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Abstract Using exact results, we determine the complex-temperature phase diagrams of the ?D 
lsingmodelonUlreere~larhetempolygonal13rtices, (3.6.3.6) (kapm€), (3.12*) and (4.S2) 
(bathroom tile), where the notation denotes the regular n-sided polygons adjacent to each vertex. 
We also work out the exact complex-temperature singularities of the spontaneous magnetization. 
A comparison with the properties on the square, uiangular, and hexagonal lattices is given. In 
particular, we find the hrst~case where, even for isotwpic spin-spin exchange couplin@, the 
non-trivial non-analyticities of the fret energy of the lsing model lie in a two-dimensional, rather 
than onedimensional, algebraic variety in the z = e-2K plane. 

1. Introduction 

The Ising model has long served as a prototype of a statistical mechanical system which 
undergoes a phase transition with associated spontaneous symmetry breaking and long-range 
order. me king model on a dimension d = 2 lattice has the great appeal that (for the spin-; 
case with nearest-neighbour interactions) it is exactly solvable; for the square lattice, in the 
absence of an external magnetic field H. the free energy was first calculated by Onsager 
111, and a closed-form expression for the spontaneous magnetization was first derived by 
Yang [2]. Later, the zero-field model was also solved for the triangular and hexagonal 
(= honeycomb) lattices; for a comparative review of the solutions on these three lattices, 
see [3]. However, in addition to the square; triangular, and hexagonal lattices, which involve 
tilings of the plane by one type of regular polygon, there are also other 2D lattices which have 
the properly that all vertices are equivalent and all bonds (links) are of equal length, but are 
comprised of tilings by more than one type of regular polygons. We shall denote the regular 
ZD lattices which are comprised of tilings by one type of polygon as ‘homopolygonal‘ and 
those involving tilings by more than one type of polygon as ‘heteropolygonal’. Indeed, as 
will be discussed further below, the (zero-field) free energy and spontaneous magnetization 
for the Ising model have been calculated for three heteropolygonal 2~ lattices. The results 
yield valuable insights into how the  properties of the solution depend on the tiling of the 
plane and, in particular, how they change when this tiling involves more than one kind of 
polygon. 

In this paper, we shall determine the complex-temperature phase diagrams and 
singularities of the spontaneous magnetization for the three particular heteropolygonal 
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lattices for which the Ising model has been solved. There are several reasons for 
studying the properties of statistical mechanical systems such as spin models with the 
temperature variable generalized to take on complcx values. First, one can understand 
more deeply the behaviour of various thermodynamic quantities by seeing how they behave 
as analytic functions of complex temperature. Second, one can see how the physical 
phases 'of a given model generalize to regions in appropriate complex-temperature variables. 
Thud, a knowledge of the complex-temperature singularities of quantities which have not 
been calculated exactly helps in the search for exact closed-form expressions for these 
quantities. This applies, in particular, to the susceptibility of the U) Ising model. Complex- 
temperature properties of the Ising model (zeros of the partition function and singularities 
of thermodynamic and response functions) have been explored in a number of papers for 
homopolygonal ZD lattices and for various 3D lattices [P13]. ([SI and pan of [5, 61 deal 
with the d = 3 king model.) However, to our knowledge, analogous investigations of 
complex-temperature properties have not been reported for heteropolygonal 2D lattices. 

To begin, we need to describe the heteropolygonal lattices. We shall use the standard 
mathematical notation for general lattices [14]. A regular tiling of the plane is defined 
as one involving one or more regular polygons, i.e. polygons each of whose sides are of 
equal length. An Archimedean lattice is defined as a regular tiling of the plane in which 
all vertices are equivalent. Thus each vertex has the same coordination number, which we 
shall denote as q. From the definition, it follows immediately that all of the bonds on 
an Archimedean lattice are of equal length. For this reason, it is natural to consider the 
case of equal spin-spin couplings, and we shall do this here. However, it should be noted 
that the bonds on an Archimedean lattice are not, in general, all equivalent. For the three 
homopolygonal Archimedean lattices, it is obvious that all bonds are equivalent, but for the 
heteropolygonal lattices, this equivalence only holds if (i) the lattice consists of only two 
types of polygons and (ii) each edge of the first type of polygon is also an edge of the second 
type of polygon. Among the eight heteropolygonal Archimedean lattices, this condition is 
met only for the (3.6.3.6) (kagom6) lattice (see below). The mathematical definition of, and 
notation for, an.Archimedean lattice A are specified by A = (fly=, p j ) ,  where p denotes a 
regular p-gon. The meaning of this symbol is that as one makes a small circuit around any 
vertex, one traverses first the polygon p l ,  next p z ,  and so forth, finally mversing p4. If a 
p-sided polygon occurs f2 times sequentially in this product, one signifies this by p'. There 
are 11 such (d = 2) Archimedean lattices [14]. Of the 11 Archimedean lattices, three are 
homopolygonal. These are the well known square, triangular, and hexagonal lattices, which 
are denoted, respectively, (44), (36), and (63). Note that the dual of a homopolygonal lattice 
(p') is (P), so that it is self-dual if and only if p = e ,  which occurs only for p = 4. The 
other eight Archimedean lattices are heteropolygonal. These lattices are listed in table'l. 
(One lattice, (34. 6), occurs in two enantiomorphic (chiral) forms, which are considered 
together here.) 

The three heteropolygonal Archimedean lattices for which we shall determine the 
complex-temperature phase diagrams and singularities of the magnetization are those for 
which the Ising model has been solved exactly, namely the (i) (3 .6.3 .6), (ii) (3 . 122) and 
(iii) (4. S') lattices. For the reader's convenience, these lattices are shown in figures 1-3, 
respectively. The (3.6.3.6) and (4.8') lattices are often denoted kagom6 and bathroom tile, 
respectively. In the literature, the (3.12') and (4. 8*) lattices are frequently denoted by the 
shorthand symbols 3-12 and 4-8. As was observed by Utiyama [lS], one way to construct 
these lattices is to start from a checkerboard lattice, replace each 'black' square by a square 
with nu additional vertical bonds, and then take certain of the spin-spin couplings either to 
0 or 00. One chooses nu = 1 to construct the (3.6.3 .6) and (4. S2) lattices, and nu = 3 
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Table 1. Table of the 11 Archimedean lattices. The fint three are the well known homopolygonal 
lattices, and the remaining eight are heterapolygonal. The enuies m the column denoted Bip. 
indicate whether (U, N) the lattice is b ipdte .  The entries in the column denoted ‘Sym.’ 
indicale whether the complex-temperature phase diagram and zeros of the partition function for 
the (spin-;, zero-field) Ising model have the symmetries z + -z andlor z + I / r ,  or neither, 
denoted by ‘n’. 

