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I.  Generalization to non-zero background Ca2+ concentration 

In the case of non-zero [Ca2+] infinitely far from channel, equilibrium relationships given by Eq. 9 are 

transformed to the form (1,2): 
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Recall that we set the buffer concentration scale to the concentration of free buffer at inifinity, therefore 

b=1. Thus, the total concentration parameters given by Eqs. 13 are uniquely determined by the non-

dimensional background Ca2+ concentration, c: 
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This transforms Eq. 12 to the form 
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Note that the Taylor series of the solution up to leading order O(r) is the same as in the c=0 case, and is 

given by Eq. 17: 
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Here b0=b(0) and 𝑏଴
∗∗=𝑏∗∗(0) are the nondimensionalized concentrations of free and fully bound buffer at 

channel location, r=0; both are unknown a priori, as in the case c=0.  

The transformation x=1/r, converts Eq. S3 to the form (cf. Eq. 18) 
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whose solution has the following long-range asymptotic expansion in powers of x (cf. Eq. 19): 
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with expansion coefficients given by 
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In these expressions the generalized parameter q has a more complex form than in the case c=0, where it 

reduces to   1

11   q : 
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It is important to note that the long-range b** series shown above starts with terms of order O(1) and O(x), 

in contrast to the case c=0, whereby b** series starts with terms of order O(x2) (see Eq.  20). The reason is 

intuitively clear: if c≠0, then a non-zero fraction of buffer will be fully bound even infinitely far from the 

channel. In contrast, in the case c=0, both bound buffer states approach zero as r+ and c0, with 

fully bound buffer decaying faster than b* and [Ca2+], which explains the quadratic dominant term in b**(x) 

in Eq. 20. 

We find that the best approximants achieving sufficient accuracy in large portions of parameter 

space are the simpler analogues of the ExpExp and ExpPáde approximants that we considered in the case 

c=0. Namely, we choose the exponential ansatz for the free buffer variable b, analogous to Eq. 21: 
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Note that it automatically matches Eq. S6 to order O(x). Using terms up to order O(r) in Eq.  S4, and noting 

that Eq. S9 gives 𝑏଴ = 1 − 𝛼ଵ𝑏ଵ, we obtain 
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This is a quadratic equation for the unknown parameter α1. Recalling the definition of b1 in Eq. S7, we find 

that this equation always has one real positive root: 
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As in the c=0 case, the best b** approximant accepts two possible simple forms that define the 

approximant type, and match Eq. S6 to the same order O(x): 

ExpExp Approximant: ansatz for b** is also an exponential, with one free parameter α2: 
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Matching this expansion to the corresponding expansion in Eq.  S4, and recalling that 𝑏଴ = 1 − 𝛼ଵ𝑏ଵ 

according to Eq. S9, we obtain the following equation for α2: 
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Since * **1Tb b b     according to Eq. S2, we obtain a quadratic equation 
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with real positive root 
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where  
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ExpPadé Approximant: ansatz for b** is a bilinear function, which depends on one free parameter, : 
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Matching this expansion to the corresponding expansion in Eq.  S4, recalling that * **1Tb b b     and 

𝑏଴ = 1 − 𝛼ଵ𝑏ଵ, we obtain 
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Multiplying by  2 and dividing by 𝑏ଵ
∗∗, we obtain the quadratic equation 
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This equation has a real positive root 
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where the value of A is given in Eq. S16, and α1 is given by Eq. S11. Note once again that the ansatz 

parameters are all real and positive, regardless of model parameter values.  

We note that the limit c0 in any of the two b** ansätze above is singular and does not yield any 

of the approximants in Table 1: this is clear from the noted difference in the order of the dominant term in 

the long-range asymptotic expansion of b** in the case c=0 (Eq. 20) vs. c≠0 (Eq. S6). 
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Figure S1. Best approximants (A1 and A2) and combined accuracy of free and fully bound buffer state 
approximations (B1 and B2) in the (2, 2) parameter plane, as given by the error measure in Eq. 27, for 
the case c=1, with parameters  and  fixed to two combinations: in A1 and B1,  =  = 0.1; in A2 and 
B2,  =  = 1. Each color in A1 and B1 marks the parameter region of best performance for the following 
approximants: RBA (red), ExpPadé (magenta), and ExpExp (gray). The gray-scales in B1 and B2 indicate 
the log10 error values. Darker shades represent better accuracy, according to the error bars on the right of 
each panel.  

Although the approximant considered here are simpler than any of the approximants for the case c=0 

summarized in Tables 1-3, they nevertheless achieve qualitative accuracy in large portions of parameter 

space, as demonstrated by the combined buffer concentration error measure results shown in Figure S1. 

Finding even more accurate approximants for the c≠0 is a topic of further investigation. 
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II.  General Rapid Buffering Approximation for 2:1 Buffers 

      Here we present the most general form of the Rapid Buffering approximation (RBA) for a buffer with 

two Ca2+ binding sites. The derivation below follows the one in (1), but we adapt it to the new and simpler 

non-dimensionalization adopted in this work, whereby the buffer concentration variables are re-scaled by 

the background free buffer concentration, B, rather than the total buffer concentration. This allows us to 

consider binding-dependent buffer mobility and c≠0, whereas these two generalizations were treated 

separately in (1). We start by generalizing Eq. 12 of the main manuscript to the case of binding-dependent 

buffer mobility, 
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where the extra parameters characterizing the change of buffer mobility upon Ca2+ binding are  
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while the non-dimensional buffer mobility of the fully bound buffer state is redefined according to (cf. Eq. 

14): 
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The integration constants in the conservation laws in Eq. S21 are related to the total (fee plus bound) buffer 

and Ca2+ concentrations, and obey a more generalized version of Eqs. 13, 36: 
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Since RBA is defined by reaction equilibrium, we equate the reaction terms on the right-hand side of Eq. 

S21 to zero, which yields (recall that in our non-dimensionalization b=1) (1,2): 
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Thus, the buffer conservation laws in Eq. S24 becomes 
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Along with Eq. S25, this gives 
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Therefore, the Ca2+ conservation law in Eq. S21 becomes (recalling that 2 =1)  
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where the total [Ca2+] at infinity defined in Eq. S24 becomes 
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Eq. S28 is readily converged to a cubic equation for c, which has a unique real and positive root, 
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where the auxiliary functions A, F, R, S, G depend on model parameters according to 
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Here the fractional power should be understood as a principle root. This expression produces the real 

positive root when implemented verbatim in MATLAB (Mathworks, Inc.), and generalizes Eq. 19 in (1). 



 8

Buffer concentrations are uniquely determined from this expression using the equilibrium conditions, Eq. 

S27. 

Figure S1 summarized the accuracy of this approximation for the case c=1, comparing RBA to 

the closed-form approximants derived above. In that figure, buffer mobility is assumed to be binding 

independent, i.e. * ** 1B B   . Figures 1-6 in the main text of the manuscript compare this RBA 

approximation with other approximants in the simpler case of zero background Ca2+ concentration, 

c=cT=0, bT=1, under the same constraint * ** 1B B   ; in this case the expressions for auxiliary functions 

R, F and G in Eq. S31 are significantly simplified. 
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