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Abstract 
 

Fundamental cell processes such as synaptic neurotransmitter release, endocrine hormone secretion and 

myocyte contraction are controlled by highly localized calcium (Ca2+) signals resulting from brief openings of 

trans-membrane Ca2+ channels. On short temporal and spatial scales, the corresponding local Ca2+ 

nanodomains formed in the vicinity of a single or several open Ca2+ channels can be effectively approximated 

by quasi-stationary solutions. The Rapid Buffering Approximation (RBA) is one of the most powerful of such 

approximations, and is based on the assumption of instantaneous equilibration of the bimolecular Ca2+ 

buffering reaction, combined with the conservation condition for the total Ca2+ and buffer molecule numbers. 

Previously, RBA has been generalized to an arbitrary arrangement of Ca2+ channels on a flat membrane, in 

the presence of any number of simple Ca2+ buffers with one-to-one Ca2+ binding stoichiometry. However, many 

biological buffers have multiple binding sites. For example, buffers and sensors phylogenetically related to 

calmodulin consist of two Ca2+-binding domains (lobes), with each domain binding two Ca2+ ions in a 

cooperative manner. Here we consider an extension of RBA to such buffers with two inter-dependent Ca2+ 

binding sites. We show that in the presence of such buffers, RBA solution is given by the solution to a cubic 

equation, analogous to the quadratic equation describing RBA in the case of a simple, one-to-one Ca2+ buffer. 

We examine in detail the dependence of RBA accuracy on buffering parameters, in order to reveal conditions 

under which RBA provides sufficient precision.  
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INTRODUCTION 

Many fundamental physiological cell processes such as synaptic neurotransmitter release, hormone secretion 

and muscle contraction are controlled by highly localized Ca2+ signals triggered by the opening of a small 

number of trans-membrane Ca2+ channel (1-5). Intracellular Ca2+ buffers contribute to this tight localization of 

Ca2+ influx, absorbing most of the Ca2+ influx soon upon its entry into the cytoplasm (6, 7). Free Ca2+ ions 

remain localized in the vicinity of open Ca2+ channels, forming so-called Ca2+
 nanodomains, while in the case 

of ryanodine and inositol 1,4,5-trisphosphate receptor-coupled Ca2+ channels, these local Ca2+ signals are 

referred to as sparks or blinks (5, 8, 9). It is a great challenge to image Ca2+ concentrations on fine spatio-

temporal scales required to resolve these events, explaining the central role that mathematical and 

computational modeling of buffered Ca2+ diffusion has played in the study of Ca2+ dynamics in neurons, 

endocrine cells and myocytes (9-18).  

One of the contributions of mathematical modeling was the development of accurate analytical approximations 

of quasi-stationary Ca2+ nanodomains (reviewed in (14, 19, 20)). Apart from providing insight into the 

dependence of Ca2+ concentration on the various buffering parameters, such approximations allow avoiding 

computationally expensive integration of reaction-diffusion equations or stochastic simulations, while retaining 

considerable accuracy (21-25). The most powerful of the previously developed approximations are the Rapid 

Buffering Approximation (RBA) (19, 23, 26-29) and the Linear Approximation (LIN) (14, 25, 30, 31). These two 

approximations have partially overlapping but distinct domains of applicability (19, 20), and can both be 

generalized to an arbitrary collection of buffers and any number of Ca2+ channels on a flat membrane. Further, 

RBA has the additional benefit of providing useful intuition about the non-equilibrium, time-dependent buffered 

Ca2+ diffusion problem (26-29). Several other approximations have also been considered (19, 20, 32, 33) 

Despite their great utility, analytical approximations have only been developed for buffers with a single Ca2+ 

binding site, which we will refer to as simple, or one-to-one buffers. In contrast, most biological buffers possess 

several binding sites with distinct Ca2+ binding characteristics (Table 1). If the binding to such multiple sites are 

independent, they can be modeled as a combination of several simple buffers with binding properties that 

correspond to each of the distinct interaction sites, allowing the application of RBA or LIN. However, some 

widely expressed buffers and sensors like calretinin and calmodulin contain molecular domains that can bind 

two Ca2+ ions in a cooperative manner. This cooperativity in binding manifests itself in the higher affinity of the 

second Ca2+ ion binding compared to the first Ca2+ binding event (34, 35). This property is analogous to the 

cooperative binding of oxygen to hemoglobin. Most of the previously developed stationary nanodomain 

approximations cannot be straightforwardly extended to such realistic buffers. However, RBA can in fact be 

successfully generalized. Our goal is to analyze this extension of RBA to buffers composed of molecular 

domains with two Ca2+-binding sites, which can be described with sufficient accuracy using mass-action 

description of the following reaction of a buffer molecule B (36): 

* **
1 2

1 2

B B

++

- -

Cak2Cak

k 2k

B              (1) 