Lattice Name Q Bin Sym 

Triangular 
Square 
Hexagonal 
Kagome 

Bathroom tile 
- 

- 
- 
- 
- 
- 

6 N z + - :  
4 Y 2” -z .z+ 112 
3 Y 2’ 112 
4 N z+-z  
3 N  n 
3 Y Z’ l lz 
5 N  n 
5 N  n 
5 N ’ n  
4 N z + - z  
3 Y z + l / z  

Figure 1. The ( 3 . 6 . 3 . 6 )  (kagomt) 
lanice. 

to construct the (3 . 12*) lattice. Using this observation, Utiyama discussed ingredients for 
an exact solution for the (zero-field) free energy for these lattices [15]. These lattices can 
also be obtained by (possibly iterated) decoration and/or star-triangle operations from the 
three homopolygonal lattices [ 161. 

We recall that abstractly, the duality mapping for a d-dimensional lattice maps k-cells 
to d - k cells. In our present case, with d = 2, this mapping interchanges 0-cells (vertices) 
and 2-cells (polygonal faces) while taking 1-cells (bonds) to other bonds. The duals of 
Archimedean lattices are Archimedean if and only if they are homopolygonal; for the 
heteropolygonal Archimedean lattices, the dual lattices are of a different type, called Laves 
lattices in the mathematical literature [14, 171. A Laves lattice is defined as a regular tiling 
of the plane involving a single (in general, non-regular) polygon. Thus, the bonds of a 
Laves lattice are not, in general, of equal length, and the vertices (sites) are not, in general, 
equivalent. There is a one-to-one correspondence, namely that of duality, between the 11 
Archimedean lattices and the 11 Laves lattices. Clearly, the number of different types of 
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Figure 2. The (3.  1Z2) lauice. 

Figure 3. The (4. S2) ( b a b o m  tile 
lattice. 

0-cells (vertices) on the Laves lattice A* which is the dual of the Archimedean lattice A 
is equal to the number of different 2-cells (polygons) on A. Similarly, the fact that the 
Laves lattice consists of only one type of (generally non-regular) 2-cell (polygon) fnllows, 
by duality, from the fact that its dual Archimedean lattice consists of only one type of 0-cell 
(vertex). For example, the Laves lattice [4. 82], commonly called the Union Jack lattice, 
which is dual to the (4.8’) (bathroom tile) lattice, is shown in figure 4. 

The solution for the (zero-field) free energy on each of the Archimedean lattices 
immediately gives the solution on the corresponding dual Laves lattice. Thus, our 
determination of the complex-temperature phase diagrams for the three heteropolygonal 
Archimedean lattices considered here also yields a corresponding determination of the 
complex-temperature phase diagrams for their dual Laves lattices. 

2. Model and notation 

Our notation is standard, so we review it here only briefly. We consider the spin-; king 
model on the 2D lattices A as discussed above at a temperature T and external magnetic 
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Figure 4. The [4. 8'1 (Union lack) 
lattice. which is the Laves lattice dual 
to the Archimedean lattice (4. S2). 

field H (where H .= 0 unless otherwise specified) defined by the panition function 

with the Hamiltonian 

where un = %1 are the Z z  spin variables on each site n of the lattice A, ,3 =~(k*T)-', 
J is the exchange constant, (nn') denote nearest-neighbour sites, and the units are defined 
such that the magnetic moment which would multiply the H rn un is unity. (Hereafter, 
we shall use the term 'Ising model' to denote the spin model unless otherwise indicated.) 
We use the usual notation K = ,3J, h = ,3H, U = tanh K ,  z =~e-*K, U = zz = edK, and 
f i  = e-2h. Note that U and z are related by the bilinear conformal transformation 

I - v  
I + v  

z = - ,  

We record the symmetries 

K + -K j [ v  + -U, z -+ l j z ,  U -+ l / u )  

It will also be useful to introduce the common abbreviations 

C cosh(2K) 

S sinh(2K). 

The reduced free energy per site is f =~-,t?F = limng,, N;' In Z in the thermodynamic 
limit, where Ns denotes the number of sites on the lattice. 

3. Some basic properties 

We begin by discussing the phase boundaries of the model as a function of complex 
temperature, i.e. the locus of points across which the free energy i s  non-analytic. The 
physical phases of the model include the phase where the Z2 symmetry is realized explicitly, 
namely, the paramagnetic (PM) phase, and also, for dimension greater than the lower critical 
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dimensionality (i.e. d > 2, for integer d), a phase where the 2, symmetry is spontaneously 
broken with long-range ferromagnetic (FM) order, i.e. a non-zero spontaneous (uniform) 
magnetization, M. For the lattices considered here which are bipartite and hence involve no 
frustration ’for antiferromagnetic (m) ordering, there is also a phase with AFM long-range 
order, i.e. a non-zero staggered magnetization, Ms,. As one can see from table 1, of the three 
heteropolygonal lattices considered here, only the (4 .  Sz) lattice is bipartite. One defines 
the complex-temperature extensions of the physical phases by analytic continuation in K or 
an equivalent variable such as U, z ,  or U. There are, in general, also complex-temperature 
phases which have no overlap with any physical phase. As in our earlier work, we label 
these as 0 phases (where 0 denotes ‘other’), including subscripts to distinguish them where 
there are several. In cases where one 0 phase is precisely the complex conjugate of another, 
we label the one with Im(z) 2 0 by 0 (with subscript where necessary) and its complex 
conjugate by 0”. (From equation (2.3), it follows that in the U plane, the corresonding 0 
and O* phases have Im(u) < 0 and h ( u )  2 0, respectively.) 

