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ABSTRACT 

We examine closed-form approximations for the equilibrium Ca2+ and buffer concentrations near a point 

Ca2+ source representing a Ca2+ channel, in the presence of a mobile buffer with two Ca2+ binding sites 

activated sequentially and possessing distinct binding affinities and kinetics. This allows to model the 

impact on Ca2+ nanodomains of realistic endogenous Ca2+ buffers characterized by cooperative Ca2+ 

binding, such as calretinin. The approximations we present involve a combination or rational and 

exponential functions, whose parameters are constrained using the series interpolation method that we 

recently introduced for the case of simpler Ca2+ buffers with a single Ca2+ binding site. We conduct 

extensive parameter sensitivity analysis and show that the obtained closed-form approximations achieve 

reasonable qualitative accuracy for a wide range of buffer’s Ca2+ binding properties and other relevant 

model parameters. In particular, the accuracy of the newly derived approximants exceeds that of the Rapid 

Buffering approximation in large portions of the relevant parameter space.  

STATEMENT OF SIGNIFICANCE 

Closed-form approximations describing equilibrium distribution of Ca2+ in the vicinity of an open Ca2+ 

channel proved useful for the modeling of local Ca2+ signals underlying secretory vesicle exocytosis, muscle 

contraction and other cell processes. Such approximations provide an efficient method for estimating Ca2+ 

and buffer concentrations without computationally expensive numerical simulations. However, while most 

biological buffers have multiple Ca2+ binding sites, much of prior modeling work considered Ca2+ dynamics 

in the presence of Ca2+ buffers with a single Ca2+ binding site. Here we extend such modeling of equilibrium 

Ca2+ nanodomains to the case of Ca2+ buffers with two binding sites, allowing to gain deeper insight into 

the impact of more realistic Ca2+ buffers, including cooperative buffers, on cell Ca2+ dynamics.  

Keywords: calcium nanodomain, calcium buffer, stationary solution, equilibrium approximation, rapid 

buffering approximation, reaction-diffusion system, calmodulin, calretinin 
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INTRODUCTION 

Accurate description of Ca2+ concentration ([Ca2+]) elevations formed near open Ca2+ channels, termed 

micro- or nano-domains, is crucial for the understanding of many fundamental cell processes such as 

synaptic neurotransmitter release, endocrine hormone release, and muscle contraction (1-5). This is 

particularly true in the case of chemical synaptic transmission, since the fusion (exocytosis) of a presynaptic 

neurotransmitter-filled vesicle can be triggered by the opening of just a few voltage-gated Ca2+ channels 

(5-10). The characteristic time of synaptic vesicle exocytosis is a fraction of 1 millisecond, while the 

relevant spatial scale is determined by the Ca2+ channel-vesicle separation, on the order of 10-100 nm (4-

13). Optical Ca2+ imaging is insufficient to track spatio-temporal Ca2+ dynamics on such fine temporal and 

spatial scales, and cannot be carried out without disturbing the Ca2+ signal that is being measured. This 

explains the key role that mathematical and computational modeling has played in the study of vesicle 

exocytosis, myocyte contraction, and other fundamental processes controlled by localized Ca2 elevations 

(11-18). The main technical challenge in such modeling stems from the interaction of Ca2+ with intracellular 

Ca2+ buffers, which bind most of Ca2+ ions upon their entry into the cytoplasm (11, 19). Buffered Ca2+ 

diffusion problem leads to a system of nonlinear partial differential equations, which requires computational 

modeling. One early insight gained from such computational studies is that [Ca2+] reaches a quasi-stationary 

steady state in the vicinity of an open Ca2+ channel very quickly, within 10-100 s, and this quasi-stationary 

Ca2+ nanodomain gradient collapses as quickly after channel closing (14-18). This suggested that 

equilibrium solutions to the Ca2+ reaction-diffusion equations may achieve sufficient accuracy in modeling 

[Ca2+] as a function of distance from an open Ca2+ channel. Therefore, several closed-form equilibrium Ca2+ 

nanodomain approximations have been developed for the case of buffers with a single Ca2+-binding site, 

which we will refer to as simple or one-to-one (1:1) Ca2+ buffers (11, 20-32). These approximations proved 

useful in understanding the properties of Ca2+ nanodomains and their dependence on the properties of cell 

Ca2+ buffers, and provide a convenient and efficient tool for modeling studies (11, 20-37). More recently, 

we introduced a new method for approximating Ca2+ nanodomains in the presence of 1:1 Ca2+ buffers based 

on matching the short-range and long-range series expansions of the nanodomain [Ca2+] as a function of 

distance from the channel, which achieves greater and more uniform accuracy compared to the previous 

methods in a wide range of relevant model parameters (38, 39). Here we show that this new method, which 

we refer to as the series interpolation method, can be extended to the case of more complex buffers with 

two Ca2+ binding sites, which we will refer to as 2:1 Ca2+ buffers. This allows to accurately model the 

impact of more realistic Ca2+ buffers, all of which have multiple binding sites. For example, many widely 

expressed Ca2+ buffers and sensors such as calretinin and calmodulin contain two EF-hand domains which 
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cooperatively bind two Ca2+ ions, whereby the binding of the second Ca2+ ion proceeds with much greater 

affinity once the first binding site is occupied (40-49). 

      Among the previously developed approaches, only the Rapid Buffering approximation (RBA) (11, 28-

33) has been extended to buffers with two Ca2+-binding sites that we consider in this work (49). However, 

RBA is based on the assumption that the rate of Ca2+-buffer binding is much faster than the rate of Ca2+ 

diffusion and influx (32), and therefore reactions are at equilibrium throughout the domain. This condition 

has a complex interplay with the above-mentioned property of cooperative buffers whereby the affinity of 

the 1st Ca2+ binding event is much smaller than that of the 2nd Ca2+ binding event. This complex interplay 

between the two conditions limits the accuracy of the leading-order RBA for realistic Ca2+ buffers (49). 