Here each asterisks represents Ca2+ ion bound to the buffer molecule. Denoting the affinities of the two 

reactions as 𝐾1,2 = 𝑘1,2
− /𝑘1,2

+ , the cooperativity in Ca2+ binding is quantified by the ratio ε=K2/K1. Thus, highly 

cooperative buffers are characterized by a small value of parameter ε (see Table 1). This condition interacts 
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in a non-trivial way with the small parameter quantifying the RBA assumption that reaction rate be much faster 

than the rate of Ca2+ influx and diffusion (19). Therefore, the range of applicability of RBA for cooperative 

buffers may be smaller than that for simple, non-cooperative buffers. Our goal is to systematically explore the 

parameter space to evaluate the accuracy of the RBA extension to two-to-one buffers, and show that in a 

certain parameter regime RBA retains sufficient accuracy. We hope that this contributes to the development 

of methods and tools for the modeling of realistic buffers, in view of the prominent role that cooperative buffer-

sensors such as calmodulin play in a variety of fundamental physiological processes, including metabolism, 

apoptosis, myocyte contraction, intracellular motility, synaptic function, inflammation and immune response 

(34, 36-41).  

MATERIALS AND METHODS 

The following analysis follows earlier work on equilibrium solutions to buffered Ca2+ diffusion near point Ca2+ 

channel sources, reviewed in (19), but extends prior analysis to the case of complex buffers with two Ca2+ 

binding sites, as described by the biochemical reaction given by Eq. 1. We will denote B* and B** the partially 

and fully Ca2+-bound states of the buffer (i.e. buffer molecule with a single or two bound Ca2+ ions, respectively). 

Denoting free [Ca2+] as C, and time differentiation as t , one obtains the reaction-diffusion system 

    

   

    

   

2

1 2

2

1

* * 2 *

1 2

** ** 2 **

2

,

,

,

.

t C

t B

t B

t B

C D C R R

B D B R

B D B R R

B D B R

           (2) 

The two reaction fluxes, R
1
, R

2
 are defined by applying the law of mass action to the reaction in Eq. 1: 

 

 

  


 

*

1 1 1

* **

2 2 2

2 ,

2 .

R k C B k B

R k C B k B

             (3) 

There are two independent linear combination of Eqs. 2 that cancel the reaction terms, yielding two 

conservation laws for the total buffer and the total Ca2+ concentrations, as in the case of a simple buffer (19, 

20, 23, 42, 43) 

         * ** 2 * * ** ** ,t B B BB B B D B D B D B         (4) 

         * ** 2 * * ** **2 2 .t C B BC B B D C D B D B        (5) 

These conservation laws can be used to eliminate two variables in Eqs. 2. Restricting our analysis to 

equilibrium solutions, we retain the following four equations for the four unknown concentrations:  
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B

B
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D B D B D B

D C D B D B

          (6) 

Now, we consider a collection of channels with currents 
Ca

kI  at positions rk  (k=1,2,…,N) on an infinite flat 

membrane with zero [Ca2+] at infinity (case of non-zero background [Ca2+] is considered in the Appendix). We 

will assume Neumann (no flux) conditions for all concentrations at the membrane boundary, neglecting the 
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action of Ca2+ pumps and exchangers. In this case reflection symmetry can be used to extend the domain to 

the entire R3 space. For a single channel, this domain has spherical symmetry with respect to the channel 

location, so the solution to Eqs. 6 depends only on the distance from the channel. Noting this, the two Laplace 

equations in Eqs. 6 are readily integrated, and the solution extended to the case of multiple channels using the 

superposition principle for the linear Laplace operator (19, 20, 23, 27): 

* * ** **

B B B B TD B D B D B const D B             (7) 

* * ** **

1

1
2

2 | |

CaN
k

C B B

k k

I
D C D B D B

zF r r 

  


         (8) 

Here z=2 is the valence of the Ca2+ ion, and F is the Faraday constant. The geometric factor in Eq. 8 equals 

2π rather than 4π, because of the doubling of the volume by reflection symmetry. The integration constant on 

the right-hand side of Eq. 7 is determined by the value of this conserved linear combination of buffer 

concentrations infinitely far from the channel; our assumption of zero background [Ca2+] corresponds to the 

boundary condition  𝐶∞ = 𝐵∞
∗ = 𝐵∞

∗∗ = 0, 𝐵∞ = 𝐵𝑇, therefore 𝐷𝐵𝐵∞ + 𝐷𝐵
∗ 𝐵∞

∗ + 𝐷𝐵
∗∗𝐵∞

∗∗ = 𝐷𝐵𝐵𝑇. If Ca2+ binding 

reduces buffer mobility (𝐷B
∗ < 𝐷𝐵 , 𝐷𝐵

∗∗ < 𝐷𝐵), then Eq. 7 leads to an observation that B+B*+B** >BT, reflecting a 

compensatory influx of buffers into the channel nanodomain. Therefore, in this case the total concentration of 

buffer is not uniform throughout the cell, and our parameter B
T
 should be interpreted as the total concentration 

of buffer far from the channel cluster: 
,T TB B  . 