As noted in [ 9 ] ,  there is an infinite periodicity in complex K under the shift K --f 

K + nia, where n is an integer, and, for lattices with even coordination number q, also the 
shift K --f (2n + l)in/2, as a consequence of the fact that the spin-spin interaction u,pn, 
in E is an integer. In particular, there is an infinite repetition of phases as functions of 
complex K. These repeated phases are reduced to a single set by using the variables U, z 
or U, owing to the symmetry relation K --f K +nix + {U + U, z + z ,  U + U). It is 
thus convenient to use these variables here. 

As we have discussed in our earlier papers [ l l ,  121, the equations for the locus of 
points where the free energy is non-analytic also serve to define the boundaries of the 
complex-temperature phases of the model. Some of the loci of points where the free energy 
is non-analytic do not actually separate any phases, but rather are arcs or line segments 
protruding into various phases. In passing we note that the free energy is, of course, also 
trivially non-analytic at K = ico, i.e. U = +I or z = 0, W. This is obvious from (2.1) 
and (2.2). Because these points are isolated, they do not separate any complex-temperature 
phases and hence will not be important here. 

Before proceeding, we list some theorems. Although these are elementary, it will 
be useful to record them here for our later discussion of the complex-temperature phase 
diagrams. Some of the theorems will be given in greater generality than is needed here. 

Theorem 1 .  Consider the (spin-f, zero-field) Ising model on an arbitrary lattice. The loci 
of points in the complex z and U planes where the free energy of the Ising model is non- 
analytic are symmetric under complex conjugation, i.e. under reflection about the Im(z) = 0 
and Im(u) = 0 axes, respectively. Hence the same is true of the complex-temperature phase 
boundaries in these variables. The same is also true of the zeros of the partition function 
on finite lattices. This follows from the well known fact that the partition function is a 
generalized polynomial in z with real coefficients. (Here, a ‘generalized‘ polynomial in 
the variable < is defined as a finite sum of integral powers of <, where negative as well 
as positive powers are allowed.) This theorem can be extended in two ways. First, the 
theorem actually applies not just for the case of zero external field, but also for the case 
of non-zero (real) magnetic field. One can also show that it is Vue for pure imaginary h. 
Secondly, one can straightforwardly generalize theorem 1 to the case of the spin-s Ising 
model. 

Theorem 2 .  For the (spin-;, zero-field) Ising model, if and only if the lattice has even 
coordination number q = 2r, the complex-temperature phase diagram is invariant under the 
transformation z + -z. ’he same is true of the zeros of the partition function for finite 
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lattices. This follows by explicit calculation of the partition function for finite lattices. For 
odd (even) q. Z is a generalized polynomial in z (in U = z'). Thus. for lattices with even q ,  
a more compact way to display the complex-temperature phase diagram is in the complex 
U plane. 

Theorem 3. For the (spin-4, zero-field) Ising model, if and only if the lattice is bipartite, 
the complex-temperature phase diagram is invariant under the transformation z + l /z 
(U + l / u  if also q is even). The same is true of the zeros of the partition function for 
finite lattices. This is proved using the well known mapping involving the reversal of signs 
of spins on one of the two sublattices, together with J + - J ,  under which Z is invariant. 

Theorem 4 .  In the z plane, the zeros (and any divergences) of the spontaneous magnetization 
M occur at either real values or at complex conjugate pairs of values. This is a corollary 
of the generalization of theorem 1 to the case of non-zero (real) external field h. Since 
M = liiH,o aM/ah, this generalization of theorem 1 implies that M(z)*  = M(z*). Hence, 
in particular, the set of zeros (and any divergences) of M as a function of z is invariant 
under z + z*. 

Theorem 5 .  On a bipartite lattice, in the w = l /z plane, the zeros (and any divergences) 
of the spontaneous staggered magnetization M,, occur at either real values or at complex 
conjugate pairs of values. This is a corollary of theorem 4. Note that 

M,,(w) = M ( z  + w ) .  (3.1) 

Theorem 6 .  For lattices with odd coordination number q, the zero-field partition function Z 
of the (spin-4) king model vanishes at z = -1, and the free energy contains a negatively 
divergent singularity at this point. 

This theorem is proved as follows. From .the definition of the partition function and of 
K, we have 

Now, in general, for each bond (nn'), since gnun. = *I, it follows that 

eKO.""' = cosh K + u,pn, sinh K . (3.3) 
The K values corresponding to z = lim+O(-l & E )  (where E denotes a small real number) 
are K = -$liw,oIn(-l & E )  = -$(+ix + Znix), where we follow the usual convention 
of taking the branch cut for logz to lie along the negative real z axis, and n indexes 
the Riemann sheet of the logarithm. To minimize unimportant minus signs, we consider 
z = limc,&l - E )  and take the principal Riemann sheet of the log, n = 0; then K = in/2. 
Substituting this into (3.3), we have 

e(*/2)%%f = iu n n' (3.4) 
so that 

(3.5) 

Since the lattice has coordination number q, in this product over all bonds, the un for each 
site n appears q times, and hence (3.5) can be rewritten as a product over all sites: 

(3.6) 
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Evaluating the summation over each spin, we have 
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z = i"[(+l)q + (-1)4]" . (3.7) 
Evidently, for odd 4, the summation over U" = i on each site yields 0, and hence 2 = 0, 

0 

Among the lattices considered here, the hexagonal, ( 3 .  and (4 .8, )  ones have odd q 
(in each case, q = 3). so that theorem 6 implies that the respective free energy f for each 
has a divergent singularity at z = -1. 

From e.quation (3.7) in the proof of theorem 6, it is immediately evident that for the 
(spin-4) king model on a lattice of even q = 2r, the value of the partition function on a 
finite lattice with periodic boundary conditions (and hence the relation Ne = (q /2)NS)  is 

so that the free energy is negatively divergent at this point. 