Finally, other approximations developed for the 1:1 buffering case are based on linearizing the Ca2+-binding 

reaction (11, 20-26), and therefore are inapplicable to the case of 2:1 Ca2+ buffering, which cannot be 

linearized.  Therefore, this work represents the first effort to systematically explore stationary nanodomain 

approximations in the case of complex 2:1 Ca2+ buffers. We perform systematic parameter sensitivity 

analysis of the newly obtained approximants and demonstrate that they achieve significantly improved 

approximation accuracy as compared to RBA for a wide range of relevant parameter values, and capture 

the non-trivial dependence of the bound buffer concentration on the distance from the Ca2+ channel. 

METHODS 

We start with the description of the Ca2+ binding and unbinding reactions for buffer molecules with two 

binding sites (42-49):  

                                             (1) 

Here B, B* and B** denote respectively the free, partially bound, and fully Ca2+-bound states of the buffer, 

and 1,2k  , 1,2k  are the Ca2+-buffer binding/unbinding rates for each buffer state. Following prior modelling 

work (32), we will consider a semi-infinite domain bounded by a flat plane representing the cytoplasmic 

membrane, which contains one or more Ca2+ channels. Further, we assume zero flux boundary condition 

for Ca2+ and buffer on the flat plane, so the reflection symmetry allows to extend the domain to infinite 

space, while doubling the current strength, which places the Ca2+ current sources inside the domain (27-

30). Denoting free Ca2+ concentration as C, and time differentiation as t, we arrive at the following 

reaction-diffusion system for the concentrations of all reactants (49): 
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In Eq. 2, the point channel-source strengths are 𝜎 = 𝐼 , /(2𝐹) , where ICa,k are the amplitudes of 

individual open Ca2+ channels located at positions r
k 
, F is the Faraday constant, and NCa is the number of 

Ca2+ channels. As in the simple-buffer case (30-32, 38, 39, 49-51), there are two conservation laws for the 

total buffer and the total Ca2+ concentrations: 

        
t

B  B*  B**( )  2 D
B
B  D

B
* B*  D

B
**B**( ),                                     (4) 

           
( ) ( )* ** 2 * * ** **

1

2 2

2 ( ).
Ca

t C B B

N

k k
k

C B B D C D B D B

 


      

  r r
                     (5) 

In this work we focus on equilibrium solutions (see Discussion for the limitations of this approach), which 

satisfy 

  ( )

( )

2
1

** 2 **
2

2 * * ** **

2 * * ** **

1

,

,

0,

2 2 ( ).
Ca

B

B

B B B

N

C B B k k
k

D B R

D B R

D B D B D B

D C D B D B  


  


  

   

     

 r r

                          (6) 

Here we assume that buffer diffusivity does not change when binding Ca2+ ions, 𝐷 = 𝐷∗ = 𝐷∗∗ (this 

constraint is relaxed in the derivation of RBA in Supporting Material 1). In this case the two conservation 

laws in Eq. 6 have the following solution (30-32, 38, 39, 49-51): 
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where constants BT and CT are related to the total (bound plus free) buffer and Ca2+ concentrations 

respectively, infinitely far from channel: 
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Here X denote the concentrations of reactants X infinitely far from the channel, where reactions given by 

Eq. 3 are at equilibrium. Therefore, all background buffer state concentrations are uniquely determined by 

the background [Ca2+], C, through equilibrium relationships 
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where K1,2 are the affinities of the two reactions in Eqs. 1, 3, given by 1 1 1 2 2 2/ and / .K k k K k k       

     We now restrict to the case of a single Ca2+ channel of source strength 𝜎 = 𝐼 /(2𝐹)  at the origin, and 

look for spherically symmetric solutions, which turns Eq. 6 into a system of ODEs, with the spherically 

symmetric Laplacian given in terms of the distance from the Ca2+ channel, r=|r|: 2 2 2 /    r r r . 

     We non-dimensionalize this problem using an approach analogous to the one we used in (38,39,49), 

which is a slightly modified version of the non-dimensionalization introduced by Smith et al. (32). Namely, 

we rescale Ca2+ and buffer concentrations by the affinity of the 2nd binding step and the background buffer 

concentration, respectively: 
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We also rescale the spatial coordinate (r/𝐿 → r) using the scale parameter that depends on the strength of 

the Ca2+ current,   

L   / 2K2DC( ) .                                                        (11) 

This transforms Eqs. 6,7 to the form 
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Here bT and cT are the non-dimensional versions of the integration constants given by Eq. 8, related to the 

total buffer and [Ca2+] infinitely far from the channel according to (note that b=1 by Eq. 10)  
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with dimensionless parameters 

1,2 1,22
1,2 1,2
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Along with c, parameters 1,2 and 1,2 completely specify the model system. Here 1,2 are the 

dimensionless mobilities of the two buffer states, which depend on buffering kinetics and Ca2+ current 

amplitude through the length scale L (Eq. 11). They quantify the ratio between the rate of diffusion and the 

rate of Ca2+ influx and binding (32). Parameters 1,2 quantify the overall buffering strength, equal the 

product of the relative buffer mobility, DB / DC, and the two resting buffering capacity parameters, 2B/K1,2. 

For the sake of simplicity, we will also use the following cooperativity parameters, which characterize the 

difference between the affinities and kinetics of the buffer’s two distinct Ca2+-binding sites:  
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In the case of calretinin and calmodulin, the binding properties have been experimentally estimated (42, 46, 

52), and the corresponding values of cooperativity parameters are given in Table 3. These two Ca2+ buffer-

sensors are characterized by highly cooperative Ca2+ binding, with  <<1. In the results shown below, we 

will use the two cooperativity parameters to replace some of the four parameter in Eq. 14. Namely, we will 

specify our model using either {2, 2, , g } or {1, 2, , q}, where q=1/(1+1) is analogous to the 

parameter of the same name in the simple buffer case (38, 39).  

