having the same number of clusters,
qualitatively similar to that described in [3]. This work adds to that
of Rubin and Terman [21] who study a globally inhibitory network
of bursting cells.
The paper is organized as follows: In Section 2, we describe the

mathematical model that we use for cells, as well as the model
for synaptic depression. We also exploit time-scale separations to
reduce the analysis to a particular slow manifold of the system.
In Section 3, we first show a few simulations of clustering, and
then follow up with mathematical analysis proving the existence
and stability of n-cluster solutions. The basin of attraction of
these solutions is analyzed, and a one-dimensional map-based
approach for finding solutions is presented. We then compare
our results to the situation where there is no depression in the
inhibition from the global inhibitor. Throughout this section, we
use a combination of analysis, simulations and numerical solutions
of derived equations. The paper concludes with a brief discussion.

2. Model

We consider uncoupled pyramidal cells which make excitatory
synapses onto a common interneuron; Fig. 1. We note that this
architecture is effectively equivalent to an all-to-all mutually
coupled inhibitory network. The interneuron sends a depressing
synapse onto each of the pyramidal cells. The general set of
equations that governs the activity of each pyramidal cell and the
interneuron are given by

ε
dv
dt
= f (v,w)

dw
dt
=
w∞(v)− w

τw(v)

(1)

where ε � 1. v is the membrane potential of the cell and f is
the nonlinear termwhich contains various ionic currents. The term
w∞(v)−w is associatedwith the opening and closing of potassium

Fig. 2. Pyramidal cell v—w phase plane and singular orbit. The double arrows
denote a fast transition between silent and active states. A single arrow denotes
the slower transition in each of those states.

channels within the cell. The term τw(v) is the voltage-dependent
w decay time constant.
The nullclines of the above Eq. (1) are obtained by setting the

right hand side equal to zero. The v nullcline is a cubic-shaped
curve denoted by C as shown in Fig. 2. The local max and min
values are denoted (vrk, wrk) and (vlk, wlk), respectively, where the
subscripts ‘‘rk’’ and ‘‘lk’’ denote the right- and the left knee of the
C nullcline, respectively. The right (left) branch of C corresponds
to the active (silent) state of the neuron. The w nullcline is an
increasing sigmoid denoted by S.
We assume the following: Above and below the curve C , f < 0

and f > 0, respectively. Below (above) S, (w∞ − w) > 0 (< 0).
Near the left branch of the v nullcline where f = 0 we require
∂ f
∂w
< 0 and ∂ f

∂v
to be nonzero everywhere except at the minimum

of the nullcline. This minimum is defined by the conditions f = 0
and ∂ f

∂v
= 0. If S intersects C at only one point and this intersection

takes place in the middle branch of C then it is an unstable fixed
point causing the cell to undergo oscillations. We will choose
parameters such that an isolated P cell has nullclines with this
geometry; Fig. 2. If S intersects C on either the left or the right
branch, then the fixed point is stable. We choose parameters so
that the interneuron I has a fixed point on its left branch.
Eq. (1) possesses a stable periodic solution if its fixed point lies

on the middle branch. By taking ε to be small it is easy to construct
this solution using geometric singular perturbation theory. Let
ε → 0 in Eq. (1) to obtain the slow subsystem:

0 = f (v,w)
dw
dt
=
w∞(v)− w

τw(v)
.

(2)

Now if time is rescaled to t = ετ and then if ε → 0, we obtain

dv
dτ
= f (v,w)

dw
dτ
= 0.

(3)

The singular periodic orbit consists of 4 parts. There are two
slow (solutions of (2)) and two fast (solutions of (3)) parts. These
fast transitions are initiated from the right and left knees of the v
nullcline; Fig. 2. If ε is sufficiently small in the original Eq. (1) then
we obtain a relaxation oscillation. In this case, the periodic orbit
lies O(ε) close to the singular solution [16].
Before describing the coupled equations, we make an assump-

tion to force our P cells to display spiking behavior. As in [11], we
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take τw(v) to be small whenever v > vrk. This will cause each P
cell to spend a small amount of time in the active state and thus
will reduce the width of its action potential.

2.1. Coupled equations

Each pyramidal cell receives inhibitory input from the interneu-
ronwhenever the latter fires. The interneuron, in turn, receives ex-
citatory inputwhenever a pyramidal cell fires.Wewill assume that
the I cell fires if and only if a P cell fires. Each P cell obeys

ε
dvp
dt
= f (vp, wp)− ḡinhs(t −1t)[vp − Einh]

dwp
dt
=
w∞(vp)− w

τw(vp)
,

(4)

while the interneuron obeys

ε
dvI
dt
= f (vI , wI)− ḡexcs∞(vp)[vI − Eexc]

dwI
dt
=
w∞(vI)− w

τw(vI)
.

(5)

The parameters ḡinh, ḡexc , Einh and Eexc denote maximum synaptic
conductances and the reversal potentials of the relevant synapses.
Note that Einh is below the resting potential, while Eexc is above the
resting potential of the cell (see Appendix for parameter values).
In our model, the excitatory synapse from any P to I is non-
depressing. For simplicity, we assume that each is instantaneous
and thereby model it using s∞ given by

s∞(vp) =
{
0, vp ≤ vθ
1, vp ≥ vθ ,

(6)

where vθ is a synaptic threshold lying between vlk and vrk.
The inhibitory synapse from I to any P is modeled as a

depressing synapse. This means that the effective maximum
strength of the synapse is a function of the frequency of the
interneuron. Whenever I fires, the synapse depresses or weakens.
Between spikes of I the synapse recovers. Thus if I fires with high
frequency, then its synapse isweak. If it fires at low frequency, then
its synapse will be strong. To model this, for our analysis, we use a
standard phenomenological model due to Abbott et al. [1]. We use
a variableD tomeasure the extent of depression of the synapse and
another variable s to incorporate the effect of the synapse onto the
P cells. Both depend on the activity of I . In between spikes of I , D
recovers toward the value one with time constant τD.

dD
dt
=
1− D
τD

. (7)

When I spikes at say t = t̂ , we reset D to rD, where 0 < r < 1.
Specifically, D(t̂+) = rD(t̂−). At an I spike, the synaptic variable s
is set to D by s(t̂+) = D(t̂−). Between spikes of I , s decays toward
zero with time constant τs.

ds
dt
=
−s
τs
. (8)

Note that in (4), the variable s appearswith a delay of1t , s(t−1t).
Delay of the inhibitory synapse is a necessary condition to obtain
stable synchrony for fast rising synapses [25] and will play an
important role in the stability of the clustered solutions obtained
here.
The Abbottmodel forD and s assumes that each action potential

has zero spikewidth. However, the simulations in this paper utilize
a biophysical model of a CA1 pyramidal cell due to Ermentrout and
Kopell [7] that have a non-zero spike width. In the Appendix we
show the equations that are used for simulations and discuss what
modifications on the variables D and s are necessary to incorporate
non-zero spike width.