We note two critical simplifying assumptions implied by the adopted framework. First, our results are not 

applicable on spatial scales smaller than the pore radius, since the point-channel idealization and the infinite 

Ca2+ concentration at the channel location in Eq. 8 are clearly unphysical. In fact, Ca2+ concentration reaches 

a finite value at the channel pore of finite radius, and moreover, the dependence of Ca2+ current on the finite 

Ca2+ concentration gradient across the pore can be used to determine the amplitude of steady-state channel 

current (32, 44). Second, as noted above, the effect of Ca2+ pumps and exchangers is neglected, which will 

affect the accuracy of the approximation far from the channel. The contribution of linearized endoplasmic 

reticulum Ca2+ pumps to steady-state Ca2+ concentration approximation has been explored in (32). 

Non-dimensionalization 

We will non-dimensionalize Eqs. 6-8 similarly to the case of a simple buffer (19, 20), with a single Ca2+ channel 

of current I
Ca

 at the origin. Namely, we normalize Ca2+ and buffer concentrations by the affinity of the 2nd binding 

step and total buffer concentration, respectively: 

   
* **

* **

2

, , , .
T T T

C B B B
c b b b

K B B B
         (9) 

We introduce dimensionless distance variable /r L  , where the length constant is given by 

  2/ 4 .Ca CL I F K D             (10) 

This normalizes to unity the residue of the simple pole in [Ca2+] near the channel contributed by the point 

source:  
0

lim 1c


 


 , Then, Eqs. 6-8 read:  
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          (11) 

where 2

  is the spherically symmetric Laplacian operator. The dimensionless quantities consist of parameters 

 and  analogous to the ones characterizing a simple, one-to-one buffer (see below and (19, 20)), plus 

parameters  and   characterizing cooperativity in Ca2+ binding, and two relative diffusivities * ** and B B 

quantifying the effect of Ca2+ binding on buffer mobility:  

       


 
     

* **
* **2 2

2

2 2 1 1

2
, , , , , .B T B B B

B B

C B B

D B D K k D D

L k K D K k D D
      (12) 

Following prior work, in our numerical comparisons we will focus on the case where buffer mobility is not 

affected by Ca2+ binding: 𝛿𝐵
∗∗ = 𝛿𝐵

∗ = 1; however, for the sake of generality these parameters are included in 

all analytical expressions. 

In Eqs. 11-12,  is the dimensionless buffer mobility, analogous to 𝜖𝑏 in (19). It depends on both buffering 

parameters and Ca2+ current amplitude through length scale L (Eq. 10), and quantifies the ratio between the 

rate of diffusion on the one hand, and the rate of Ca2+ binding and influx on the other hand. Therefore, the 

Rapid Buffer Approximation (RBA) corresponds to <<1 (19). The accuracy of RBA may change with changing 

Ca2+ current, as explored in detail in (19) for the simple-buffer case. 

Parameter   quantifies the overall buffering strength, and equals the product of the relative buffer mobility, DB 

/ DC (which we set to 0.1), and a quantity analogous to buffering capacity, 2BT / K2. The concentration of binding 

sites for a two-site buffer equals 2BT, explaining the factor of 2. As the Ca2+ conservation condition in Eq. 11 

shows, sufficiently close to the channel Ca2+ concentration is little perturbed from the free diffusion solution, 

c=1/ρ, unless  is sufficiently large. In the notation adopted in (19), =1/. 

The cooperativity in Ca2+ binding is quantified by the ratio of affinities of the two binding steps,  = K2/K1. In 

the case of calretinin and calmodulin, the binding properties have been experimentally estimated, and the 

corresponding values of cooperativity parameters are given in Table 1 (cf. Table 4.2 in (19)). The value of 

parameter   quantifies the degree to which binding cooperativity is caused by the slower 2nd unbinding step, 

as in C-lobe of calmodulin, as opposed to the faster 2nd Ca2+ binding, as in N-lobe of calmodulin. 

Although the stoichiometric coefficients of 2 in Eqs. 11 and in the definition of  could be removed by absorbing 

them into definitions of parameters K1 and K2 (see (39)), we choose to retain them for easier comparison to 

the case of a simple buffer. The previously obtained simple-buffer results corresponding to 𝛿𝐵
∗∗ = 𝛿𝐵

∗ = 𝜖 = 𝛾 =

1 are thus easily recovered by substituting * * ** */ 2, / 2   b b b b b b . 

Numerical integration 

To evaluate the accuracy of obtained RBA results, numerical integration of reaction-diffusion system given by 

Eqs. 2 is performed using the Calcium Calculator (CalC) modeling tool (45, 46) (Figs. 1-4). To ensure accuracy 

and convergence of these simulations, numerical grid size and equilibration time are automatically adjusted 

for each parameter combination using wrapper scripts written in MATLAB (Mathworks, Inc.) 
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    Parameter 
1k 

1( )Mms 
 

2k 

1( )Mms 
 

1K

M  

2K

M  

2

1

K

K
   




 2

1

k

k
   

CaR coop. sites 0.0018 0.31 28 0.068 2.410-3 0.42 1.610-3 294 

CaR non-coop.site 0.0073 -- 36 -- -- -- --  

CaM N-lobe 0.77 32 193 0.788 410-3 0.17 1.810-4 25.4 

CaM C-lobe 0.084 0.025 27.8 0.264 9.510-3 2.8510-3 7.810-2 75.8 

 

Table 1. Ca2+ binding properties of strongly cooperative buffers calretinin (CR) and calmodulin (CaM), as measured by 

Faas et al. (36, 40). Each CR molecule contains 5 binding sites, consisting of two identical cooperative pairs of Ca2+-

binding sites and one independent non-cooperative site. CaM molecule consists of two independent domains (lobes), each 

binding two Ca2+ ions in a cooperative manner. Note the very high rate of the 2nd Ca2+ binding rate to the N-lobe of CaM, 

which is therefore extremely diffusion-limited. Values of  and  are calculated for Ca2+ current strength of ICa=0.4 pA, and 

total buffer concentrations of BT=100 M.  