     We now restrict our analysis to the case of zero background [Ca2+], relegating more general results to 

Supporting Material 1. With this simplification, we set c=cT=0 and b=bT=1 in Eq. 12. Eliminating the 

Ca2+ concentration and the partially-bound buffer concentration variables using the two conservation laws 

in Eq. 12, we obtain 
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where the expressions in square brackets represent the nondimensional Ca2+ concentration. This system 

poses a challenge since it represents a non-linear and singular problem on an infinite domain. Further, most 

stationary approximations developed for the case of a simple 1:1 Ca2+ buffer cannot be extended to complex 

2:1 Ca2+ buffers, with the exception of lowest-order RBA, which assumes that the reaction is at equilibrium 

in the entire domain (49). In Supporting Material 1 we derive RBA using the non-dimensionalization 

presented above, generalizing the expressions in (49). As is the case for a simple 1:1 Ca2+ buffer, RBA 

approximates the true solution very well within the parameter regime 1,2<<1 (26). However, this fast 

buffering condition has a complex interplay with the cooperativity condition  <<1. In fact, the accuracy in 

buffer concentration estimation is significantly reduced with increasing Ca2+ binding cooperativity, 

corresponding to decreasing . Reducing the unbinding rate ratio g along with   partially rescues RBA 

accuracy (49). This very high sensitivity of RBA accuracy to buffering parameters calls for the development 

of new approximants. Below we present such new approximations, comparing and contrasting their 

accuracy to that of the RBA. 

      Note that the stoichiometric factors of 2 appearing in Eqs. 12-14, 16 could in principle be absorbed into 

the definitions of reaction rate parameters (45). However, we retain them, since this improves the 

consistency with the non-dimensionalization for the simple 1:1 buffer case adopted in (32, 38, 39), allowing 

to recover the latter simpler model as 1 and g1 (49). 

     In all results shown below, closed-form approximations to solutions of Eq. 16 are compared to the 

numerical solutions computed using the relaxation method and cross-validated using the shooting method; 

for the relaxation method we used CalC (Calcium Calculator) software, version 7.9.6 

(http://www.calciumcalculator.org) (53).  

RESULTS 

Equilibrium Ca2+ nanodomain: power series interpolation method 

We begin by presenting the power series interpolation method developed recently for the case of simple 

buffers with 1:1 Ca2+ binding stoichiometry (38, 39), which we will now generalize to the case of 2:1 Ca2+ 

buffers. This method involves finding simple ansätze that interpolate between the solution’s Taylor series 

in powers of distance from the channel location, r, and the asymptotic power series expansion of the solution 
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in terms of the reciprocal distance from the channel location, x=1/r. We will refer to these two series as the 

short-range (low-r) and long-range (high-r) series.  

     We start with the non-dimensionalized form of the system for complex buffer, Eq. 16.  This system has 

only a regular singularity at r=0 and does have a solution analytic at r=0, representing the physical 

nanodomain solution that we are seeking. Using the Frobenius-like approach we find the following Taylor 

series expansions in r for both b and b**: 
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where the 2nd order coefficient in the expansion of b** is given by 
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In Eqs. 17,18, parameters b0 and 𝑏∗∗ represent concentrations of the free and the fully bound buffer at the 

channel location, r=0. These two values are finite and non-zero, but are a priori unknown characteristics of 

the underlying true solution, to be estimated by our approximation procedure. Because b0 and 𝑏∗∗  are 

unknown, Eq. 17 only provides the relationships between the coefficients of these Taylor expansions, rather 

than coefficients themselves. For example, denoting the 1st-order Taylor coefficients in Eq. 17 as b1 and 

𝑏∗∗ , we obtain the constraints 𝑏 =  𝑏 /  , and 𝑏∗∗ = (𝑏∗∗ + 𝑏 − 1)/(2 ) , which we will use to 

determine some of the free parameters of each approximant considered below.  

     In order to obtain the long-range asymptotic series expansion of the solution, we make a coordinate 

mapping x  1/ r , transforming Eq. 16 to the form 
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This system has a unique asymptotic power series expansion near x=0 satisfying boundary conditions at 

x0+ (i.e. r+), namely b(x=0+)=1, b**(x=0+)=0. Up to terms of order x3, this asymptotic series expansion 

can be obtained by simply equating the right-hand sides of Eq. 19 to zero, which yields  
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where we introduced the parameter q 1/ (1 v
1
)  for the sake of simplicity. It is important to note that 

the leading term in the b**(x) long-range expansion is of order O(x2), in contrast to b. This is intuitive, since 

the double-bound buffer state decays faster than [Ca2+] or [B*] as [Ca2+]0 with x0+ (i.e. as r+). 

Note however that this is not the case when background [Ca2+] is not zero; this more general case is 

considered in Supporting Material 1. Parenthetically, we also note that the right-hand sides of Eq. 19 contain 

all reaction term, which RBA assumes to equal zero. Therefore, given that the left-hand side of Eq. 19 is of 

asymptotic order O(x4), Eq. 20 must agree up to the given order with RBA (38). 

      We will now consider simple ansätze whose series expansions simultaneously match leading terms of 

the low-r (short-range) series and the low-x (long-range, high-r) series given by Eqs. 17, 20. Inspired by 

the simple buffer case (39), we seek ansätze for b and b** that combine Padé approximants (rational 

functions) and exponential functions, since they represent the simplest interpolants between the short-range 

and long-range power series expansions of the true solution described by Eqs. 17, 20. Below we list these 

ansätze for b and b**, along with the corresponding short-range and long-range series representations. Our 

approximations are based on combinations of these ansätze, as summarized in Table 1. With a slight abuse 

of notation, we use the same function name (b or b**) whether it is expressed as a function of distance r, or 

its reciprocal x. 