2.2. Reduction to slow manifold

Wemake three main assumptions to conduct the analysis

(A1) I fires if and only if any P cell fires.
(A2) Spikes of either P or I have zero time width.
(A3) Inhibition affects each pyramidal cell only when the cell is in

its silent state.

It should be noted that assumptions A2 and A3 are just for ease of
the analysis. Relaxing either or both of them does not qualitatively
change the results. The practical effect of A3 is that when a P
cell returns to the silent state, it does so with w = wrk, the
value of the local maximum of the cubic-shaped v nullcline C
(Fig. 2). Assumption (A1), while not necessary to obtain clustering,
drastically simplifies the analysis allowing us to focus only on the
spike times of the P cells. Specifically, we can ignore the I dynamics
altogether and simply track how its synapses onto each P affect the
network behavior.
Due to these assumptions, we can understand the dynamics of

the entire system by focusing on the behavior of the P cells in their
silent state. To do that, we define a two-dimensional w–g slow
manifold on which we study the evolution of the P cells. Define
g(t) = ḡinhs(t − 1t), where g denotes the conductance of the
inhibitory synapse. To simplify the analysis,we further assume that
near the left branches of the v-nullcline,w∞(v) = 0. As a result of
these assumptions, the pyramidal cell P obeys a specific set of slow
equations when it is in its silent state and in between spikes of I .

0 = f (v,w)− g[v − Einh]

w′ = −
w

τw

g ′ = −
g
τs

D′ =
1− D
τD

.

(9)

Since ∂ f
∂v
− g is nonzero for all points except at the knees of the

nullcline, the first equation of (9) can be solved for v in terms of
w and g along the entire left branch of the nullcline, v = F(w, g).
This equation is valid for P in the silent state. The second and third
equations of (9) are used to find the evolution of w and g which
can then be used to calculate v. Note that increasing the value of
the inhibitory synaptic conductance g lowers the v nullcline in the
v-w phase plane.
The two dimensional w–g slow manifold (Fig. 3) has five

boundaries: (1) the line g = 0 which occurs when a P cell receives
no inhibition; (2) the line g = ḡinh, this is the value of maximum
inhibition that a P cell can receive; (3) the fixed point curve which
represents the points of intersection of the w nullcline with the
left branches of the v nullclines corresponding to different values
of g . This curve of critical points exists only for particular interval of
g ∈ [ĝ, ḡinh]where the value ĝ is theminimumvalue of g forwhich
the v nullcline intersects the w nullcline; the cell’s w value is not
changing along this curve; (4) the jump curve that represents the
w position of the local minimum of the v nullcline corresponding
to different values of g; upon reaching this curve, a cell jumps from
the silent left branch to the active right branch of the v-nullcline.
The slope of the jump curve is negative as is shown in [25]; (5) the
return curve w = wrk where each P cell returns to from its active
state. The return curve is vertical, by assumption (A3) as inhibition
affects only the left branch of the cubic-shaped nullcline C and not
the right branch.
In Fig. 3, we show an example of representative trajectories

from two P cells on the slow manifold. At any moment in time,
both cells receive the same amount of inhibition and thus lie on
the same horizontal g-level line. Assume for a moment that the
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Fig. 3. Representative trajectories on the w–g slow manifold. Two cells begin at
t = 0 and evolve toward the jump curve. When P1 hits the curve at t = t− , it is
reset to w = wrk at t = t+ , while P2 is reset vertically to the position shown. The
cells then continue to evolve toward the jump curve. The dotted horizontal lines
show that at any moment in time, the cells lie on the same g-level.

synaptic delay from I to P is 1t = 0. If the cells start as shown at
t = 0 and P1 reaches the jump curve at t = t−, then at t+, both P1
and P2 are reset to g(t+) = ḡD(t−) (because I fireswhenever any P
fires). P2 is reset vertically, so itsw value is unchanged, while P1 is
reset to the return curvew = wrk representing that it has spiked.
We will be interested in the steady state behavior of the

network. It turns out that clustered solutions are periodic solutions
of the governing equations. This means that I fires periodically
with a determinable interspike interval. As we will show below,
the length of the interspike interval will depend on the number of
clusters as well as various network parameters. We can calculate
the maximum and minimum values that the depression and
synaptic variables take over one cycle of a periodic solution. The
minimum D value occurs just after an I spike, while the maximum
occurs just prior to an I spike. Denote the interspike interval of I by
tin. Suppose at t = 0 a spike has just occurred and D(0+) = Dmin.
On the interval t ∈ (0, tin), D follows (9), so D(t−in ) = 1 − (1 −
Dmin) exp(−tin/τD). After the next I spike, D(t+in ) = rD(t

−

in ). Thus
by periodicity, we require Dmin = rD(t−in ). Solving for Dmin yields

Dmin =
r(1− e−tin/τD)
1− re−tin/τD

, (10)

from which it easily follows that Dmax obeys

Dmax =
1− e−tin/τD

1− re−tin/τD
. (11)

It should be noted that in both equations above, the period tin is not
a priori known. In fact, in the analysis below we will determine tin
and show that it depends on the cluster size.
If we denote the right-hand side of (11) by h(tin), it is easy to

check that dh/dtin > 0. Therefore Dmax increases with tin and h(tin)
can be inverted to solve for tin as a function of Dmax.

3. Results

In Fig. 4, we show two sets of voltage traces from a 4-cell
network. The bottom trace shows a stable 4-cluster solution.
Notice that the distance between successive spikes is small. The
interspike interval in this case is about 27 ms. The top trace shows
a stable 2-cluster solution in the 4-cell network with interspike
interval of 34ms. In this simulation, three cells have synchronized,
but remain out of phase with the other cell. The cluster sizes
and the specifics of why a particular cell is within a particular
cluster has to do with our choice of initial conditions. By changing
initial conditions,we could, for example, obtain a 2-cluster solution
with each cluster containing two cells. Note that the distance
between spikes is larger in the 2-cluster case, as can be seen by

Fig. 4. Clustered solutions in a 4-cell network. In each set, the top trace VI is for the
interneuron and the remaining four are for the pyramidal cells.

viewing the activity of I given by the vI trace. Both simulations are
obtained for the same set of parameters (see Appendix). Moreover,
in simulations not shown we can obtain 1- and 3-cluster solutions
as well, with corresponding interspike intervals of 70 and 30 ms.
The distance between spikes decreaseswith the number of clusters
in the network. Further, the size of an individual cluster does not
affect this distance, since I fires exactly once upon the firing of all
cells in each cluster, independent of howmany cells are in a cluster.
Below,wewillmathematically explainwhy this network is capable
of producing multistability of solutions.