(3.8) 

(3.9) 

Z(z = -1; q = 2r)  = I .rh'zi,~N, 

while the (reduced) free energy satisfies 

f ( z  = -1; q = 2r) = r h i  + In2 

(independent of boundary conditions, since these do not affect the thermodynamic limit). 
In equation (3.9), h i  = ia/2 + Znin, where n labels the Riemann sheet of the log. 

The points across which the free energy is non-analytic are related to the zeros of the 
partition function. A fundamental question concems whether these points (apart from the 
trivial ones at K = f o o  and, for odd q,  at z = -1 as proved in theorem 6) lie on curves 
(including line segments) in the z (or equivalently, U) plane, or whether they lie in areas. For 
homopolygonal 2D lattices with isotropic spin-spin exchange couplings, these points do lie 
on curves. (There is also numerical evidence for this in the case of 3D lattices [SI.) It is also 
well known that for 2D homopolygonal lattices with anisotropic couplings, these points lie, 
in general, in areas rather than on curves [18]. It is worthwhile to investigate this question 
for heteropolygonal lattices, and we shall do so, as part of our general determination of 
the complex-temperature phase diagrams. Indeed, one of our interesting results will be the 
finding that even for isotropic spin-spin couplings, the zeros do not always lie on curves 
in the case of heteropolygonal lattices. We shall give a simple explanation of this finding 
below. 

We now proceed with ow analyses. 

4. (3 .6.3 .6) lattice 

The (zero-field) free energy of the king model on the (3 .6 . 3 . 6) magom&) lattice with 
equal spin-spin couplings was first calculated explicitly by Kano and Naya [19]. The result 
is 

where 

ml, e,) = COS(O~) + cos(e2) + cos(el + ez) . (4.2) 
As was the case with the homopolygonal lattices, the connected locus of points across which 
the free energy is non-analytic is the set of points for which the logarithm in the integral 
of (4.1) vanishes. These are also the zeros of the partition function. In terms of the variable 
U, this vanishing condition is the equation 

( X u 4  + 24u3 + 18u2 + 1) - 4u( l+  u)(l -U)% = 0 (4.3) 
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where x represents P(@, &) and takes values in the range 

- f S x < 3 .  

For x = 3, there is a double real root at uC.pag, where 
(4.4) 

L 
~ ~ , p ~ ~ = - - 1 + - ~ 0 . 1 5 4 7 ( M 5 4 . . .  (4.5) J5 

and another double real root at -1/(3u,p., = -1 - ?./A. As indicated in the notation, 
u,,pa8 is the physical critical point separating the FM and PM phases. As x decreases from 
3 in the range -1 < x < 3, each of these splits into two pairs, which trace out the curves 
in figure 5(a). For x = -1, these rejoin in conjugate double roots at the multiple or 
intersection points u p  and U;,  where 

(4.6) 

(4.7) 
As in our earlier papers 111, 121, we denote these as multiple points, following the technical 
terminology of algebraic geometry, according to which a multiple point of an algebraic curve 
is a point where two or more branches (arcs) of the curve cross [ZO]. We shall use the words 
'intersection point' and 'multiple point' synonymously here. The corresponding numerical 
values of zk = k5-'/4eie*/2 are 

(4.8) 

uy = 1 (- 1 + zi) = 5-'/2& 

ek = s - arctan(2) E 116.57~ . 
with 

zk: = k(0.35 1 577 6 + 0.568 864 5i) . 
Finally, as x decreases from -1 toward -4,  these split again, with one root moving away 
from U k  upward along an arc of the circle defined by 

I u  - f l  = (4.9) 

e -  -43 

toward the endpoint of this arc on the postive imaginary axis, given by 
1 

U -- (4.10) 

the conjugate root moving down from U; on the circle (4.9) toward U:. and the other two 
roots moving along the circle (4.9) toward the real axis. Finally, at x = -3, two roots 
occur at the endpoints U,, U:, and there is a double root at the point U = ut E -f. 

In terms of the commonly used variable z ,  the complex phase diagram is shown in 
figure 5(b). From the fact that the equation (4.3) for the locus of points where f is non- 
analytic is symmetric under z + -z, it follows that the phase diagram in the z plane has 
this symmetry also. The physical critical point is zc = (-1 + Z/&)l'z 2: 0.393 320.. . . 
The boundary of the complex-temperature FM phase crosses the real z axis at the points 
f z c .  Corresponding to the intersection point u p  and its conjugate there are four intersection 
points z p  = 5-'/4e'e1/2, - Z K ,  and izi. The outermost points on the boundaries of the 0 
phases are given by zo = il(-1 - 2/&)1"2 &d zg. 

Finally, by a conformal mapping or directly from (4.1), one can also determine the 
corresponding loci of points in the U plane. The equation for this locus of points is 

1 - 4u + 10vz - 16u3 + 2Zu4 - 16v5 + 10u6 - 4u7 + u8 - 2uz(1 - u)'(l+ u2)x = 0 .  

(4.1 1) 

Up to an overall factor of v - ~ ,  this equation is invariant under the transformation U + l / u .  
This together with the reality of the coefficients impli,es that the locus of solutions is invariant 
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( b )  

1.2 - 

PM 0.6 . 

0.4 - 
I FM 
I ; 0.0 - 

-0.4 . 

4.8 - 

-1.2 - 
-1.8 ~ 

-2.0 -1.5 -1.0 4.5 0.0 0.5 1.0 1.5 
Rei* 

- 2 4 i  " ' " I '  ' ' " " " ' 
-2.4 -2.0 -1.6 .12  -0.8 4.4 0.0 0.4 0.8 12.1.6 2.0 2.4 2.8 3 2  3.6 4.0 

Re(") 

Figure 5. Complex-temperature 
phase diagram for the~lsing model 
on the 3 . 6 . 3 . 6  (kagom6) lattice, 
in the variable (a)  U, (b) z, (c) U. 

under (i) U + U' and (ii) U + l /u.  This locus is shown in figure 5(c). The complex- 
temperature phases are marked on this figure and consist of the PM and FM phases, together 
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with two 0 phases which are related to each other by complex conjugation. From the value 
of U, or zc and the relation (2.3), it follows that the critical value of U is 

u c , k q  = ~ ( 1 f 3 1 ' 2 ) [ 1 - " ~ - 3 ) ' ' Z ]  -0,43542054 ... . (4.12) 

One sees that the kidney-shaped curve enclosing the FM and two 0. phases crosses the real-U 
axis at the points U, and l/uc Y 2.29663.. . . The four intersection points of the kidney- 
shaped curve and the arcs are given by UK = (1 - Zk)/(1 + z k ) ,  its complex conjugate, $, 
and their two reciprocals, l/up and l/$. Similarly, the four endpoints of the arcs are given 
by U, = (1 - ze)/(l + ze), U:. l/ue, and l/@. We find that the inner endpoints of the arcs 
are the same distance from the origin as the physical critical point, i.e. Iu,I = uc. 