First, we introduce an exponential ansatz for the free buffer concentration b, which depends on one free 

parameter A: 
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This ansatz automatically satisfies the term of order O(x) in Eq. 20, 𝑏 ∼ 1 − 2𝜖𝑞𝑥 . Matching the 

expansions of order O(r) in Eq. 17,  𝑏 ∼ 𝑏 + 𝜖𝑏 𝜆 𝑟, with the corresponding expansion in Eq. 21 leads 

to a quadratic equation for the spatial decay constant A, with the following positive root: 

 2 2
1A q q q      (22) 

We note that Eq. 21 captures the rigorous asymptotic behavior of the true solution in the simple 1:1 Ca2+ 

buffer case, which explains the good performance of this simple ansatz (39).  

     Next, we use one of the following two ansätze for the double-bound buffer concentration b**: 
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1. Padé ansatz with two free parameters, 1 and 2: 
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2. Exponential ansatz with one free parameter, s: 
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We term the corresponding approximants as ExpPadé or ExpExp, with the former coming in two versions 

depending on how its parameters are constrained, ExpPadéA or ExpPadéB, as explained below (see Table 

1). For each of the above ansätze, the non-dimensional Ca2+ concentration is determined using the 

conservation law in Eq. 12 (recall that we focus on the case c=0): 
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Name Ansatz for b Ansatz for b** Parameters b** accuracy 

ExpPadéA 
/1

1 2
r Ae

b q
r
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 {A, 1, 2} 
O(r),  O(x3) 

ExpPadéB O(r2),  O(x2) 

ExpExp 
( )** 2
2

1 1sre sr
b q

r


 
  {A, s} O(r),  O(x2) 

Table 1.  List of the new approximants interpolating between the short-range and long-range series expansions in 

Eqs. 17, 20. All ansätze automatically match the term of order O(x) in b ~ 12qx and the term of order O(x2) in b** 

~  q2x2. The corresponding Ca2+ concentration is given by Eq. 25. Parameter A in the b ansatz is found by matching 

terms of order O(r) in Eq. 17, while the free parameters in the b** ansatz (1,2 or s) are found by matching Eqs. 17, 

20 up to orders indicated in the last column, which results in expressions shown in Table 2.  
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Table 2. Ansätze parameters for the approximants shown in Table 1, as functions of model parameters q, , 1,2. For 

ExpPadéB and ExpExp, the value of 2 or s is given by the real positive root of the given cubic equation, whose 

closed-form solutions are given in Appendix A.  

     Note that all of the ansätze for b and b** are analytic at r=0, and that in the limit r+ (x=1/r 0+), 

they automatically match the leading non-zero term in the asymptotic series expansion of the solution given 

by Eq. 20: 𝑏(𝑥) ∼ 1 − 2𝜖𝑞𝑥 + 𝑂(𝑥 ), 𝑏∗∗ ∼ 𝜖𝑞 𝑥 + 𝑂(𝑥 ) . Additionally, all ansätze satisfy appropriate 

physical constraints. Namely, imposing the condition A > 0 guarantees that the free buffer concentration b 

is positive and monotonically increasing to its maximal total value of 1 as r + for each ansatz. Further, 

b** is also always positive given positive parameters 1, 2, and s, and is monotonically decreasing to b**=0 

as r +. This agrees with the fact that the fully bound buffer concentration is bounded and equals to zero 

infinitely far from the Ca2+ channel, where [Ca2+]=0. 

     We match the free parameters in the above approximants following the same interpolation method as in 

the case of a simple 1:1 Ca2+ buffer (38, 39). Namely, the unknowns are b0 and 𝑏∗∗ in Eq. 17, plus either 2 

or 3 parameters characterizing a particular approximant, as listed in Table 1. Therefore, 4 or 5 constraints 

are needed to find these unknowns. The first 4 constraints are obtained by matching the first two terms (of 

order O(1) and O(r)) in the short-range series for both b and b**, given by Eq. 17. For the 3-parameter 

ExpPadéA and ExpPadéB approximants, the final 5th constraint is needed, which comes from matching one 

additional term in the short- or the long-range series of b**, as specified in the last column of Table 1. One 

obtains an algebraic system of 4 or 5 equations for the ansatz parameters, which are readily solvable in 

closed form. 
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     Tables 2 shows the exact expressions we obtain using this method for the free ansatz parameters in terms 

of the model parameters {1, 2, q, }, except for 2 in ExpPadéB and s in ExpExp, which are defined by 

solutions of cubic equations shown in this Table. The roots of these cubic equations are given in closed 

form in Appendix A. Once b and b** are determined using these approximants, the partially bound buffer 

concentration b* and Ca2+ concentration c can then be determined from b and b** through conservation laws 

in Eqs. 12, 25. 

      We will now illustrate this series interpolation method more concretely using the ExpPadéA 

approximant as an example. This ansatz is formed by combing Eq. 21 for b and Eq. 23 for b**. Then, as 

indicated in Table 1, we constrain the values of ansatz parameters using terms of orders O(1) and O(r) in 

Eq. 17 for both b and b**, and the term of order O(x3) in Eq. 20 for b** (recall that all ansätze automatically 

match the term of order O(x) in b and the term of order O(x2) in b**). Therefore, we obtain 5 constraints for 

5 unknowns (three parameters in ExpPadéA ansatz, plus b0 and 𝑏∗∗): 
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The 2nd and 3rd equations in this system lead to quadratic equations for A and 2, whose solutions are given 

in Table 2. Derivation of ExpPadéB approximant is similar, except that the term of order O(r2) in Eq. 17 is 

used instead of the term of order O(x3) in Eq. 20, resulting in a cubic equation for parameter 2 shown in 

Table 2. 