3.1. Existence of a n-cluster solution

We first prove the existence of a 2-cluster solution. For this
argument we need only consider two P cells. We shall also assume
that the synaptic delay from I to P is 1t = 0, a condition we
will later relax when discussing stability of solutions. To prove the
existence of the 2-cluster solution, we will derive two different
necessary conditions and show that when both are satisfied, the
solution exists.
Assume that at t = 0, the leading cell starts on the w–g slow

manifold at (w0, g0), while the trailing cell starts at (wrk, g0). There
exists a time tg0(w0) for the leading cell to reach the jump curve.
Wewould like to determine if the trailing cell can reach the original
w location of the leading cell, w0, after this time. That is we want
to determine if there exists aw0 such that

wrke−tg0 (w0)/τw = w0. (12)

If we fix g0 and let the initial position of the leading cell approach
the jump curve, tg0(w0)→ 0. In this limit, the trailing cell starting
atwrkwouldneed a large amount of time to reachw0. Alternatively,
if we let the initial position of the leading cell approach the return
curve, then in this limit, tg0(wrk) > t0(wrk) where the latter time
satisfies wlk = wrk exp(−t0(wrk)/τw). Now the trailing cell would
need very little time to reach the initial position w0. Moreover, as
w0 is smoothly increased from the jump curve to wrk, the time
tg0(w0) is a strictly increasing function. Thus by the intermediate
value theorem andmonotonicity, there exists a unique valuew0 =
w? such that tg0(w

?) satisfies (12).
The above argument holds for any initial value of g0. Thus we

can extend it to any g ∈ [0, ḡ]. Doing so allows us to establish the
existence of a curve Cw = {(w, g) : w = w?(g0)} for which the
time for the leading cell from this curve to reach the jump curve
is exactly the time for the trailing cell to reach w? satisfying (12);
Fig. 5. Thus if one cell starts on Cw and the other at wrk, both with
the same g0 value, then in the time tg0(w

?) the leading cell reaches
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Fig. 5. The curve Cw on thew–g slow manifold. If the leading cell begins on Cw at
w = w0 , g = g0 and hits the jump curve at t = tg0 , then the trailing cell starting at
w = wrk , g = g0 will reach w = w0 at this time. The dotted horizontal lines show
that at any moment the two cells lie on the same g-level.

the jump curve, and the trailing cell reaches the initialw? value of
the leading cell. It is easy to establish that Cw is negatively sloped
in thew–g plane.
What we next want to know is whether the time interval

tg0(w
?) ensuring periodicity in w agrees with the periodicity

condition for the synaptic variable g0. Note that the value of g
is ‘‘slaved’’ to the value of D, since g is reset at a spike time to
g(t+) = ḡD(t−) = ḡDmax. Therefore periodicity in g is ensured
if D(t) is periodic. Thus g0(t+in ) = ḡDmax, where Dmax satisfies the
periodicity condition (11), and we obtain

g0(t+in ) =
ḡ(1− e−tin/τD)
1− re−tin/τD

. (13)

This relation can be inverted to find tin as a function of g0 given by

tin(g0) = τD ln
ḡ − rg0
ḡ − g0

. (14)

Thus given an initial g0 value, Eq. (14) determines the length of the
interspike interval needed for the synaptic conductance to return
to its original value g0, which occurs when the spike-triggered
reduction of synaptic conductance due to depression matches the
recovery from depression over this interval.
To briefly summarize, for any initial value g0 of synaptic

conductance at the spike time, we have now determined
two distinct inter-spike intervals associated with two different
periodicity conditions: interval tg0(w

?) ensures periodicity in w,
given that one of the cells is atCw , while the other is atwrk, whereas
tin(g0) represents the inter-spike interval necessary for periodicity
in synaptic conductance.Wewant to know if there exists a g0 value
(say g∗) that satisfies both periodicity conditions simultaneously,
tg∗(w?(g∗)) = tin(g∗). If one cell begins at (w∗, g∗) and the other
at (wrk, g∗), then in the time tg∗(w?) = tin(g∗), the leading cell
will reach the jump curve and be reset to (wrk, g∗), while in the
same time, the trailing cell will evolve toward the jump curve and
be reset to (w?, g∗). Thus wewill have established the existence of
the 2-cluster solution.
Since we already have an analytic expression for tin, let us focus

now on obtaining one for tg0(w
?). As noted earlier, the jump curve

is negatively sloped. As in [11], we assume the jump curve is linear,
and can be written as g + Mw = c where M and c are the
negative slope and intercept in thew–g plane. These constants can
be calculated since the jump curve passes through the points (0, ĝ)
and (wlk, 0):M = ĝ/wlk, c = ĝ . Assuming that a cell starts on Cw
at (w0, g0), we find that tg0 satisfies

g0e−tg0 /τs +
ĝw0
wlk
e−tg0 /τw = ĝ. (15)

Fig. 6. The curves tin and tg0 for two different values of time constant τw . The
concave up grey curve is tin , the concave down curve is tg0 for the case τw = 5
and the sigmoidal curve is tg0 for the case τw = 0.4. Points of intersection of either
of the tg0 curves with the tin curve represent 2-cluster solutions. Note that in the
case of small τw there are multiple intersections.