The phase structure consists of PM and FM phases, but, as~is  well known, no AFM phase 
because of the frustration associated with AFM ordering. These characteristics are the same 
as those for the (isotropic) king model on the triangular lattice. In addition, figures 5(u) 
and (6) show two complex-temperature phases denoted 0 and 0" which have no overlap 
with any physical phase. In the U variable (see figure 5(c)), these are mapped onto a single 
0 phase. In our previous work, we found 0 phases for the square and triangular (but 
not hexagonal) lattices, in the U and z plane. However, for both the square and triangular 
lattices, each point z in the 0 phase was jnst the negative of a corresponding point in the 
complex PM phase, and hence under the mapping from the z to U plane, these were mapped 
to the same point, which could be considered just the complex PM phase. We find for the 
kagomC lattice a new property, namely, a distinct 0 phase which persists even in the U 

plane. 
The spontaneous magnetization cannot be written in the same form M = (l-(kc.,#)'ls 

as for the regular unipolygonal lattices A = sq. tri, hex. Rather, it has the following form 
in the FM phase (and vanishes identically elsewhere).[21]: 

(4.13) 

where 

(4.14) 
27/zU3q1 + 4 3 ~ ( 1 +  3u2)l/2 

(1 - u)3(1 + 3u) k k o g  = 

i.e. 

(4.15) 

These formulae may be analytically continued throught the complex-temperature extension 
of the FM phase. Note the factorizations 1 - 6u - 3u2 = (1 - u/uc.kag)(l + 3uc.kOgu) and 

From equation (4.15) and our determination of the complex-temperature FM phase in 
which the analytic continuation of this formula holds, it follows that besides the well known 
fact that MkOg vanishes continuously at the physical critical point U,, with exponent p = i, 
it also vanishes continuously at the complex-temperature points ue = -4 with exponent 

Bka8.e = 4 (4.16) 

(1 - 6~ - 3 ~ ~ ) " ~ ( 1 +  2~ + 5 ~ ~ ) ~ / ' ( 1  + 3 ~ ) ' / ~  
( I  - u)l/4(1 + M k o g  

1 + 2 U + 5 u Z = ( 1 - U / U k ) ( l - u / U ; ) .  

and at the points u k  and U; with exponent 

Bkag.k = (4.17) 

Elsewhere along the boundary of the complex-temperature FM phase, M vanishes 
discontinuously. One may ohserve that the expression for M has an apparent zero at 



5246 V Maiveev and R Shrock 

Table 2. Points at which M and M,, vanish continuously (or diverge) for the (3 . 6 .  3 .6) 
(kagomb), (3. lZz), and (4. a*) (bathroom tile) lattices. together with the three homopolygonal 
ZD laniees, for compaisiron. Under the M and M,, c o l u m .  an entry marked - means that the 
point Wnnot be reached from within the FM and m phases, respectively. The symbol N means 
that the model has no AM phase. (mp) means a multiple (= intersection) point through which 
two or more phase boundary arcs pass. See the text for funher discussions. 

A z Value M M,, p Adj. phases 
~ 

4- 1 zero - 1f8  FM-PM sq (44) zc 
-zc - 0 - 1 )  zero - I f 8  0-FM 
z;l f i+ 1 - zero 118 PM-AFM 

-z;l -(a+ 1) - ZerO I f 8  AFM-0 

2s. 2; i i  Zero Zero 114 O-FM-PM-AFM(mp) 
tri (36) l e  1/43 zero N 118 FM-PM 

-zr -1143 zero N 118 0-FM 
2s. 2; i i  zero N 318 0-PM-FM (mp) 
zc,  z: *i/& div. N -118 Prowsion in FM 

hex (6’) Lc 2 - 4 3  zero - 118 Fh-PM 
2;’ 2 + &  - zero 118 P M - m  
zr, z: i i  zero zero 318 FM-PM-AFM (mp) 

-1 div. div. -1f4 m-FM 
(3 .6 .3 .6 )  zc (-1 +2/43)’fl zero N 1f8  FM-PM 

-zr -(-I +2/ J5 ) ’ /2  zero N 118 PM-FM 

*Zk  equation (4.8) zero N 318 m-m-O(mp) 
*z; equation (4.8) zero N 318 mn-FM-O*(mp) 

(3  zc = L a +  equations (5.5) and (5.6) zero N 118 FM-PM 

2.- equations (5.5) and (5.7) zero N 118 PM-FM 

* i / d  zero N If4 m-0.m-O. 

+i/& zero N 114 FM-O(*) 
i i  zero N 318 FM-PM-O(*) (mp) 

-1 div. N -112 Interior O f F M  
Z r ,  z: (1 i 2 i ) / 5  zero N 318 FM-PM-O(*) (mp) 

(4 82) zr = Z l +  equations (6.15) and (6.20) zero - 118 FM-PM (mp; tn) 
( Z 1 - P  equations (6.17) and (6.21) zero - 118 01-FM (mp: tn) 
ZT-,Z3,- equations (6.19) and (6.25) zero - 118 FM-0;) (me) 

21- equations (6.15) and (6.21) - zero 118 AFM-01 (mp; tn) 
2%. z:, equations (6.19) and (6.24) - zero ’ 118 AFWO?’ (mp) 

z;’ = (z l+ ) - l  equations (6.17) and (6.20) - 2.30 118 PM-AFM(mp;tn) 

U = - 1 / ( 3 u ~ . ~ , ~ )  = -1 -2/8 Y -2.1547 (the point where the left boundary in figure 5(a) 
crosses the real U axis) and apparently divergences at U = 1 and U = -1; however, none 
of these singularities actually occurs since all of these points are outside of the complex- 
temperature extension of the FM phase where expression (4.15) holds. This is clear from 
the phase diagram in figure 5(a). 