RESULTS 

Derivation of RBA 

Rapid Buffer Approximation (RBA) is obtained by combining the conservation laws with the condition that 

reaction is at equilibrium. Therefore, we set R1=R2=0 in Eqs. 3, and use buffer conservation condition 

expressed by Eq. 7 to obtain     

 

 

 

     


     


     

* **

1 2 1 2 2

* * **

2 1 2 2

** 2 * **

1 2 2

(2 ) ,

2 (2 ) ,

(2 ) .

T B B

T B B

T B B

B B K K K K C K C

B C B K K K C K C

B C B K K C K C

        (13) 

For the case of invariant buffer mobility, ** * 1B B   , these expressions were first obtained in (39), but with 

stoichiometric factors of 2 absorbed in the definitions of the affinity parameters K1,2, and expressed in terms of 

the reciprocals of these parameters. 

Plugging these equilibrium conditions into the Ca2+ conservation Eq. 8 gives the RBA equation: 

 

   

 
  

   


* **

2

* **
11 2 2

1
2 .

(2 C) 4 | |

CaN
B B k

C B T

kB B k

K C I
C D D B

K K C K F r r
     (14) 

This can be re-written as a cubic equation in C, with a single real positive root, obtainable in closed form (see 

below). The power of this approximation is that it is easy to extend to a set of M distinct two-site buffers with 

parameters  * **

, , 1, 2,, , , , ,T m B m m m m mB D K K  , m=1..M: 

 
 

 

  

 
  

   
 

* **

, , 2,

* **
1 11,m 2,m 2,m

1
2 .

4 | |2

CaM N
B m T m m m m k

C

m k km m

D B K C I
C D

F r rK K C K C

     (15) 
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This equation can be converted to a polynomial equation in C of order 2M+1, which is not solvable in closed 

form for M > 1. Still, numerical solution of this algebraic equation for each value of distance ρ presents a 

straightforward and computationally efficient algorithm of recovering nanodomain concentration approximation 

for any combination of cooperative buffers. Note that further generalizations are possible to any combination 

of buffers with arbitrary binding stoichiometry, beyond 2-to-1 binding considered in this study, by combining 

the full set of conservation conditions with the set of reaction equilibrium (detailed balance) conditions. 

Nondimensional RBA 

To systematically examine the accuracy of RBA, we will focus on the case of a single channel at the origin, 

and switch to non-dimensional variables, as outlined in Methods. This transforms the reaction equilibrium 

conditions in Eqs. 13 to the following simple form: 

  

   

   

     


     


     

* **

* * **

** 2 * **

1 1 (2 c) ,

2 1 (2 c) ,

1 (2 c) .

B B

B B

B B

b c

b c c

b c c

          (16) 

The Rapid Buffer Approximation, Eq. 14, then becomes 

 


   

 
  

  

* **

* **

1
1 .

1 (2 )
B B

B B

c
c

c c
          (17) 

This equation is readily converted to a cubic equation in c, which has a single real positive root, corresponding 

to the closed-form expression for the RBA. It can be expressed in the form 

   
  

 

1

3

1
2 cos cos ,

3 2

U
c V F

V
            (18) 

where functions F, A, V are determined by the algebraic system  

 
 




 

 
  


  


  


 
   

 
   
     
   

2

**

2

*

**

*

**

1
3 2 ,

,

21 1
,

3

1 2 1
.

3

B

B

B

B

B

U F G F

V F G

F

G

          (19)  

Examination of the accuracy of RBA given by Eqs. 18-19 constitutes the main part of this study (see Figs. 1-

4). To establish the connection of these results with the previously explored case of a simple buffer, consider 

two Ca2+ binding sites with identical affinities, and buffer mobility unaffected by Ca2+ binding, setting 
* ** 1B B      in Eq. 17. Then one can extract a factor of (c+1) in the numerator and denominator of the 

2nd term on the left-hand side of Eq. 17, reducing the equation order to quadratic. The resulting equation has 

one real positive root for any values of ρ and , corresponding to the simple-buffer RBA investigated previously 

(19). However, in the case where buffer mobility is affected by Ca2+ binding, there is no simple correspondence 
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between the two cases, and the corresponding RBA equation for the one-to-one buffer with variable diffusivity 

is modified to:  

             * *1/ 1 0.B Bc c c            (20) 

Accuracy of stationary RBA 

We now turn to a systematic examination of the accuracy of the obtained stationary RBA approximation, using 

numerical simulations as a reference. As explored in detail by Smith et al. (19), simple-buffer RBA corresponds 

to an asymptotic singular perturbation expansion in parameter , for 𝜈 = 𝑂(1) (see also (20)). For moderate 

values of cooperativity parameters ( = 𝑂(1), 𝛾 = 𝑂(1)) one would expect the accuracy of the stationary RBA 

given by Eqs. Eqs. 18-19 to be similar to the accuracy of the RBA for the case of a simple (one-to-one) buffer. 