In the above equation, there are three unknowns, tg0 , w0 and g0.
But the first two are related in that Eq. (12) must be satisfied.
Substituting into (15), we obtain

g0e−tg0 /τs +
ĝwrk
wlk
e−2tg0 /τw = ĝ. (16)

Note that in (16), we now have a relationship for tg0 solely as a
function of the unknown g0. This forms one of the two necessary
conditions for the 2-cluster solution. The other is contained in
Eq. (14). Fig. 6 shows a plot of tg0 and tin versus the initial
conductance g0 for two different values of τw . The intersection
of the tin curve with a tg0 curve represents a 2-cluster solution
where the value tg0 = tin provides the interspike interval of the
I cell or correspondingly, the time distance between the different
P cells. Interestingly, in the case τw small, there can be three
intersection points as shown in Fig. 6, yielding three potential
interspike intervals for a 2-cluster solution. The existence of these
three solutionswas similarly found for the equivalent of a 1-cluster
solution (synchronous solution) in [3]. There a single P cell was
coupled to I and the three resulting solutions all had different
interspike intervals as a function of the level of depression. Note
that the curve tin is affected only by parameters associatedwith the
synapses from I and thus there is a single curve for both values of
τw . The curve tg0 on the other hand is affected by the synapse from
I (first term on the left-hand side of (16)), the intrinsic properties
of each P cell (second term on the left-hand side) and the interplay
of the two (ĝ on the right-hand side).
To get a better understanding of this, let’s consider the case

g0 = 0, then (16) simplifies and an explicit solution for tg0 can be
obtained as

tg0 =
τw

2
ln
wrk

wlk
. (17)

Thus, in this case tg0 is solely dependent on the intrinsic properties
of each P cell, and the synapse plays no role. In general, if τw is
very small, then tg0 can be made small whenever g0 < ĝ , not just
for g0 = 0, since in this case the second term on the left hand side
of (16) will still dominate the determination of tg0 . Thus, for small
τw , (17) applies and one expects the curve to have near zero slope
and a small value for all g0 < ĝ . Alternatively, if τw is larger, then
the curve tg0 can be made to intersect the vertical axis g0 = 0 at as
large a value as one wants, consistent with what is shown in Fig. 6.
Now let us consider the case g0 ≥ ĝ . If τw is small, the synapse is
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the sole determinant of tg0 in this case, and one can easily estimate
tg0 from (16) as

tg0 = τs ln
g0
ĝ
. (18)

Here the value of τs becomes important. Small (large) τs implies a
small (large) tg0 . However, for any value of τs, tg0 is bounded from
above as g0 is bounded by ḡ . If τw is not small relative to τs, then
(16), in general, cannot be simplified. Nonetheless, it is easy to see
that tg0 is bounded as g0 → ḡ since the first term in (16) is bounded
in this limit.
Next let us consider the curve tin(g0). As can be seen from

(14), this curve is affected only by parameters associated with the
synapse, depression and the synapse’s recovery from depression.
Consider two different limits, g0 → 0 and g0 → ḡ . In the
former, tin → 0, while in the latter, tin → ∞. Moreover
its easy to show that dtin/dg0 > 0. Thus the curve tin(g0) is
unbounded and monotone increasing. Since tin(0) = 0, tg0(0) >
0, tg0(ḡ) is bounded, tin(g0) is unbounded as g0 → ḡ and both
curves are continuous, the curves must intersect at least once. This
intersection corresponds to a 2-cluster solution.
We have derived a consistency condition that must be satisfied

for the 2-cluster solution. The above procedure, however, does not
define a map whose fixed points correspond to a solution. Indeed,
the curve tg0 only yields information when the leading cell starts
on Cw and the trailing cell starts at wrk. Thus the stability of the
solution cannot be obtained simply by checking the derivatives of
tg0 and tin at a point of intersection. In Section 3.2, we will derive a
two-dimensional map to assess stability of solutions.
Prior to assessing stability, let us showhow the above argument

can be extended to prove the existence of clusters of size n ≤ m
in a network of m pyramidal cells. The curve tin is not affected by
the number of cells, nor the number of clusters in the network. The
curve tg0 however will be. Suppose we seek an n-cluster solution.
Now instead of having a single curve Cw , we can find n− 1 curves
Cwi . Each curve is defined so that if a cell starts on Cw1 at t = 0
and reaches the jump curve at tg0(w0), then a cell starting on Cwj
would reach the initial w position of the immediately preceding
cell starting on Cwj−1 at time tg0(w0). This allows us to generalize
Eq. (12) for 1 ≤ j ≤ n to

wj−1 = wje−tg0 /τw , (19)

wherewn = wrk. By successive substitutions into (19), we obtain

w0 = wrke−(n−1)tg0 /τw . (20)

Thus the time tg0 for the n-cluster case must satisfy the
generalization of (16) given by

g0e−tg0 /τs +
ĝwrk
wlk
e−ntg0 /τw = ĝ. (21)

Eq. (21) is valid for any n ≤ m. For any value n, the curve
of solutions satisfying (21) is qualitatively similar to the curve
obtained for the 2-cluster case; see Fig. 7. The main difference
is that if n1 < n2, the curve for the n1 case lies strictly above
that for the n2 case. All of these curves will still have at least one
intersectionwith the curve tin(g0), thus guaranteeing the existence
of an n-cluster solution for any n ≤ m. Note that this argument
does not depend on, nor does it determine, the size of each cluster,
since the I-cell spikes only once regardless of the number of
coincident inputs it receives from the synchronized P cells. For
example if m = 4, then as discussed earlier, there can exist two
distinct 2-cluster solutions displaying the same interspike interval.
One has clusters of size 1 and 3 and the other has clusters of size 2
and 2.

Fig. 7. Existence of multiple cluster solutions. The concave up tin curve intersects
the various tg0 curves corresponding to solutions with different number of
synchronized clusters; Eq. (21) solved for n = 1, 2, 3 and 4. As the number of
clusters decreases, the inter-spike interval associated with the solution increases.

3.2. Stability of solutions and basins of attraction

We have shown the existence of multiple cluster solutions all
for the same set of parameter values. The major question to now
answer is whether any of these solutions are stable. If so, what are
their basins of attraction?
Let us consider the stability of the 2-cluster solutions shown in

Fig. 6. We shall do so by considering two separate cases. First, we
consider the case ofm = 2 (one cell per cluster), whereby without
loss of generality we can restrict our analysis to 1t = 0. Next,
we will consider a more general case of m > 2 and show how to
reduce it to them = 2 case. Ifm > n, we cannot restrict ourselves
to the case 1t = 0, since all solutions will be unstable except the
m-cluster solution. The reason for this is straightforward. Suppose
two cells are very close to one another at the moment that one of
them is at the jump curve. With zero synaptic delay, an arbitrarily
small difference between these cells will be expanded since the
trailing cell will be reset vertically in the w–g phase plane, while
the leading cell will be reset to wrk. In fact as the number of cells
m → ∞, an asynchronous or splay state solution ensues. Thus a
non-zero synaptic delay is a necessary condition for stability of an
n-cluster solution for n < m. This is consistent with several other
modeling studies [11,21,25]. Further, in the case n < mwe have to
consider perturbations of two different types, as explained below.