The characteristics of the points where M vanishes continuously are listed in table 2, 
which includes a comparison with the three 2D homopolygonal lattices. The column marked 
z gives the symbol, if one was assigned, for each of the zeros (or divergences) in the 
uniform (and, where relevant, staggered) magnetization. The column marked ‘Value’ lists 
either the analytic expression or, where this is too long to fit into the space, a reference 
to the equation(s) where this is given in the text. The column marked ‘Adj. phases’ lists 
the phases which are adjacent to the given point. For conciseness, some lines list a point 
and its complex conjugate together; in these cases, the notation O(*) in the adjacent phase 
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column means 0 for the first point and O* for its complex conjugate. One may recall that 
the divergence in M for the triangular lattice occurs at z = i l / a  which are the endpoints 
of two line segments protruding into the complex-temperature FM phase; this is indicated in 
the table by the notation ‘protrusion in FM’. Other notation is explained in the table caption. 

In table 2, for comparative purposes, we describe the characteristics on all of the lattices 
in terms of the z plane; however, we note that for lattices with even coordination number, 
since quantities can be expressed solely in terms of u = z’, a more compact way of depicting 
the phase diagram is in terms of the U plane. 

5. (3.129 lattice 

The (zero-field) free energy for the ( 3 .  12’) lattice with isotropic couplings was given 
implicitly in [22, 161. For various generalizations to unequal couplings, the free energy was 
given in [23, 241. Evaluating some intermediate expressions and performing some algebra, 
we obtain the explicit expression, in terms of z (and K = -1 lnz), 

where 

Aa-12 = 1 - 62 + 242’ - 42z3 + 66z4 - 422’ + 48z6 - 6z7 + 212’ (5.2) 

83-12=-2z(1-z+fz2)(1+Z)(1-2)4. (5.3) 

Since this lattice has odd coordination number q = 3, theorem 6 states that, in addition 
to the trivial singularities at K = fw, i.e. z = 0 , c q  the free energy f has a singularity 
at z = -1. This is evident in (5.1). If one takes the branch cut for the logarithm to extend 
from z = -1 to z = -ea, then as one approaches z = -1 from the direction of the origin, 
f becomes negatively infinite. In the case of the honeycomb lattice, as was noted in 1121, 
this point Iies on the continuous locus of points where the argument of the logarithm in the 
integrand analogous to (5.1) vanishes. However, in conhxst to the honeycomb lattice, for 
the (3. 12’) and (4.8’) lattices, this singularity is an isolated one. Aside from these isolated 
singular points, the free energy also has non-analyticities which arise from the vanishing of 
the argument of the logarithm inside the integral in equation (5.1). The condition for this 
vanishing is 

(5.4) 
where x represents P(BI,&) as given above in (4.2). This yields the curves shown in 
figure 6(a) (see also the corresponding curves in the U plane in figure 6(b)). As marked 
there, these curves serve to bound the complex-temperature extensions of the FM and PM 
phases and also two phases which have no overlap with any physical phase, and are labelled 
0 and O*. The border of the complex FM phase crosses the real z axis at the points 

A3-I2 + B3-12x = 0 

(5.5) 

with numerical values 

za+ =0.19710468 ... 
za- = -2.929 1555.. . . 
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Figure 6. Complex-temperature 
phasediagram for the king model 
bn the 3 .  1Z2 lattice, in the variable 

The physical critical point of the model is ~ ~ . 3 - ~ ~  = za+. The intersection points nearest to 
the real z axis are given by z, and z;, where 

1 -2i 
5 (5.8) 

where OK was given above in (4.7) (for certain formally analogous points in the U plane). 
The insection points farther out from the real z axis occur at z =~+i. For x = 3, there are 
four double roots at zo+, zo-, zs, and zz, where 

zI = - = 5-1/zei& 

Zb = $45- 1) + (4 - + M ) ' / Z ]  

0.366025 40 + 0.665 86461i. (5.9) 
As can be seen from figure 6@), the points zb and z; lie roughly at the centres of the 
outer boundaries of the respective 0 and O* phases. As x decreases from 3 in the range 
-1 < x < 3, these double roots split apart into pairs the members of which move away 
from these four points, tracing the curves shown in figure 6(a). At x = -1, these points 
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rejoin at the four intersection points z = f i  and z = zr and z,*. As x decreases further 
in the range -f < x /  < -1. these four double roots split again, with two of the roots 
moving toward each other on the arc forming the inner boundary of the 0 phase adjacent 
to the FM phase, and similarly with two other roots on the inner boundary of the 0" phase, 
while the other four roots move outward away from the origin along the two arcs and their 
complex conjugates. Finally, at x = -$, two pairs of roots on the inner arcs join to form 
double roots at z = &i/& while the four outer roots reach the endpoints of the arcs. These 
endpoints are as follows: 

e* - - 7 I [eiR/3 f ( e'hR/3 ' - (? I  4 fieir/6)l/2] (5.10) 

'with the values 

(5.11) 

(5.12) 

are, respectively, the endpoints of the upper parts of the arcs in the upper- and lower-half 
z plane. Their complex conjugates z;+ and z b  form the endpoints of the lower parts of 
these arcs. 