However, comparable accuracy is not at all guaranteed if the affinities of the two binding steps of a two-site 

buffer significantly differ, as in the case of cooperative buffers listed in Table 1. This is because cooperativity 

may manifest itself in the slow rate of the first of the two Ca2+ binding steps, while RBA requires that reaction 

rate be much faster than the rate of diffusion and Ca2+ influx. In other words, the parameter regime  <<1 

determining the RBA may have a complex interplay with the cooperativity condition  <<1. Figure 1 illustrates 

this interplay between values of these nondimensional parameters in determining the accuracy of RBA. The 

values of  and  are fixed at =5103 and =10, favoring RBA regime. Non-dimensional buffer concentrations 

b, b* and b** are plotted on a linear scale in the first three rows of panels of Fig. 1, while c=[Ca2+]/K2 is shown 

on a logarithmic scale in the last row of panels, Fig. 1A4,B4,C4, since at small distances the source term 

dominates [Ca2+].  

When the two binding sites have equivalent properties (Fig. 1A1-A4), the agreement between RBA (blue solid 

curves) and numerical results (dotted curves) is excellent, as expected (19, 20). However, for  = 0.1, the 

accuracy in buffer concentration estimation is significantly reduced (Fig. 1B1-B3), albeit the accuracy in [Ca2+] 

approximation fares better (Fig. 1B4). Interestingly, we find that reducing  along with   partially rescues RBA 

accuracy (Fig. 1C1-C3).  Thus, RBA is more accurate if buffer cooperativity is caused by the reduction of the 

unbinding rate of the second Ca2+ buffering reaction (𝑘2
− ≪ 𝑘1

−), as opposed to slow binding rate of the first 

buffering reaction (𝑘2
+ >> 𝑘1

+). This result is intuitive, since RBA requires that Ca2+ binding rate be fast 

compared to the rate of diffusion. However, such intuitive interpretation should be treated with care since the 

value of RBA parameter  depends on 
2k   as well. Parenthetically, we also note an interesting observation that 

the concentration of partially bound buffer, b*, is a non-monotonic function of distance from the Ca2+ channel 

(Fig. 1A2,B2,C2), in contrast to the concentration of free and fully bound buffer. This property of a two-site 

buffer may potentially have physiological implications in terms of its downstream biochemical interactions, 

which are dependent on the conformational state of the buffer molecule, determined by the number of bound 

Ca2+ ions. 
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To explore the parameter-dependence hinted by Fig. 1 in more detail, in Fig. 2 the values of  and  are 

systematically varied, for the same three combination of cooperativity parameters (,  ) that corresponds to 

the three columns in Fig. 1. Symbols mark the parameter point (=5103,  =10) corresponding to simulations 

shown in Fig. 1. The first row of panels, Fig. 2A1-C1, shows the sum of errors in the approximations of b and 

b** (error in b* is excluded since it is uniquely determined from b and b** by the buffer conservation law), while 

the second row of panels, Fig. 2A2-C2, shows the discrepancy in the approximation of [Ca2+]. We use an 

absolute deviation measure to quantify the accuracy in buffer approximation, while a logarithmic deviation 

measure is used to quantify the accuracy in [Ca2+] approximation, in view of the unbounded 1/ρ behavior close 

to the channel source (19, 20):  

    


  
1

1
,

N

approx numer approx n numer n

n

b b b b
N

        (21) 

FIGURE 1. Comparison of RBA (solid curves) with numerically computed stationary concentrations (dotted curves), as 

functions of distance from the Ca2+ channel. Each column shows results for a distinct set of non-dimensional cooperativity 

parameter values labeled at the top. Four rows of panels show respectively the non-dimensional concentrations of free buffer 

(A1, B1, C1), partially bound buffer (A2, B2, C2), fully bound buffer (A3, B3, C3) and Ca2+ (A4, B4, C4). Note that RBA has 

no dependence on parameters  and . The discrepancy in [Ca2+] shown in (A4,B4,C4) is too small to be resolved at this 

scale, for the given parameter combinations. Symbols in panels (A1,B1,C1) are shown to indicate correspondence with Figs. 

2 & 3. 
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    


  
1

1
log log .

N

approx numer approx n numer n

n

c c c c
N

      (22) 

The two deviations measures are computed on a set of N=100 points spanning 5 orders of magnitude of 

distance ρ, from 10-3 to 102, on a logarithmic scale: 3 5 /10010 n

n
   (n=1, 2, …, N). The gray shade in Figs. 2 

and 3 indicates base-10 logarithm of these deviation measures, with unshaded region corresponding to the 

average deviation of 10-3, which would be too small to resolve by naked eye. As can be inferred from Figs. 