3.2.1. Stability with one cell per cluster (m = n), and1t = 0
For the case m = n = 2, 1t = 0, consider a two cell network

and define a two-dimensional map in the following way. Let the
leading cell begin at an initial position (w1, ḡD) and the trailing cell
at (wrk, ḡD) on the w–g slow manifold. We let the system evolve
until the leading cell hits the jump curve at t = tg0 , at which time
we reset that cell towrk and both cells vertically to g(t+g0) = ḡD(t

−
g0)

to account for the synaptic input. The vertical reset on the slow
manifold is written in terms of g , but it is the periodicity of the D
variable that is of interest. Thus at the moment that g is reset, we
define the two-dimensional mapΠ : (w,D)→ (w,D) by

Π(w,D) = [wrke−tg0 /τw , 1− (1− rD)e−tg0 /τD ]. (22)

A fixed point (w∗,D∗) of this map corresponds to a 2-cluster
solution found through satisfaction of the periodicity conditions
(14) and (21). The stability of the solution can be obtained
by linearizing (22) around this fixed point and computing the
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eigenvalues of the ensuing Jacobian. Denoting the Jacobian by J and
evaluating it at a fixed point (w∗,D∗), we obtain

J =


−w∗

τw

∂tg0
∂w

−w∗

τw

∂tg0
∂D

1− D∗

τD

∂tg0
∂w

re−tg0 /τD +
1− D∗

τD

∂tg0
∂D

 , (23)

where

∂tg0
∂w
=

ĝ
wlk
e−tg0 /τw

ĝw∗
wlkτw

e−tg0 /τw + ḡD∗
τs
e−tg0 /τs

=
τw

w∗

[
1+

g∗min
ĝ
τw

τs

wlkwrk

(w∗)2

]−1
,

∂tg0
∂D
=

ḡe−tg0 /τs
ĝw∗
wlkτw

e−tg0 /τw + ḡD∗
τs
e−tg0 /τs

=
τs

D∗

[
1+

ĝ
g∗min

τs

τw

(w∗)2

wlkwrk

]−1
where g∗min = D

∗ḡ exp(−tg0/τs) is the minimal value of synaptic
conductance achieved right before the spike of the I cell in each
period. Stability will follow if the eigenvalues of J lie inside the
unit circle in the complex plane. We note that the magnitude of
the upper left entry of J is always less than one independent of
parameters and the values ofw∗ andD∗. In general, the eigenvalues
of (23) can be calculated numerically, while in certain cases they
can be estimated analytically. For example, consider the casewhen
τw is small and there are three 2-cluster solutions (see Fig. 6, τw =
0.4). For the solution with the smallest interspike interval, in the
limit τw → 0 we have ∂tg0/∂w→ τw/w

∗, and ∂tg0/∂D→ τw ḡ/ĝ
(see Eq. (17) andnote that (w∗)2/(wlkwrk)→ 1). Thus, in this case J
reduces to an upper triangularmatrix whose eigenvalues lie on the
diagonal. The upper left entry yields an eigenvalue that approaches
-1 fromabove (factorw∗/τw cancels out) and therefore stays inside
the unit circle for any non-zero value of τw . The lower right entry
becomes r exp(−tg0/τD) → r < 1, yielding another stable
eigenvalue. Thus, this solution will be stable. We numerically
calculated the eigenvalues of J for this solution in Fig. 6, and found
them to be−0.67 and 0.74. For the solutionswith the intermediate
and the largest interspike intervals, w∗ = wrk exp(−tg0/τw) is
exponentially small in the limit τw → 0, since tg0 remains finite
(see Eq. (18)), and therefore ∂tg0/∂wwould be exponentially small
as well, whereas ∂tg0/∂D → τs/D∗. Therefore, all elements of the
Jacobian matrix will be exponentially small, apart from the lower-
right element yielding the non-zero eigenvalue r exp(−tg0/τD) +
(1 − D∗)τs/(D∗τD). Note that the second term in this eigenvalue
expression is a decreasing function of D∗, which in turn is an
increasing function of tg0 , and therefore both terms are small
for the solution with the largest inter-spike interval. Numerical
evaluation of the eigenvalues yields the values −5 × 10−7 and
.71 for the largest interspike interval solution, versus −0.038 and
1.38 for the solution corresponding to the intermediate inter-spike
interval. That one of the eigenvalues is larger than one indicates
that the latter solution is unstable.
The larger τw = 5.0 case shown in Fig. 6 is very similar to the

large interspike interval case discussed above. In both cases the
partial derivative ∂tg0/∂w is small and thus the solution is stable if
τD is big enough.

3.2.2. Stability for n < m
We now consider the stability of a 2-cluster solution in am > 2

cell network. As discussed above, in this case it is crucial to include
non-zero synaptic delay1t in the calculation of the map (22) and

the ensuing Jacobian (23). The modified map is still defined at the
moment that g is reset, that is1t after an I spike, and is given by

Π(w,D) = [wrke−(tg0+21t)/τw , 1− (1− rD)e−(tg0+1t)/τD ]. (24)

The eigenvalues of the ensuing Jacobian can be calculated as before
and depend continuously on1t . Thus for small1t/τD and1t/τw ,
the previous results still hold.
Note that this modified map applies to perturbations of a 2-

cluster solution in the m > 2 cell network when all cells within a
cluster are subjected to the same perturbation. By first restricting
to these type of perturbations, we are effectively reducing the
calculation to an m = 2 cell network with non-zero delay 1t .
However, we also have to analyze the case when all cells within
a cluster are not subjected to the same perturbation. Namely, we
need to determine what happens when different subsets of cells
within a cluster are perturbed differently from other subsets of the
cluster. We first derive conditions under which these perturbed
cells remain and eventually synchronize within the same cluster.
This involves obtaining an upper bound on initial differences
in w values of cells that will allow them to merge into the
same cluster. The analysis in [11] begins to address the issue. To
understand whether two initial conditions will merge into the
same cluster, let us consider again the dynamics along the w–g
slow manifold. Consider two cells with initial conditions given by
(w1, g0), (w2, g0), w1 < w2 and1w0 = w2 − w1; Fig. 8. Suppose
the leading cell (the one starting at (w1, g0)) reaches the jump
curve after time t = tf with g = gf . The difference in thew values
of the two cells at this time is1w(tf ) = 1w0 exp(−tf /τw).We can
assume the cells always have the same g level since theywould end
up with the same g value after the first onset of inhibition. Thus
the trailing cell will also lie on the horizontal line g = gf . If the
trailing cell can reach the jump curve in less than1t , it will be able
to fire prior to being inhibited, resulting in the two cells beingmore
synchronized than when they began and the two cells eventually
merging into the same cluster. Let (w2(tf ), gs) denote the point on
the jump curve where the vertical line w = w2(tf ) intersects it.
Let t̃ satisfy gs = gf exp(−t̃/τs). The time t̃ is an upper bound for
how long the trailing cell needs to reach the jump curve. It is an
upper bound because this time is computed by assuming that the
trailing cell travels vertically on the slow manifold and that its w
variable does not change. Since the trajectory is not vertical, the
trailing cell will actually reach the jump curve with g > gs, and
the time of evolution from gf to that point will be less than t̃ . Let
1g = gs − gf . Then using the linear approximation for the jump
curve,1g = −M1w, we obtain

gf (e−t̃/τs − 1) = −M1w0e−tf /τw . (25)