Accuracy in approximating buffer and Ca2+ concentrations  

As a crude demonstration of the performance of our new ansätze, Figure 1 shows our approximants for 4 

select combinations of model parameters, with each column presenting the results for all concentration 

variables (b, b*, b**, and c), for a particular set of values of 2, 2, g, and , as labeled in the panel titles. The 

accurate numerical results are shown as thick grey curves. Since the expressions for the free buffer b are 

identical for ExpPadéA, ExpPadéB and ExpExp approximants, they are shown as a single dashed magenta 

curves in the top panels. RBA is only shown for the parameter combination corresponding to the last two 

columns of Fig. 1, since it is too inaccurate for the other two parameter sets. 
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FIGURE 1. Approximations of equilibrium free buffer (top row), partially bound buffer (2nd row), fully bound 

buffer (3rd row) and Ca2+ concentrations (bottom row), as functions of distance from the Ca2+ channel, for 4 distinct 

choices of model parameters 2, 2, g, and  indicated in the panel titles. The distinct curves mark the series 

interpolants shown in Table 1: ExpPadéA (magenta), ExpPadéB (dashed magenta), ExpExp (dashed black), and 

RBA (red). RBA is not shown for the first two parameter combinations (A1-B4) due to poor performance. Grey 

curves show the accurate numerical simulations. The accuracy of some approximants is sufficiently high for the 

curves to completely overlap with the numerical solution on the given scale, and hence the difference between the 

curves is hard to resolve by eye. 
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      As will be elucidated further below (see Figs. 3-6), the parameter regimes we selected in Fig. 1 are not 

optimal for the ansätze we introduce. Nevertheless, even for the chosen sub-optimal parameter 

combinations, a decent qualitative agreement with the accurate numerical solution is achieved by at least 

one of the ansätze, with higher accuracy achieved for the first two parameter combinations in Fig. 1A1-4, 

B1-4. We observe that RBA can compete with the newly presented approximants only when diffusivity 2 

is very small (Fig. 1C1-C4); therefore, RBA is not shown for the other three parameter choices. Note the 

difference in scales in the different panels of Fig. 1: some of the apparent large discrepancies for b* and b** 

involve relatively small absolute differences. The accuracy of several of the newly presented approximants 

is sufficiently high for the curves to completely overlap with the numerical simulations. Therefore, the 

series interpolation method achieves significant improvement of approximation accuracy for a wide range 

of model parameters, as compared to RBA.  

      It is interesting to note that the partially-bound buffer concentration b* is not necessarily monotonic 

with respect to distance from the channel location, unlike the free and fully-bound concentration variables. 

Despite the simple functional forms of our ansätze, they do in fact reproduce this non-monotonic behavior: 

see for instance the ExpPadéB approximant in Fig. 1C2,D2. 

      Figure 1 shows that the new approximants give consistently accurate results, at least for the examined 

parameter sets. As in the simple buffer case, buffer approximations have the lowest accuracy near the 

channel, and the greatest accuracy far from the channel, since buffer concentrations at the channel location 

are unknown, whereas the long-range asymptotic behavior of the true solution is known, and given by Eq. 

20. In contrast, the differences between distinct Ca2+ approximations and the numerical solution are shown 

on a logarithmic scale, and are more pronounced at intermediate distances from the channel, due to the 

dominance of the free source term 1/r near the channel (Eq. 25). Since the [Ca2+] traces shown in the last 

row of panels in Fig. 1 are obtained from the Ca2+ conservation law in Eq. 25 using inexact approximations 

for b and b**, no direct physical constraints on Ca2+ were imposed. For specific parameters regimes, this 

may result in negative values of [Ca2+] sufficiently far from the channel, where the corresponding true 

concentration values are small. This indeed happens for very large values of buffering strength, 𝜈 , ≥ 100. 

When this occurs, we use the RBA approximation derived in (49) and generalized in Supporting Material 

1 as a lower bound on Ca2+, since RBA is very accurate sufficiently far from the channel for any model 

parameter values, as we noted above. Moreover, our extensive numerical investigation leads us to 

conjecture that RBA in fact represents a sub-solution (a pointwise lower bound) for the true [Ca2+]. This 

imposed truncation of [Ca2+] from below using RBA helps us correct the errors in estimating Ca2+ at larger 
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distances when buffering is very strong (see for instance Fig. 1C4). Even in such cases where negative 

[Ca2+] values are replaced with the corresponding RBA values at large distances, the accuracy of the new 

approximants at closer distances are significantly better than RBA accuracy, as is the case for instance for 

the parameters in Fig. 1C4. 

      Examining approximation behavior for several example parameters combinations is insufficient to 

unveil the complicated parameter-dependent accuracy of these approximations. Therefore, following prior 

work (32, 38, 39, 49), we will now systematically explore the parameter-dependence of the absolute 

deviation between the given approximation and the accurate numerical solution, using the following norm, 

similar but slightly different from the norm used in the case of simple buffer (38, 39): 
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The deviations are computed on a set of N =100 points spanning 5 orders of magnitude of distance r, from 

10-3 to 102, on a logarithmic scale. Therefore, apart from the normalization factor p in the denominator 

(explained below), these are effectively L1 norms weighted by 1/r, which requires a lower distance cut-off, 

set to rmin=103. The heavier weighting of short distances is justified by two reasons: (1) as we mentioned, 

our method has the greatest error at the channel location, and (2) the accuracy close to the channel is more 

important for actual biophysical modeling applications. We use the same error measure for approximating 

bound buffer state b** as for b. Given the difference in absolute magnitude of b** and b, we normalize by 

the maximal concentration p in the denominator of Eq. 27 to make it an even more stringent accuracy 

measure: as Fig. 1 illustrates, b** can be quite small in certain parameter regimes, as compared to the free 

buffer b, which always approaches 1 as r +. 

