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Numerical minimization of the euclidean action of the two-dimensional abelian Higgs model is used to construct 
periodic instantons, the euclidean field configurations with two turning points describing transitions between the 
vicinities of topologically distinct vacua. Periodic instantons are found at any energy (up to the sphaleron energy Esp h ) 
and for a wide range of parameters of the theory. We obtain the dependence of the action and the energy of the periodic 
instanton on its period; these quantities directly determine the probability of certain multiparticle scattering events. 

1. In the four-dimensional standard electroweak 
theory, instanton-induced transitions account for in- 
teresting phenomenon of  baryon- and lepton-number 
violation; here we consider a much simpler two- 
dimensional abelian Higgs theory which is analogous 
to the former to the extent that it also possesses a 
non-trivial vacuum structure. In both theories, one 
may anticipate the existence of  periodic instanton 
configurations, which are solutions to the euclidean 
field equations with two turning points and zero 
winding number [1] (see also [2,3]). As is shown 
by Khlebnikov et al. [1 ], the periodic instanton is 
an exact saddle point in the functional integral for 
the probability of  the multiparticle scattering event 
that leads to a transition between the vicinities of  
topologically distinct vacua. It is also shown that the 
analytic continuation of  the periodic instanton to the 
Minkowski domain through its turning points pro- 
vides the most probable initial and final states of  this 
transition. In other words, the transition induced by 
the periodic instanton has the largest probability at 
a given energy. In the semiclassical approximation, 
this probability was found to be [ 1 ] 

t rE= e x p { - S  + E T } ,  (1) 
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where T is the period and S is the action per period 
of  the periodic instanton of  energy E. 

At low energies, the periodic instanton configura- 
tion can be approximated by a temporal alternating 
sequence of  instantons and anti-instantons separated 
by equal intervals of  T/2. The period T grows expo- 
nentially as the energy approaches zero. 

At energies close to the sphaleron [4] energy Esph, 
the periodic instanton can be described as the sum of 
the static sphaleron configuration and the oscillation 
in the negative eigenmode around the sphaleron [ 5,6 ]. 
As the energy E approaches Esph, the amplitude of  
this oscillation vanishes. The period of  the periodic 
instanton in this approximation is equal to the period 
of  this eigenmode. 

At arbitrary energies, the analytic form of the peri- 
odic instanton is not known; furthermore, the bound- 
ary conditions (fields at the turning points) are also 
unknown. In the present paper we evaluate numeri- 
cally the periodic instantons of  the two-dimensional 
abelian Higgs theory at any energy and for wide range 
of  parameters of  the theory. We confirm the expected 
properties of  these configurations and show, in par- 
ticular, that the semiclassical probability az, eq. (1), 
interpolates between its instanton value and unity as 
the energy varies from zero to gsp h. 

0370-2693/93/$ 06.00 @ 1993-Elsevier Science Publishers B.V. All rights reserved 291 



Volume 304, number 3,4 PHYSICS LETTERS B 29 April 1993 

2. The lagrangian of the two-dimensional abelian 
Higgs model reads 

L 1 2 = - ~ G ~  + I ( 0 u -  igAu)$l 2 -  ~Z(l~l 2 -  ½v2) 2, 

/t, v = O, 1. 

Here q~ is the complex Higgs field and A u is the U ( 1 ) 
gauge field. The particle spectrum of this model con- 
sists of the Higgs boson of mass MH 2 = 22v 2 and the 
vector boson of mass MZw = g2v2. Let us consider 
the temporal gauge A0 = 0; the remaining symmetry 
we will fix according to the condition 

A l ( x , t  = to) = O. 

Later we will define the value of to. 
In this gauge we may choose the following set of 

topologically distinct vacua 

q~n(x) = v e x p [ i a n ( x ) ] ,  A ~ ( x )  = l oloLn , 

(an(X = +o0)  -- a , ( X  = --co)) = 2n(n + ½), 

¢ . ( - 0 o )  = - v ,  ¢ . ( + ~ )  = v .  

This set is related to a conventional one with c~, (x = 
+ c ~ ) - a , ( x  = -oo)  = 2nn by a time-independent 
gauge transformation that plays no role in any physical 
process. 

In the space of field configurations, the neighboring 
vacua are separated by a static energy barrier. The 
top of this barrier is associated with the sphaleron 
[4], which is the static unstable solution of the field 
equations. In our gauge this solution is the ordinary 
kink (cf. [5,7]) 

ASPh 0, ¢sph V M~x = = ~ t a n h  . 

Its energy (the height of the barrier) is equal to 

E.ph = ~ , / ~  V 3 

Among the modes of oscillations of fields around 
the sphaleron there is one negative eigenmode, which 
makes the sphaleron unstable. The frequency of this 
mode is [6 ] 

toE M~ 1 + - -  + 1 (2) 
- 8 M ~  " 

This quantity determines the minimal period of a peri- 
odic instanton configuration: as energy increases from 
zero to Esph the period changes from infinity to T_ = 
2n/IoJ-I. 

The instanton solution of this model is the well- 
known Abrikosov-Nielsen-Olesen vortex [ 8,9 ]. The 
instanton is a zero-energy, finite action euclidean so- 
lution to the field equations interpolating between two 
neighboring vacua. Its winding number is equal to 1, 

1 A~ dx u At dx 1. 
2n t=+~ 

At various values of M H / M w  this solution was ob- 
tained numerically in ref. [10]. 