Solving for t̃ , we obtain

t̃ = τs ln
gf

gf −M1w0e−tf /τw
. (26)

Thus if t̃ < 1t , the trailing cell will reach the jump curve before
the inhibition from the leading cell affects it. Therefore

τs ln
gf

gf −M1w0e−tf /τw
< 1t, (27)

or alternatively

1w0 <
gf etf /τw

M
(1− e−1t/τs) (28)

provides a condition which when satisfied allows the two P cells
to be in the same cluster. Thus we have shown that when cells
in a cluster are arbitrarily perturbed that if they start within a
neighborhood of the leading cell, they will remain in the same
cluster and eventually synchronize. Thus we have reduced the
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Fig. 8. Clustering of trajectories with two distinct initial conditions. At t = 0 the
two cells start at (wi, g0). When the first cell reaches the jump curve at t = tf , we
calculate an upper bound on the time needed by the second cell to reach the jump
curve, given by the time required to travel vertically to the jump curve. If this time
is less than the synaptic delay time, then the two cells will merge together into the
same cluster.

issue of arbitrary perturbations of the 2-cluster solution in am > 2
cell network to one of assessing stability of the 2-cluster solution
in am = 2 cell network.
The previous argument can also be used to infer several things

about the basin of attraction of a n-cluster solution in a m-cell
network. First note that if1t = 0 then (28) can never be satisfied.
This implies that a synaptic delay is a necessary condition to obtain
clusters of size n < m. Moreover as the delay 1t → 0, (28)
becomes harder to satisfy, and as a result, the basin of attraction of
a n-cluster solution shrinks. Thus the m-cluster solution becomes
globally attracting. Second, observe that the right-hand side of (28)
grows exponentially with tf and linearly with gf , both of which
can be estimated for a particular n-cluster solution. For example,
suppose τs is very large, implying that the synaptic decay rate is
very slow. In (28), the term 1 − exp(−1t/τs) would be small
but bounded away from zero. For this case, the synchronous, 1-
and 2- cluster solutions will be the ones with the largest basin
of attractions, while the solutions with more clusters will have
very small basins. For the large cluster solutions, the synapse from
I would be very weak and thus gf would be small. Moreover, tf
would be determined solely by τw and could be small if τw is.
Thus 1w0 satisfying (28) would be small. Alternatively, for the
synchronous or small cluster solutions, tf would be much larger
due to the fact that τs is now setting this time. The value gf would
also be larger since the I synapseswould havemore time to recover
between spikes. As a result,1w0 would be larger than in the large
cluster solution case. Therefore cells with larger differences in w
can be brought together into the same cluster due to the slowdecay
of inhibition. In the opposite scenario where τs is too small, the
term 1 − exp(−1t/τs) would not be so small. Thus even when tf
and gf are small, the right hand side of (28) isn’t necessarily. Thus
the large cluster solutions have larger basins of attraction in this
limit.
Eq. (28) can also be used to estimate the basin of attractions

of the different types of 2-cluster solutions that exist for τw small.
In this case, based on the argument above, the 2-cluster solution
with the largest interspike interval will have the largest basin of
attraction. The same analysis shows that for the case τw small,
there can exist 2 or 3 n-cluster solutions as well. Again, the one
with the largest interspike interval will have the largest basin of
attraction relative to the other.

3.3. A discrete map for interspike intervals

We could follow the procedure described above to derive a n-
dimensional map for the n-cluster (n ≥ 3) solutions. However,
determining the stability of solutions would be computationally
difficult as the Jacobian would yield an n × n matrix whose

eigenvalues we would need to compute. Instead of determining
stability using this potentially messy n-dimensional map, let us
turn to a conceptually simpler one-dimensional approach that
involves the interspike interval. Suppose we consider a network of
m cells, where each cell lies on the slow manifold of the system at
some initial conditions (wi(0), g(0)). As time evolves, we record
the time interval T at which the P cell closest to the jump curve
reaches the threshold. All cells that reach the jump curve within
the1t synaptic delay interval of T are assumed to spike, and their
wi values are reset, as is the I → P synaptic conductance variable,
g . This iterative process is then repeated, leading to a sequence
of inter-spike intervals {Tj}. If this sequence converges to say T ∗,
then we will have obtained a stable solution in which the time T ∗
denotes the time between I spikes.
We numerically calculated such an inter-spike interval se-

quence by evolving four cells on the slow manifold with the linear
Eq. (9), solving the equation

g0e−T/τs +
gw0
wlk
e−T/τw = ĝ, (29)

for the time T needed for each cell to reach threshold. Theminimal
among these T values represents the next inter-spike interval, Tj.
We continue to evolve the slow manifold equations during the
synaptic delay interval 1t , resetting the w value of each cell that
reaches the jump curve to wrk. As described above, the common
synaptic conductance value g is reset to gj = ḡD(t−) at time t =
Tj+1t , whereD(t) is evolved according to (7). One instance of this
iterative process is shown in Fig. 9 in the case of τw = 0.4 where
there is bistability of two different 2-cluster solutions. In panel
A, the filled circles indicate different pairs (gj, Tj) starting with
different initial conditions which are shown to converge to either
of the two intersections of the curves tin and tg0 corresponding to
the two stable periodic solutions of the network dynamics. The two
curves are computed from Eqs. (14) and (21) using MATLAB with
n = 2. This figure also demonstrates the instability of the middle
fixed point. Panel B shows the dynamics of the wi values of the
two-cell network as they converge to the large-period solution. It
documents how the interspike interval changes from cycle to cycle
eventually converging to near T ∗ = 3.5.
We also applied this interspike interval map approach to the 4-

cell case corresponding to Fig. 4 by choosing parameter values for
the map and the MATLAB solutions that matched those used for
our XPP simulation (values given in Appendix). In Fig. 10 we show
the case of convergence to a 4-cluster solution with T ∗ = 22.8. By
varying initial conditions we can obtain convergence to the other
cluster solutions. The values for the interspike intervals that are
obtained by thismethod fairlywell approximatewhatwe obtained
by numerically solving the full set of equations in XPP. In particular,
from (14) and (21), we obtain interspike intervals of 71, 35.5, 26.5
and 22.8 ms for the 1- through 4-cluster solutions, respectively.
These compare with the values 70, 34, 30 and 27 obtained from
XPP.
The method presented is conceptually simple, but yields less

information about the properties of the n-cluster solution. In
particular, even if we find a T ∗ implying the existence of a
clustered solution, we have no way of a priori knowing how many
clusters this solution will have. Of course, once we have obtained
convergence to T ∗, we can check the time traces of thew variables
to determine the number of clusters within the solution.