      Since b* and c are uniquely determined by b and b** through the two conservation laws in Eqs. 12, 25, 

in all figures below we will examine the sum of errors for b and b** , instead of analyzing the accuracy of 

these two concentration fields individually. In Figure 2 we show a systematic comparison of the accuracy 

of the new approximants by plotting such sum of errors in b and b** for each approximant as a function of 

the buffering strength parameter 2 varying from 103 to 103, for three different fixed values of the buffer 

diffusivity parameter 2 (2=0.1, 2=1, or 2=10) and two combinations of cooperativity parameters (, g). 

To reveal the impact of Ca2+-binding cooperativity on approximant performance, one choice of (, g) values 

corresponds to a non-cooperative buffer (=g=1, Fig. 2A2,B2,C2), while the other choice corresponds to a 
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very cooperative buffer (=g=0.1, Fig. 2A1,B1,C1). Combining the error measures of b and b** allows us 

to choose a single best approximation for each given parameter combination. The error of RBA (red curves) 

is also included for the sake of comparison.  

 
FIGURE 2. Accuracy comparison of the series interpolant approximations for the equilibrium free and fully bound 

buffer concentrations: ExpPadéA (magenta), ExpPadéB (dashed magenta), and ExpExp (dashed black). RBA error 

is also plotted for comparison (red curves). All panels show the log10 of the sum of average errors of approximating 

concentrations of free buffer (b) and fully bound buffer (b**) computed using Eq. 27, as a function of buffering 

strength 2  ranging from 10-3 to 103, for 3 distinct choices of parameters 2,   and g. 

        For most combinations of parameters examined in Fig. 2, the new approximants outperform RBA quite 

significantly, confirming the results shown in Fig. 1. In the non-cooperative buffer case =g=1 (bottom row 

of panels in Fig. 2), for sufficiently large values of 2 and 2  the best approximating method is always 

ExpExp, and its average relative error is always below 10%. This level of accuracy is very good given such 

a simple approximation and such a stringent error measure. In the cooperative buffer case, =g=0.1 (top 

row of panels in Fig. 2), the individual error curves are more tangled, and the choice of best method is 

somewhat more complicated. However, in general ExpExp achieves superior accuracy at smaller values of 

buffering strength 2, whereas ExpPadéB becomes superior for larger values of 2. Although RBA performs 
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poorly relative to other approximants for parameter conditions examined in Figure 2, the advantage of RBA 

for smaller values of 1,2 will be revealed in the results presented next.  

 

FIGURE 3. Comparison of parameter regions where a given approximant outperforms the rest in estimating the 

combined errors of free and fully bound buffer concentration approximations in the (2, 2) parameter plane, 

according to the error measure given by Eq. 27, with 6 different choices of cooperativity parameters  and g: (A) =g 
=0.1; (B)  =0.5, g =0.1; (C)  =1, g =0.1; (D)  =0.1, g =1; (E)  =0.5, g =1; (F) =g=1. Each color in A through F 

marks the parameter region of best performance for the following approximants: RBA (red), ExpPadéA (dark 

magenta), ExpPadéB (light magenta), and ExpExp (gray). Yellow and cyan symbols mark parameter point 

corresponding to simulations in Figure 1. Dashed lines mark the locations of parameter scans in Figure 2.  

Figure 3 summarizes and extends the results presented in Fig. 2, labeling the best approximants for a wide 

range of buffer mobility 2 varying over 4 orders of magnitude, and buffering strength 2 varying over 6 

orders of magnitude, for 6 fixed sets of cooperativity parameters  and g  corresponding to each of the 6 

panels. The selection of best approximant in Fig. 3 is based on the minimal sum of errors of b and b** 

approximations; the corresponding smallest error value is shown in Fig. 4. As noted above, using this 

combined error measure helps in determining the single best approximation method for a given set of model 
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parameters, recalling that b* and c are uniquely determined by b and b** (Eqs. 12, 25). Figure 3 shows that 

there is still a significant portion of parameter space where RBA outperforms our newly developed methods, 

but as expected, this only happens for sufficiently small values of 2. As Fig. 4 illustrates, a qualitative 

accuracy within 10% is always guaranteed for all examined parameter combinations, and for some narrow 

parameter regimes the accuracy can be extremely high, with the average combined error measure reaching 

0.025%.  

 

FIGURE 4. The smallest error in estimating the free and fully bound buffer concentrations in the (2, 2) parameter 

plane, according to the error measures given by Eq. 27, with  and g  fixed to 6 different choices, as in Figure 3. The 

gray-scales in A through F indicate the log10 of the sum of average errors of the free and the fully bound buffer 

approximations (Eq. 27). Darker shades represent better accuracy, according to the error bars to the right of each panel.  

      Even though Ca2+ is uniquely determined from the buffer concentrations by the Ca2+ conservation law, 

it is still useful to look at the performance of different approximants in estimating [Ca2+] separately, since 

the latter is of obvious physical importance and has a different behavior as a function of distance from the 

channel. As noted above, close to the channel location [Ca2+] is dominated by the source term, 1/r, therefore 

we will modify the buffer error norm, Eq. 27, by taking the logarithm of [Ca2+] (38, 39, 49):  
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We note that qualitatively this norm has the same behavior as the relative norm used in (32). Figure 5 labels 

the approximants which minimize this error in estimating [Ca2+], with the corresponding error value shown 

in Fig. 6, using the same parameter combinations as in Figs. 3 and 4. Figure 5 shows that for any particular 

set of model parameters, the optimal approximants for [Ca2+] can be different from the optimal buffer 

approximant shown in Fig. 3, despite the fact that [Ca2+] is directly calculated from buffer concentrations. 

As discussed above, [Ca2+] approximant performance is more sensitive to its accuracy at intermediate 

distances, in contrast to the buffer error measure, which is the greatest in the channel vicinity. Therefore, 

the error in Ca2+ estimation measures the accuracy of our approximants at intermediate distance from the 

channel, while the error in buffer estimation reveals the method accuracy proximal to the channel location. 