3. We construct the periodic instanton field for vari- 
ous values of the period (ranging from T_ to infinity) 
using the numerical minimization of the euclidean ac- 
tion. Thus, the values of energy and action of the pe- 
riodic instanton and its other properties are obtained 
as functions of its period. 

The minimization is performed on the space of 
fields satisfying the following conditions: 

A I ( x , - ½ T )  = Al(x ,0)  = 0, 

A l ( - ~ , t )  = A l ( + o o ,  t)  = 0, (3) 

~ ( x , - ½ T )  = ~(x,O) = o,  

~b(-oo, t) = - v ,  ~b(+c~,t) = v ,  (4) 

A l ( x ,  to = -¼)  = 0. (5) 

Notice that Gauss' law OxOoA1 = - ½ i g  (~(k* - (k@*) 
is satisfied at the turning points; this provides that it 
will be automatically satisfied at all times for the fields 
minimizing the action and obeying the field equations. 

Eq. (5) specifies our choice of gauge. This particular 
choice leads to the following additional symmetries 
of the solution: 

A I ( x , - ¼ T -  t) = - A I ( x , - ¼ T  + t ) ,  

~ b ( x , - ¼ T -  t) = ~b*(x,-¼T + t ) .  

This symmetry allows one to perform minimization 
on the time interval equal to the quarter of the period, 
which is convenient for the numerical study. 
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The calculations are performed on a two-dimen- 
sional lattice with the time dimension of  [ -¼T,  
_ ! T l" the choice of  the spatial x-dimension depends 2 ' 
on the desired accuracy and the values of  parameters 
MH and Mw. 

First, an arbitrary configuration satisfying the con- 
ditions (3 ) - (5  ) is chosen. Then the following step is 
repeated as often as necessary: 

The trial function to be added to one of  the fields 
is chosen as the product of  a random time-dependent 
trigonometric harmonic and x-dependent gaussian 
function o f  random width and position. Then a stan- 
dard single-parameter minimization technique is ap- 
plied with respect to the amplitude of  this trial func- 
tion. Along with the trial function its derivatives of  a 
known analytical form are also calculated and added 
after minimization to the corresponding derivatives 
of  the field. In this sense the derivatives are calcu- 
lated "exactly": we do not use any difference approx- 
imations. This greatly increases the accuracy of  the 
results. 

4. Calculations were performed for different values 
of  the ratio MI-I/Mw ranging from ¼ to 4. Here we 
present the results mainly for the case MI~ = Mw = 
1; the results at other values of  Mt.t/Mw are similar. 

Figs. 1 and 2 show respectively the dependence of  
the energy and the action per period of  the periodic 
instanton on its period. In full agreement with the 
expectations, the energy approaches Esph as the pe- 
riod decreases. If  the period is set to a value smaller 
then T_, calculations lead to a static sphaleron con- 
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Fig. 1. Dependence of the energy of the periodic instanton 
on its period. 
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Fig. 2. Dependence of the action per period of the periodic 
instanton on its period. 
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Fig. 3. Dependence of the value ( S  - E T )  on the energy. 

figuration, since there are no other periodic solutions 
at T < T_. The numerically obtained minimal value 
of  the period, T_, coincides with the expected value, 
determined by eq. (2). At large values of  the period 
the energy is close to zero, and the action is close to 
twice the value of  the action of  the instanton (which 
is equal to ~ when M~/ = Mw = 1 ). The functions 
S (T)  and E (T)  satisfy the following relation [ l ]: 

O S ( T )  
E ( T )  - - - ,  (6) 

OT 

which provides an additional check for numerical 
study. 

Fig. 3 shows the behavior of  ( S -  E T )  = - In ae as 
the function of  energy, where aE is the probability of  
the instanton-induced multiparticle scattering event, 
see eq. ( 1 ). At E = Esph the value of  ( S - E T )  reaches 
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Fig. 4. Real part of the Higgs field for Mw 
1, MH = 1 ,  T = 3 2 .  
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Fig. 5. Imaginary part of the Higgs field for Mw = 

1, M n =  ¼, T = 3 2 .  

zero, as should have been expected; this corresponds 
to an unsuppressed probabil i ty  of  the transition. 

For  completeness, in figs. 4-6  we show typical pe- 
riodic instanton field configurations. Here the fields 
are shown for the case M w  = 1, MH = ¼. We have 
checked that at large T these configurations do indeed 
coincide with the ins tanton-ant i - ins tanton pair. 

5. To conclude, we have verified numerically the 
existence of  periodic instantons in a two-dimensional  
abelian Higgs model. They indeed interpolate be- 
tween a widely separated chain of ins tantons  and anti- 
instantons and the sphaleron as energy increases from 
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Fig. 6. Spatial component of the gauge field A1 (x, t) for 
Mw = 1, MH = 1, T =  32. 

zero to Esph and describe most favorable tunneling 
events at each energy. The probabil i ty  of  such event 
increases with energy starting from exp{-2Sinst} at 
E = 0 and becomes no longer exponentially sup- 
pressed at E = Esph. 

The author is grateful to Prof. V.A. Rubakov for 
his guidance and help at all stages of  this work and to 
Dr. P. Tinyakov for useful discussions. 
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