3.4. The case without depression

We now consider the changes to the network behavior when
the synapses from I do not exhibit synaptic depression. Consider
the curve tin(g0) which provided a periodicity condition for g0.
In the absence of depression, no such periodicity condition exists
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Fig. 9. Convergence to a periodic 2-cluster solution. (a) The intersections of
the two curves represent the equilibrium periodic 2-cluster solutions found by
solving (14) and (21). The filled circles are different iterates of the one-dimensional
map of interspike intervals as they converge to either of the intersection points
corresponding to stable periodic 2-cluster solutions. (b) The corresponding time
traces of the recovery variablew of the two cells shows how the interspike interval
approaches the value 3.5 corresponding to the large-period solution in A. Parameter
values are the same as in Fig. 6 for the case τw = 0.4.

Fig. 10. Convergence to a 4-cluster solution. (a) The intersection of the two curves
represents a 4-cluster periodic state found by solving (14) and (21), for parameter
values approximating the conductance-basedmodel simulation in Fig. 4b. The filled
circles are different iterates of the one-dimensional map of interspike intervals as
they converge to the stable intersection point. (b) The corresponding time traces
of the recovery variable w of the four cells shows how the interspike interval
approaches the value 22.8 corresponding to the stable periodic solution.

since whenever I fires, the synaptic conductance g is always reset
to the same value ḡ . To model the case of no depression, one can
either take r = 1 with D ≡ 1 or let τD → 0. In either limit,

Fig. 11. Clustering in the case of non-depressing I → P synapses. Red curves show
the dependence of tg0 on the maximal synaptic conductance, ḡ , for solutions with
n = 2 through n = 6 clusters, for the case τw = 0.4. As the number of clusters
increases, the inter-spike interval decreases. The curve corresponding to the two-
cluster solution is the same as in Figs. 6 and 9. In the absence of depression, the
magnitude of synaptic conductance at the spike-time is fixed, and is equal to the
maximal synaptic conductance parameter (abscissa, ḡ). Vertical lines correspond to
fixed values of this parameter, ḡ = 0.5 (solid line) and ḡ = 1.2 (dashed line). Note
that for ḡ = 1.2, the inter-spike interval is independent of the number of clusters
in the network.

the curve tin(g0) simply becomes vertical at the value g = ḡ , as
shown in Fig. 11. As canbe seen, there still existn-clusters solutions
for all n ≤ m, indicating that depression is not necessary for
multistability. However, there are two crucial differences between
the two cases. First, in the absence of depression, the distribution
of interspike intervals can be very narrow. In Fig. 11, note that
as g0 → ∞, the curves tg0 converge to the interspike interval
value τs ln

ḡ
ĝ . This is because for large g0, all cells start with g =

ḡ and must wait for the synaptic conductance to decay to at
least ĝ before a cell has access to the jump curve. Thus if ḡ is
sufficiently large (dashed vertical line), then despite the existence
of distinct clustered solutions, the difference in their equilibrium
interspike intervals will be small. Moreover, in this case the
interspike interval will only be controlled by or be dependent
on the parameters of the synapse. If ḡ is sufficiently small (solid
vertical line), then without depression the interspike intervals
are more separated for clusters of different size. However these
intervals are controlled by parameters associated only with P ,
mostly by τw . Thus it is harder to achieve as wide a distribution
of interspike intervals as in the case with depression.
The second difference that results from the absence of

depression is the loss of bistability of different n-cluster solutions.
Since the curve tin is now vertical, it can only intersect any
particular tg0 curve at one point. This loss of bistability again results
from the loss of control of one set of parameters that determine the
time spent in the silent state by the P cells.
Finally, note that in the absence of depression all periodic

cluster states given by the intersections of the tg0(ḡ) curves with a
vertical line in Fig. 11 are always stable, since the stability condition
is given by the top-left element of the Jacobian in Eq. (23), which is
always less than 1 in absolute value.

4. Discussion

Biological oscillatory networks often have components that
interact through inhibition. This is a common feature leading to
anti-phase oscillations in central pattern generating networks [15].
These types of neural circuits often involve reciprocally connected
pairs of neurons. Skinner et al. [22] provided one of the earliest
analytic treatments of mutual inhibition, while studying the
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concepts of ‘‘escape’’ and ‘‘release’’ to describe network frequency
regulation. Phase lag among inhibitory neurons within a CPG
has also been widely addressed [13,23,30]. More recently, Maran
and Canavier [14] and Oh and Matveev [17] have studied order-
reversing rhythmic activity in networks of inhibitory neurons of
type-I excitability class. Inhibitory networks can also synchronize.
Wang and Rinzel [28] showed in a computational study of the
thalamus that inhibitory networks could exhibit synchronous
oscillations. Later Van Vreeswijk et al. [27] analytically showed
how inhibition can synchronize a pair of inhibitory spiking
neurons. Terman et al. [25] extended this result to a more general
class of relaxation oscillators. Mutual inhibition has also been
studied in concert with electrical synapses between cells [12,20].
These studies have teased out the various contributions of the
chemical and electrical synapses to network behavior.
In many other neural systems, inhibition from a single neuron

or groups of neurons can reach a large number of targets.
For example, a variety of interneurons in the hippocampus
provide feedback inhibition to a large number of pyramidal
cells from whom they receive excitation [8]. In Drosophila, it is
postulated that a globally inhibitory network exists to help in
odor discrimination [24].Weakly electric fish use a global feedback
mechanism to discriminate between communication and prey
stimuli [5].Mathematicalmodeling has shed light on the role of the
global inhibition in the hippocampus [11], in the thalamus [21] and
in networks responsible for scene segmentation [10,29], to name
only a few examples. The present study builds on these works to
propose novel ways in which global inhibition can be utilized by a
network.
Short-term synaptic depression is widely observed in many