1A1,B1,C1, the error in estimating buffer concentration quantified by Eq. 21 is largely determined by the error 

in estimating the boundary value of buffer concentration at channel location, b(0).  

 

The difference between the two deviation measures given by Eqs. 21, 22 is evident when comparing the rows 

of panels in Figs. 1 and 2. While the deviation between exact and approximate buffer concentration is the 

largest near the channel mouth, the relative or logarithmic Ca2+ concentration deviation measure is less 

sensitive to the finite error near the channel, since it is dominated by the free diffusion term 1/ρ close to the 

channel. Therefore, the relative error in [Ca2+] approximation is particularly sensitive to the accuracy of the 

method at intermediate values of distance, rather than its accuracy in the immediate vicinity of the channel. 

To explore the dependence of RBA accuracy on cooperativity parameters  and   in more detail, in Fig. 3  we 

systematically vary the values of these two parameters, given fixed values of  and . These results show in 

more detail the reduction in RBA accuracy with decreasing , and the partial rescue of RBA accuracy by 

concomitant decrease of cooperativity parameter . 

FIGURE 2. RBA accuracy in estimating buffer and Ca2+ concentrations, as a function of parameters  and , for the 

same three values of cooperativity parameters as in Fig. 1: (A1,B1)  =  = 1; (A2,B2):  = 0.1,  = 1; (A3,B3):  = 0.1, 

 = 4103  (A1,B1,C1): sum of errors in RBA estimates of unbound buffer and fully bound buffer concentrations, 

according to the error measure given by Eq. 21. (A2,B2,C2): error in RBA estimate of [Ca2+], calculated according to 

Eq. 22. Symbols mark parameter point corresponding to simulations in Fig. 1: =0.005, =10. 
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Figures 1-3 show that the main challenge in the application of RBA to biological two-site buffers is their high 

degree of cooperativity. In order to evaluate whether RBA is applicable to such high values of Ca2+ binding 

cooperativity, in Figure 4 we simulate the Ca2+ nanodomain in the presence of 100M of Ca2+ buffer with the 

properties of either calretinin or one of the two lobes of calmodulin, which all have extreme cooperativity values 

of  < 10−2 (36, 40). In agreement with the parameter dependence discussed above, RBA achieves reasonable 

accuracy only for the N-lobe of calmodulin, since it’s the only one of the three buffers with a moderately low 

value of 2nd cooperativity parameter:  = 0.4. For this buffer, the accuracy of RBA is quite good for the 

considered Ca2+ current amplitude of ICa=0.4pA and total buffer concentration BT=100M, which correspond 

to values  =1.810−4 and  =25.4, within ranges favorable to the RBA regime.  

We note that the good performance of RBA for the N-lobe of calmodulin is of interest, despite the poor 

performance of RBA for the C-lobe, since C-lobe has significantly slower Ca2+ binding rate, and would not 

influence the nanodomain on short time scales. In fact, previous modeling studies show an interesting effect 

of Ca2+ hand-over from the N-lobe to the C-lobe upon the termination of the Ca2+ influx (41). Thus, the 

contribution of the C-lobe to Ca2+ binding mostly occurs after the termination of the Ca2+ influx, and the full 

Ca2+ binding dynamics would reveal multiple time scales. 

FIGURE 3. RBA accuracy in estimating (A) buffer and 

(B) Ca2+ concentrations, as a function of binding 

cooperativity parameters  and ,  for fixed values of 

RBA parameter =5103 and buffer strength 

parameter =10 used in Fig. 1. Deviation measures 

are the same as in Fig. 2. Symbols mark the three 

parameter points corresponding to the three panel 

columns in Figs 1 & 2: asterisks:  =  = 1; diamonds: 

 = 0.1,  = 1; circles:  = 0.1,  = 4103.    
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Buffering capacity and time-dependent RBA 

Finally, we examine buffering capacity of a two-to-one buffer, which is an informative characteristic naturally 

emerging from the RBA assumptions already in a single-compartment, non-spatial model of Ca2+ influx and 

buffering (14, 47, 48). Buffering capacity equals the marginal increase in buffer-bound Ca2+ relative to free 

Ca2+, and therefore quantifies the fraction of Ca2+ ions that become bound to the buffer. In most cells, resting 

buffering capacity (capacity at background Ca2+ concentration) is found to lie in the range from 20 to 2000, 

indicating that 80% to 99.95% of Ca2+ influx is buffer-bound soon upon its entry into the cytoplasm (6, 7, 49). 