From implicit expressions given in [23], we can express the spontaneous magnetization 
as 

.~ ze+ Y 0.295 567 91 - 0.358 868 9i 

ze- 2: 0.204 432 09 + 1.224 894 3i 

(1 - 6z+ 6z2 - 6z3 - 3 ~ ~ ) ' / ~ ( 1  + 3 ~ ~ ) ' / ~ ( 1  + z2)3/8(l - 2z + 5z2)3/8 . (5,13) 

By analytic continuation, this expression holds throughout , the complex-temperature 
extension of~the  FM phase, which we have determined, as shown in figure 6(u). Note 
the factorization 

(1 - z)(l + Z)l /Z( l  - z + 222) M3-12 

1 - 62 + 62' - 6z3 - 3Z4 -3(Z - Za+)(Z - Z,-)(Z - Zb)(Z - Z;) . (5.14) 

Moreover, similar to another formula above (for U rather than z), we have the factorization 
1 - 2 z f 5 z 2 =  (I-z/z,)(J-z/z:). Finally, wenotethat I - Z + ~ Z ~ = ~ ( Z - Z ~ ) ( Z - ~ ~ ) ,  
where 

zo = a(l+ i d )  = 0.25 + i0.661437 83.. . . (5.15) 

These points zo and z: lie in the middle of the two complex conjugate 0 phases. 
Thus, M3-,* vanishes continuously at the eight points zn+, zo-, fi/&, fi,  zI, and z:. In 
table 2 we list these zeros, together with the corresponding exponents p and the phases 
which are adjacent at each point. Elsewhere along the boundary of the complex-temperature 
FM phase, M vanishes discontinuously. M3-12 also  has a divergence at the isolated point 
z = -1 in the interior of the complex-temperature FM phase, where the kee energy itself 
is also singular. In addition to these actual singularities, the formal expression (5.13) has 
apparent zeros at the points zb+, Zb- = zi+, zo, and z:, but these are not zeros of the actual 
magnetization, since these points cannot be reached from within the complex-temperature 
FM phase where the expression (5.13) holds. AS one can see from figure 6(u), Zb lies on 
the boundary separating the O.and PM phase, and similarly z1; lies on the boundary between 
the 0" and PM phase. The points zo and z: lie in the interior of the 0 and O* phases, 
respectively. 
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6. (4. SZ) lattice 

In contrast to the (3 .6.3 6) and (3.  12') lattices, the (4. 8') (bathroom tile) lattice is 
bipartite, and the physical phase diagram consists of a PM, FM, and also AFM phase. One 
way to obtain the (zero-field) free energy is from the free energy for the dual [4. SZ] (Union 
Jack) lattice. An explicit calculation of the latter for the case of equal spin-spin couplings 
was given in [25]. (See also the remark in [U]; for the Union Jack lattice with general 
couplings, which we shall not need here, see also [26] and [U].) Using this duality relation, 
one easily obtains the free energy for the (4. @) lattice, in terms of z (and K = -; Inz), 
as follows: 

f4-8 = iK + ln(l+ 2 )  + + 

V Matveev and R Shrock 

l: ll ln[A4-&) + B~:~-s(z) (cos~I  +cos&) 
(2n)' 

+B24-8(2) COS81 cos021 (6.1) 

A 4 4 ( ~ )  =(1+~' )~(1 - 4 ~ + 1 0 ~ * - 4 ~ ~ f ~ ~ )  (6.2) 

(6.4) 

where 

B I : ~ ~ ( z )  = Zz(1 - z)~(I + z)(l +z2) 
B24-8(2) = -42 (1 - 2 )  . 

(6.3) 
2 4 

In addition to the trivial singularities at K = 4~00, i.e. z = 0.00, and the additional isolated 
singularity at z = -1, the free energy has non-analyticities where the argument of the 
logarithm in the integrand of (6.1) vanishes. These are given by the equation 

(6.5) 
We find that the locus of points which are solutions to this equation fall, in general, into 
areas rather than curves, in the z or, equivalently, the U planes. These areas degenerate 
into points at certain special locations. In figure 7(a) we show the solution to (6.5) in 
the z plane, for a grid of values of 81 and 02. Because of the finite grid of values of 81 
and O2 used to make the plots, the zeros show a striped structure in certain regions; it is 
understood that in the limit where the aforementioned grid of values of 81 and 82 becomes 
infinitely fine, these stripes would merge into coherent areas; the boundaries of these areas 
are easily inferred from the plot The phases include the complex-temperature extensions of 
the physical FM, PM, and AFM phases, as marked, together with five phases which have no 
overlap with any physical phases, labelled 01, 0 2 ,  O;, 0 3  and 0;. The rest of the z plane 
involves various continuous regions of points where the free energy is non-analytic (forming 
the thermodynamic limits of zeros of the partition functions for finite lattices). We shall 
discuss the special locations where the areas of zeros of the partition function degenerate 
into points below, in conjunction with an analysis of the spontaneous uniform and staggered 
magnetizations. The corresponding diagram in the U plane is shown in figure 7(b) .  As in 
figure 7(a), because of the finite grid of values of 01 and 02 used to make the plot, the 
zeros exhibit a striped or dotted structare in certain regions; again, it is understood that for 
a dense set of values of 81 and &, the zeros in these regions form a continuous set. 

To our knowledge, this finding constitutes the first known case of an Ising model with 
isotropic spin-spin couplings, where the non-analyticities of the free energy (aside from the 
trivial ones at K = f03 and, for odd q, at z = -1, as proved in theorem 6) form a two- 
dimensional, rather than one-dimensional, algebraic variety, i.e. lie in areas rather than on 
curves (including line segments). It is easy to understand the~basis for this result. The locus 
of points at which the free energy is non-analytic (aside from the above-mentioned trivial 
singularities) is determined by the condition that in the integral occuring in the free energy, 

A44(2 )  + B~,~-~(Z) (COS~$  +COS&) + Bz:~- -~ (z )cos~I  cos& = 0. 
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the expression in the argument of the logarithm vanishes. 'For homopolygonal lattices, this 
expression reduces to the equation 

(6.6) 
for isotropic spin-spin couplings, wherex represents the function P ( e l ,  8,) = cos +cos 02 
for the square lattice and P(8,, 0,) = c0s8~  + cos82 + cos(81 + 02) for the triangular 
and hexagonal (honeycomb) lattices. (Thus for the square lattice, -2 $. x < 2, while 
for the triangular and hexagonal lattices, -5 < x < 3.) The solutions to (6.6) form a 
one-dimensional algebraic variety, specifically, algebraic curves (including possible line 
segments). In contrast, for unequal spin-spin exchange constants Ji,  where i = 1,2 for the 
square lattice, and i = 1,2,3 for the triangular and hexagonal lattices, the condition for the 
argument of the logarithm in the integrand to vanish is of the form 