This fact can also be observed in Figure 1. Finally, we note that the uneven boundaries between accuracy 

levels in Fig. 6 are not numerical artifacts, but reflect the complicated shape of the boundaries of optimal 

performance regions shown in Fig. 5. 
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FIGURE 5. Comparison of parameter regions where a given approximant outperforms the rest in estimating [Ca2+] 

in the (2, 2) parameter plane, according to the error measure given by Eq. 28, with  and g fixed to 6 different 

choices, as in Figure 3.  Each color in A through F marks the parameter region of best performance for the following 

approximants: RBA (red), ExpPadéA (dark magenta), ExpPadéB (light magenta), and ExpExp (gray). Yellow and 

cyan symbols mark parameter points corresponding to simulations in Figure 1. 

 

FIGURE 6. The error in estimating [Ca2+] in the (2, 2) parameter plane, obtained using the best approximant 

shown in Figure 5 for each parameter point, with  and g  fixed to 6 different choices, as in Figure 5. All parameter 

choices and panel layout are identical with Figures 3-5. The grayscale in all panels indicates the log10 of error value 

given by Eq. 28, as indicated in scale bars to the right of each panel. Darker shade represents better accuracy.  

       Finally, in order to evaluate whether our newly developed approximants achieve sufficient accuracy 

for parameters corresponding to real biological buffers, in Figure 7 we simulate the Ca2+ nanodomains in 

the presence of 100M of Ca2+ buffer with the properties of either calretinin or one of the two lobes of 

calmodulin, shown in Table 3. For calretinin, we use parameter values reported by Faas et al. (42), while 

for calmodulin, we use reaction parameters that were carefully compiled from multiple biochemical studies 

by Ordyan et al. (52). As Figure 7 reveals, our newly developed method, ExpPadéA and ExpPadéB, work 

remarkably well for N-lobe or C-lobe of calmodulin: the curves for b, b**, and c corresponding to the 

approximations and the numerical simulations completely overlap at the chosen ordinate scale. For 

calretinin, ExpPadéB works the best, and demonstrates very reasonable accuracy. Although ExpPadéB fails 
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to accurately describe the behavior of the single-bound calretinin concentration, it does capture the order 

of magnitude of this concentration variable; note also that the latter is much smaller than b and b**.  

       Although the approximants we present do not allow to model the simultaneous impact of both lobes of 

calmodulin, since this would require generalizing our approach to buffer with 4 binding sites, the results 

obtained for the N-lobe alone are of value, since the N-lobe has much faster kinetics, and would reach a 

quasi-equilibrium state on short time scales compared to the much slower C lobe.  

 

    Parameter 1k
 1( )Mms   2k

 1( )Mms   K1 (M) K2 (M) 
2

1

K

K
   g




 2

1

k

k
 2 2 

CaR coop. sites 0.0018 0.31 28 0.068 2.410-3 0.42 1.610-3 294 

CaR non-coop.site 0.0073 -- 36 -- -- -- --  

CaM N-lobe 0.1 0.15 26.6 6.6 0.248 0.372 0.323 3.03 

CaM C-lobe 0.004 0.01 10 0.93 9.310-2 0.23 0.68 21.5 

 

Table 3. Ca2+ binding properties of strongly cooperative buffers calretinin (CR) and calmodulin (CaM), as reported 

in (42, 52). Each CR molecule contains 5 binding sites, consisting of two identical cooperative pairs of Ca2+-binding 

sites and one independent non-cooperative site. CaM molecule consists of two independent domains (lobes), each 

binding two Ca2+ ions in a cooperative manner. Values of 2 and 2 are calculated for Ca2+ current strength of ICa=0.4 

pA, total buffer concentrations of B
T
=100 M, buffer-Ca2+ mobility ratio of DB/DCa=0.1, and DCa=0.2 m2/ms. 
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FIGURE 7. Approximation performance for biological buffers: calmodulin N-lobe (A1-A4), calmodulin 
C-lobe (B1-B4), and calretinin (C1-C4). Parameters values are in Table 3, corresponding to the current of 
ICa=0.4 pA, and total buffer concentration of 100 M. Only the best approximations are shown: ExpPadéA 
(solid magenta curve), ExpPadéB (dashed magenta), and ExpExp (dashed black). Accurate numerical 
results are shown as thick gray curves.  
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DISCUSSION 

We demonstrated that the series interpolation approach introduced for the case of 1:1 Ca2+ buffers in (38,39) 

can be extended to buffers with 2:1 Ca2+-binding stoichiometry, and we presented several simple but 

accurate interpolants that combine rational and exponential functions. As summarized in Figs. 3-6, and Fig. 

S1 of the Supporting Material 1, these new approximants achieve reasonable accuracy in estimating 

equilibrium buffer and Ca2+ concentrations near an open Ca2+ channel in a wide range of relevant model 

parameters. RBA, the only other previously developed method applicable to 2:1 buffers, is nevertheless 

still superior for very small values of non-dimensional mobility parameters 1,2. However, our new 

approximants have more uniform accuracy compared to RBA over a wide range of several orders of 

magnitude in the relevant dimensionless parameters 2, 2, g, and . As Figure 4 shows, the average 

combined error for the free and fully bound buffer concentrations is within 10% for all examined parameter 

combinations for the new approximants. Fig. 6 demonstrates similar maximal error in estimating Ca2+, 

albeit requiring truncation at large distances to ensure the physical constraints [Ca2+]>0 for large values of 

buffering strength. Further, Figure 7 shows that good qualitative agreement can be achieved even with more 

extreme model parameter values corresponding to calretinin or one of the two lobes of calmodulin, which 

correspond to parameter combinations shown in Table 3. Figures 2-6 demonstrate that the accuracy profile 

of the approximants we introduced is highly non-trivial, with the error measure exhibiting large dips for 

certain parameter combinations. This is of potential interest and may reveal interesting properties of the 

underlying true solutions, deserving a careful investigation in the future.  