For a cooperative buffer, buffering capacity was first considered by (39), and is obtained by differentiating 

bound [Ca2+], expressed by Eqs. 13, with respect to free [Ca2+]: 

   

 

* **

1 2 1

2 2

1 2 2

2 2
2

(2 )
T

d B B K K C K C
B K

d C K K C K C


  
 

 

       (23) 

In deriving this result, we set * ** 1B B   , since the standard definition of buffering capacity does not retain its 

simple meaning when buffer mobility is affected by Ca2+ binding. In non-dimensional variables, Eq. 23 becomes 

FIGURE 4. Comparison of RBA with numerical simulations of a single-channel Ca2+ nanodomain with current ICa=0.4 

pA, in the presence of 100 M buffer with Ca2+-binding properties similar to: (A1-D1) N-lobe of calmodulin; (A2-D2) 

C-lobe of calmodulin; (A3-D3) calretinin. From top to bottom, panels show (A1-A3) free buffer, (B1-B3) partially bound 

buffer, (C1-C3) fully bound buffer, and (D1-D3) Ca2+ concentration. Buffer parameters are listed in Table 1. 
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 

 
2

1

1 22

1 (2 c)

T
c cB

K c






 


 

          (24) 

At rest ([Ca2+ ]0), this expression gives an intuitive result   10 2 TB K  , equivalent to the resting capacity 

of a simple buffer of affinity K
1
 and concentration 2B

T
, given two binding sites per molecule. As explored in (36, 

39), the cooperative nature of buffering is reflected in the fact that buffer capacity is a non-monotonic function 

of [Ca2+] when  < 1: it increases with [Ca2+] for small concentrations, but eventually decreases due to buffer 

saturation as Ca2+ concentration is increased further, as shown in Fig. 5. As compared to a cooperative buffer, 

buffering capacity of a non-cooperative buffer is always decreasing: setting  = 1, and factorizing the numerator 

and denominator in Eq. 24, one obtains a familiar expression 22 / (1 )TB K c    
, where K = k / k+  is the 

non-cooperative dissociation constant, and c = [Ca2+] / K  (47). 

Figure 5 shows that for cooperative buffers listed in Table 1, buffering capacity achieves its maximum within 

physiological, micromolar range of local intracellular Ca2+ signals, suggesting that this property of cooperative 

buffering is indeed likely to have physiological relevance (36, 39). Figure 5 also compares the capacity of each 

cooperative buffer to that of a non-cooperative buffer with an effective affinity given by the geometric mean of 

the affinities of the two binding steps of a cooperative buffer (36). 

Finally, the concept of buffering capacity allows one to obtain a time-dependent RBA, which assumes that the 

reaction is always at equilibrium, but concentrations are varying in time.  Following prior work (26-29), we 

assume that buffer mobility is not affected by Ca2+ binding, * ** 1B B    . In this case the derivation of time-

dependent RBA is completely analogous to the case of a simple buffer, and is obtained by applying the chain 

rule to the Ca2+ conservation condition, Eq. 5, expressing derivatives of bound Ca2+ in terms of the 

corresponding derivatives of free [Ca2+]. This reduces the dimensionality of the problem down to a single 

equation for the free [Ca2+]. Introducing non-dimensional space and time, 2/  and /Cr L t D L   , where 

length-scale L is given by Eq. 10, one obtains: 

2
21

1 1

D D d
c c c

dc
  

 

 


    

 
                          (25) 

where /B CD D D . Satisfyingly, this equation has the same form as the time-dependent RBA for a non-

cooperative buffer  (19, 26-29), except for the different functional form of the buffering capacity, given by Eq. 

24. Although this equation is not analytically solvable, it provides a qualitative description of effective Ca2+ 

diffusion coefficient as a non-linear function of [Ca2+] and buffer properties (26-28, 48). We note that it is 

possible to generalize this derivation to the case where buffer mobility is changed by Ca2+ binding. However, 

in this case the resulting expressions are too complicated to be of practical use, even in the case of a simple 

buffer (see Appendix in (26)). 
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DISCUSSION 

As demonstrated by early modeling studies, quasi-stationary Ca2+ concentration domains are established 

within microseconds upon the opening of a single channel, and collapse as rapidly after the channels close 

(10-13, 50). Therefore, RBA and other closed-form approximations of stationary single-channel nanodomains 

may provide sufficient accuracy in estimating Ca2+ and buffer concentration near an open Ca2+ channel. 

Further, their use is not limited to describing static single-channel nanodomains, but also allows approximating 

Ca2+ concentration near an array of Ca2+ channels with time-dependent gating. In this case the channel 

opening events are simulated independently, while the Ca2+ domains are assumed to establish instantly near 

each open channel and are computed using static approximations such as RBA. This provides a computational 

efficient hybrid approach to modeling cell Ca2+ dynamics (22) (see also (51)). Parenthetically, we note however 

that the accuracy of any approach based on deterministic solutions to Ca2+ dynamics was found to be reduced 

if Ca2+ channel gating is Ca2+-dependent (as for inositol-3-phosphate and ryanodine receptor-coupled Ca2+ 

channels), since in this case stochastic Ca2+ fluctuations have a greater importance and cannot be neglected 

(51, 52), with the size of fluctuations further increased by Ca2+ buffering (53). 