neuronal networks [31]. It has been shown to play a role in
a variety of computational tasks, as reviewed by Grande and
Spain [9]. In particular, it has been suggested to be important for
sound localization and coincidence detection in the avian auditory
brainstem [4], in novelty detection in the rat barrel cortex [19]
and in phase maintenance in the crab pyloric network [13]. All
these results provide important examples of neurons involved
in temporal coding. Namely, they describe situations in which
the relative timing of neuronal firing is critical for the correct
functioning of that network and for downstream circuits.
Our work attempts to provide further insight on how synaptic

depression can affect temporal coding properties of neural circuits.
We find that depression allows a globally inhibitory network with
m principal excitatory cells to maintain and transmit at least m
different temporal patterns, all for the same set of parameter
values. These patterns can be construed as distinct codes, with
each pattern capable of being transmitted and recognized by a
downstream target network. Note that in our model the patterns
are distinguished both by the distinct clustering of the principal
excitatory cells in each pattern, as well as by the difference in
the spike frequency of the excitatory and the inhibitory cells.
Depression is crucial for expanding the distribution of interspike
intervals as compared to the case without it. Depression allows
parameters associated with the synapses from the I cell as well as
those associated with the intrinsic P cell properties to be relevant
in determining interspike intervals at different frequencies.
Therefore when depression is present, the downstream target can
recognize each pattern based solely on the spike frequency of the
inhibitory cell, or, alternatively, based on the spiking sequence of
the excitatory cells. In the latter case, the coding space is much
larger: given a number of clusters n smaller than the number of
excitatory neurons in the network m, there are multiple distinct
ways to group the m neurons into n clusters. Therefore, the
total number of states is significantly greater than the number of
neurons, m. This is particularly relevant if the global inhibitory
network we consider is viewed as a memory circuit, with distinct
activity patterns representing distinct memory states.

We derived mathematical criteria and techniques to prove the
existence and stability of cluster solutions. To prove existence, we
showed that when two different sets of timing constraints are
met, then a cluster solution will exist. Interestingly, one of the
constraints, Eq. (14), is completely controlled by the inhibitory
synapses from the global inhibitor. The other constraint, Eq. (21),
is determined by parameters associated with both the globally
inhibitory synapse and also parameters associated with the P cells.
We showed how adjusting either sets of parameters can lead to
different ways in which the two constraints could simultaneously
be met. Stability of the solutions was determined using a discrete
map based approach. Further, the geometry of the slow manifold,
namely that the jump curve is negatively sloped in thew–g phase
plane, allowed us to make estimates on the basin of attraction of
various solutions.
An important aspect of our modeling was a reduction to the

w–g slow manifold of the system. This allowed us to solve a
linear set of differential equations on that manifold to derive
Eqs. (14) and (21). We then used a combination of analysis and
numerics on these equations to show the existence and stability
of cluster solutions. We also used the slowmanifold to define low-
dimensional maps. These maps are easy to numerically compute
and provide information about the stability of solutions together
with their basin of attraction. Despite the apparent severity
of the reduction procedure, the resulting simplified model was
still capable of making qualitatively and quantitatively accurate
predictions for the full model. Indeed simulation results using the
full set of model equations compared quite well.
Short-term synaptic plasticity and global inhibition are ubiq-

uitous features in a variety of neural systems, in particular the
mammalian cortex and hippocampus, and our results elucidate the
possible functional roles of the interplay between these two prop-
erties of neural circuits. We show that such interplay can lead to
highly non-trivial network activity profile, and suggest that global
inhibition characterized by short-term synaptic depression can en-
dowaneural networkwith amultitude of stable activity states rep-
resenting different neural codes or memory states.
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Appendix

The model used to represent a single neuron (which could be
excitatory or inhibitory) is based on theHodgkin–Huxleymodel for
the spiking neurons. This was developed by Traub and Miles [26]
and then reduced to a single compartment model by Ermentrout
and Kopell [7]. C dvdt = I0 − gl(v − Vl) − gkw4(v − Vk) −
gNam3∞(v)h(w)(v−VNa)− Isyn and

dw
dt = [w∞(v)−w]/τw(v). The

gating variable for potassium activation w is defined by w∞(v) =
aw(v)/[aw(v) + bw(v)] and τw(v) = τw when the cell is in its
silent phase. When the cell is in its active phase τw(v) = τr ,
where τw = 25 ms and τr = 1 ms, aw(v) = .032(v +
52)/

(
1− e−

v+52
5

)
and bw(v) = .5e−

57+v
40 . The sodium activation

curve at steady state is given bym∞(v) = am(v)/[am(v)+ bm(v)]
where am(v) = .32(v + 54)/

(
1− e−

v+54
4

)
and bm(v) = .28(v +

27)/
(
e
v+27
5 − 1

)
. The inactivation curve is given by h =max(1−

1.25w, 0). The parameter values used in the simulations of Fig. 4
are: C = 1 µF cm−2, gNa = 100 ms cm−2, VNa = 50 mV,
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gK = 80 ms cm−2,VK = −100 mV, gL = .1 ms cm−2, VL =
−65.625 mV for the pyramidal cells and VL = −64.6 mV for the
interneuron. The injected current I0 = 0.5 for the pyramidal cells
and I0 = −0.5 for the interneuron. The synaptic delay 1t = 0.5.
The synaptic parameters are ḡinh = 2 ms cm−2, Einh = −80
mV, ḡexc = 5 ms cm−2 and Eexc = 0 mV, τD = 100 ms and
τs = 5 ms. We use XPP [6] for the simulations associated with
Fig. 4. To account for a non-zero spike width, we used a model for
depression due to Bose et al. [3]. We let D evolve in the silent state
of I using D′ = (1 − D)/τD, as in Eq. (7). In the active state of I ,
we let D′ = −D/τDI where τDI = 1. We use MATLAB (Mathworks,
Inc.) to solve the equilibrium conditions (14) and (21). For Figs. 6
and 7, we set r = .6, τw = 5, τs = 3, τD = 10, ḡinh = 5,
ĝ = .8, wlk = .2 and wrk = .8. In Fig. 10 where we compare
the simulations of the full model with the discrete map iteration,
we take r = .236. This value is calculated by noting that in the
simulations, each action potential has length of about 1.2 ms. We
let r = exp(−1.2/τDI), where τDI = 1. We also chose the values of
ĝ = .01,wlk = .05 andwrk = .85 by estimating these values from
our simulations. All numerical codes are available at the Model DB
website: http://senselab.med.yale.edu/modeldb/default.asp.
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