       Several functional forms other than the ones shown in Table 1 were considered, but are not presented 

here due to either insufficient performance or lack of closed-form solutions for parameters. However, given 

the simplicity of the interpolating approximants we presented, improved ansätze could potentially still be 

found. This is particularly likely for the case of non-zero background Ca2+ concentration examined in 

Supporting Material 1: only the simplest lowest-order interpolating approximants were consider in the latter 

general case. 

            Of course, practical use of the proposed approximants requires an algorithm for the choice of a 

particular ansatz, given a particular set of model parameters, without knowing the exact solution. In 

Supporting Material 2, we provide simple and concise MATLAB code that selects the best approximants 

as a function of 4 model parameters, based on shallow neuronal networks with only 9 or 13 hidden nodes, 

pre-trained with data shown in Figs. 3,5. The resulting algorithms capture very well the nontrivial topology 

of parameter space segmentation shown in Figs. 3,5.  
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      There are many directions for possible extensions and improvements of this work. For example, our 

approximants are only applicable to a single channel and a single 2:1 Ca2+ buffer, whereas RBA allows an 

extension to an arbitrary number of channels and buffers (although the latter requires considerable increase 

in complexity). We note however that the methods we presented could be extended to the case of two 

distinct 1:1 Ca2+ buffers. We should also mention that we did not consider any Ca2+ sinks and the effect of 

finite channel pore radius. Including a linear homogeneous Ca2+ uptake mechanisms, along the lines of (21), 

would greatly improve the utility of the developed approximations. Finally, we should note that the study 

of equilibrium nanodomains implicitly assumes that the steady-state is established very quickly and ignores 

transient dynamics before the equilibrium is reached. However, this is not always the case (19). We note 

that the quality of this equilibrium assumption is not determined by the parameters defined in Eq. 14-15, 

but strongly depends on one additional nondimensional parameter given by the product of the channel 

opening time and one of the buffers’ two Ca2+ unbinding rates, 𝑘 ,  . It is guaranteed that for some 

combinations of these five parameters the equilibrium assumption will be a very accurate one, while for 

other combinations the equilibrium will not be achieved sufficiently fast on the time scale of the channel 

opening time. Therefore, the characteristic time needed to reach the steady state should be properly 

examined for a wide range of parameter values in future work. Some related work concerning transients 

dynamics in reaction-diffusion systems can be found in (54-58). More generally, the fundamental 

mathematical analysis for the complex buffer case, along the lines of analysis in (39), is yet to be performed. 

For instance, we did not give a rigorous proof that RBA provides a sub-solution for [Ca2+] in this problem. 

Finally, we only considered the series interpolation method, whereas the feasibility of extending the 

variational method introduced in (39) to the case of 2:1 Ca2+ buffers is still an open question, to be explored 

in future work. One could explore in particular the applicability of the multifunction variational method 

described in (59).  

      The newly developed approximants can be used to study in detail the parameter dependence of 

equilibrium concentrations of Ca2+ and distinct buffer states, which can be quite non-trivial for a buffer with 

two binding sites. For example, the results shown in Figure 1 already reveal an interesting non-monotonic 

dependence of single-bound buffer on the distance from the Ca2+ channel for some, but not all, model 

parameters. To our knowledge, this non-monotonic behavior has not been previously noted. Since most 

buffers have dual Ca2+ buffering and sensing roles, with partially and fully bound buffer having distinct 

affinities to downstream biochemical targets (40, 41, 48), this non-trivial property of the equilibrium 

solution may be of potential physiological significance, to be analyzed in detail. Non-trivial effects of 

cooperative Ca2+ binding by biological buffers with multiple Ca2+ binding sites have also been pointed out 
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by prior modeling studies. For example, it has been shown that cooperative Ca2+ buffers decrease the 

facilitation of Ca2+ transients associated with buffers saturation (40, 45), but may increase short-term 

synaptic facilitation through the mechanism of buffer dislocation (60). This is directly related to the 

interesting fact that the buffering capacity of a cooperative Ca2+ buffer increases with increasing 

background Ca2+
  concentration, which may play an important homeostatic role (42, 45, 49). On longer time 

scales, Kubota and Waxham (47) showed the interesting “hand-off” of Ca2+ from the N-lobe to the C-lobe 

of calmodulin upon channel closing, and the intricate dependence of each lobe’s Ca2+ saturation on the Ca2+ 

influx amplitude and duration. More generally, cooperative Ca2+ binding by calmodulin and the resulting 

activation of downstream biochemical pathways plays important roles in the regulation of long-term 

synaptic plasticity and other fundamental cell processes (43-47, 52, 61-63). Deeper understanding of Ca2+ 

dynamics in the presence of cooperative buffers may also be important for an accurate interpretation of 

optogenetic measurements with genetically-encoded fluorescent Ca2+ dyes, which are formed by fusing a 

calmodulin molecule with a green fluorescent protein (64). All this underscores the importance of modeling 

and analysis of Ca2+ binding by buffers and sensors with multiple Ca2+ binding sites. 
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APPENDIX A: Approximation Parameters, Zero Background Ca2+ Concentration 

For the ExpPadéB approximation, matching the coefficients of the short- and long-range series expansions 

given by Eqs. 17, 20  leads to cubic systems for the ansatz parameter 2 shown in Table 3, with the 

following explicit solution:  

 ( )2 q Y G F G    . (29) 

     The auxiliary quantities Y, G, F are determined by 
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For the ExpExp approximation, the explicit solution of ansatz parameter s has the form 

 2s G Y Y G   , (31) 

      where the auxiliary quantities G and Y are determined by  
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In both of these approximants, the value of ansatz parameter A is given by Eq. 22. All fractional powers 

should be understood as principal roots, as implemented in MATLAB. Supporting Material 2 contains 

simple MATLAB code computing and plotting these expressions.  
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