As expected, the parameter regions where RBA is accurate is reduced for highly cooperative buffers. This loss 

of accuracy is more apparent if the Ca2+ binding cooperativity is caused by the increases in the forward binding 

rate, as for calretinin and C-lobe of calmodulin (Fig. 4). If on the other hand cooperativity is caused by the 

decrease in the unbinding rate of the second reaction ( << 1), RBA accuracy is similar to that for non-

cooperative buffer. This result is intuitive, since for  <<1,  =O(1), the rate of the first Ca2+ binding reaction 

would be small, invalidating the RBA assumption that Ca2+ binding is fast compared to the rate of Ca2+ diffusion. 

Figs. 1-4 demonstrate that RBA can achieve sufficient accuracy even in the case of some (but not all) highly 

cooperative buffers. Here it should be noted that the properties of many buffers are still not fully characterized. 

A widely expressed class of buffers and sensors phylogenetically close to calmodulin include neuronal Ca2+ 

FIGURE 5. Non-monotonic dependence of buffering capacity (Eq. 23) on Ca2+ concentration for cooperative two-

to-one buffers listed in Table 1: (A) N-lobe of calmodulin, (B) C-lobe of calmodulin, and (C) calretinin. Solid curves 

show the actual cooperative buffer capacity given by Eq. 23, while the dotted curves show for comparison the 

capacity of a non-cooperative buffer of the same binding site concentration (200M), but with an effective affinity 

given by the geometric average of the two binding site affinities,  (36) 
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sensor proteins (NCS), calhedrin, hippocalcin, and many others (38), some of which may have more moderate 

values of Ca2+-binding cooperativity. 

Our ultimate goal is to contribute to the extension of previously developed modeling methods and results to 

more realistic buffers, including cooperative buffers. Cooperative Ca2+ binding is likely to play important, yet 

unexplored roles in shaping cell Ca2+ signals in a highly non-trivial way. Apart from affecting the dynamics of 

biochemical interactions downstream of Ca2+ binding, recent results indicate that cooperative buffering may 

have a more immediate effect on Ca2+ dynamics. For example, it has been shown that cooperative buffers 

decrease the facilitation of Ca2+ transients associated with buffers saturation (34, 39), but may increase short-

term synaptic facilitation through a different mechanism of buffer dislocation (54). Further, as noted above, the 

very ability of cooperative buffers to absorb Ca2+ depends in a highly non-trivial way on the background Ca2+ 

concentration (Fig. 5). Computational modeling of calmodulin Ca2+ binding and downstream biochemical 

interactions is a subject of intense recent work, and is indispensable for the understanding of long-term 

synaptic plasticity and other fundamental physiological processes (37-41, 55-57). Better description of Ca2+ 

dynamics in the presence of cooperative buffers may also be of use for accurate interpretation of optogenetic 

measurements with genetically-encoded fluorescent Ca2+ dyes, which are formed by fusing a calmodulin 

molecule with a green fluorescent protein (58-63).  

RBA is quite likely not the only approximation that can be applied to complex Ca2+ buffers. For example, we 

are currently exploring approximation methods based on matching short- and long-range asymptotic 

expansions of single-channel nanodomains, analogous to the Padė approximations method that we recently 

developed for simple buffers (20). Such approximations may have more uniform error dependence on buffering 

parameters.  
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APPENDIX: RBA with non-zero Ca2+ at infinity 

Here we consider the case of non-zero [Ca2+] far from the channel, but for the sake of clarity restrict to the 

case of binding-independent buffer diffusivity: * **

B B BD D D   ( * ** 1B B   ). In this case the RBA derivation is 

qualitatively similar to the one considered in Results, but the integration of conservation laws leads to an extra 

boundary term describing the non-trivial condition at infinity. Namely, Eqs. 7-8 are modified as follows: 

  
     * ** * ** ,TB B B B B B B             (26) 

   


  



     


* ** * **

1

1
2 2 .

2 | |

CaN
k

C B C B

k k

I
D C D B B D C D B B

zF r r
     (27) 

Here * **, ,  and C B B B
   

 describe Ca2+ and buffer concentrations infinitely far from the channel. These four 

quantities are not independent, but are related by the point-wise reaction equilibrium conditions given by Eq. 

13, with * ** 1B B   . Eq. 27 then leads to the following generalization of the RBA condition given by Eq. 14 

 






 
   

   


2

11 2 2

2 1
.

(2 ) 4 | |

CaN
B T k

C

k k

D B K C I
C D X

K K C K C F r r
         (28) 

X denotes the boundary value of the linear combination on the left-hand side of Eqs. 27, 28, taken infinitely 

far from the channel:  

 

 

   





 

  

 
  
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* **

2

1 2 2

2

2
.

(2 C )

C B

B T

C

X D C D B B

D B K C
C D

K K C K

          (29) 

In non-dimensional form, buffer concentrations are normalized by 
TB ; considering the case of a single 

channel only, the RBA equation accepts the form 

 

 


 
   

  

1 1
1 ,

1 (2 )

c
c x

c c
           (30) 

 
 
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

 

 

 
  

  

1
where  1 .

1 (2 )

c
x c

c c
           

This solution to this equation is very similar to the solution of Eq. 17, and is given by Eqs. 18-19, but with the 

following re-definitions of functions U, F and G: 

    
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

 

 
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   
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          (31) 
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