AA(@ + BA(Z)X = 0 

A,, + B , , , ~  cose1 + B ~ ~ ; ~ c o s ~ ~  = o (6.7) 
for the square lattice, and 

A., + B& COS el + B&, cos e, + B & ~  w e ,  + e,) = o (6.8) 
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for the triangular and hexagonal lattices, where in each case, the various A and B functions 
depend on the z;, with zi = and K; = PJ;. Now let the (anisotropic) ratios of the 
Ji’s be fixed. Then equations (6.7) and (6.8) depend on two independent real (periodic) 
variables, 81 and 6’’. It follows that the solutions, in general, form a two-dimensional 
algebraic variety, specifically areas (which may degenerate to points at special values of z). 

The heteropolygonal lattices (3.6.3.6) and (3 .  12’) are similar to the homopolygonal 
lattices in this respect, i.e. if the spin-spin couplings on each bond are equal, then the 
condition for the argument of the logarithm in the integrand to vanish is of the form (6.6). 
However, as is evident from (6.1), this is not the case for the (4. 8’) lattice. That is, even 
if the spin-spin couplings are equal for each bond, the condition for the vanishing of the 
argument of the logarithm in (6.1) is of the form (6.5), which depends on two independent 
real (periodic) variables 81 and 6’’. 

The expression for the spontaneous magnetization was conjectured by Lin et al [28] 
and proved by Baxter and Choy [26]. As with the other heteropolygonal lattices A, M can 
be written (where it is non-zero) as a prefactor times (1 - ( k< .~ ) ’ ) l /~ .  Let us define (using 
the subscript 4-8 to denote (4.8’)) 

V Matveev and R Shrock 

SZ’(1 - 22 + 422 - 2.23 + z4) 
(i - 2)4(1+ ZT k ( 4 - 8 )  = 

and 

(6.10) 

1/8 . Then ~ 4 - 8  = a(1 - (k,)’) , i.e. 

(1 -4z-z)  1 ’ s ( l + 4 z 3 - z 4 ) i ~ 8 ( l + ~ 2 ) 1 ~ 2 ( 1  - ~ z + ~ z ‘ - ~ z ~ + z ~ ) ~ / ~  (6,11) 

within the physical FM phase and, by analytic continuation, throughout the complex- 
temperature extension of the FM phase; M4-8 vanishes identically elsewhere. We observe 
first that under the transformation z + l/z, the numerator of this expression goes into 
itself times a power of z. It follows that the set of formal zeros of this numerator is 
invariant under the mapping z + l/z. In particular, under this mapping, the fust and 
second quartic expressions in the numerator of M4-8 are interchanged, up to an overall 
power of z: z + l /z + (1 - 42 - z4) + -z4(1 + 42’ - z4). The roots of these two 
quartics are therefore reciprocals of each other. Under this mapping, the other two factors, 
(1 + 2’) and (1 - 2z + 62’ - 2z3 + z4) transform into themselves, up to overall powers of 
e, and consequently, their zeros also come in reciprocal pairs (since, furthermore they do 
not have either of the self-reciprocal numbers z = f l  as roots). We note the factorizations 

M4-8 (1 -d(l + z ) W  -z+3z2+z3)1/’ 

1-4z-z4= [’-1/Z(JZ+l)z-(Ji+1)22][1-1/Z(1/Z- l ) z + ( J Z -  l)Z’] 
(6.12) 

(6.13) 

(6.14) 

1 + 4z3 - z4 = [I + Jzz - (1/Z - ijzZ][ I - .JZZ + (1/Z + i)zZ] 
1 - 22 + 62’ - 2z3 + z4 = [ 1 - 2e’”3z + z*] [ 1 - 2e-ix/3z + z’] . 
Expression (6.12) has zeros at 

~l*=-;[&+(-2+4&)”~] (6.15) 

z a  = f [A i i(2 + 4~‘3)~/’] (6.16) 
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while expression (6.13) has zeros at 

(zI&' = ;[2 + (10 + 8 f i ) 1 / 2 ]  (6117) 

(zzr)-l = 4[2 - A* (10 - 8 4 5 ) ' / 2 ] .  (6.18) 

Expression (6.14) has zeros at z3* and z;*, where 

Z3f = e w 3  5 (e2w3 - 1 ) ~ .  (6.19) 

Note that 23- = z;:. These roots have the approximate numerical values 

zl+ = 0.2490384 (zI+)-' = 4.0154454 (6.20) 

~ 1 -  = -1.663252 ~ (zI-)-' = -0.601 231 83 , (6.21) 

zu = 0.707 1068 =k 1.383 551i (6.22) 

(z+' = 0.292 8932 i 0.573 0856i (6.23) 

z3+ = 0.8406250+2.137255i (6.24) 

z3- = (z3+)-' = 0.1593750 - 0.4052045i. (6,251 

Only a subset of these formal zeros are zeros of the actual magnetization, namely those which 
can be reached from within the complex-temperature FM phase (they lie on the border of 
this phase) where (6.11) holds; the other zeros are spurious, since they occur at points which 
cannot he reached in this manner, where consequently the formula does not apply. The true 
zeros of M are~at zc = zi+, l,k-, z;-, and 23-. The first two of these are, respectively, the 
physical critical point and the point at which the left boundaq of the complex-temperature 
FM phase cmsses the real z axis. As one~can see from figure 7(a), 2;- lies where certain 
areas of zeros of the partition function degenerate to a single point separating the complex- 
temperature FM and 0 2  phases, and similarly for the complex conjugate point 23- separating 
the FM and 0; phases. Indeed, these four points are precisely the full set of points on the bor- 
der of the complex-temperature FM phase where various areas of zeros degenerate to single 
points. The exponents with which M4-8 vanishes continuously at these zeros are all equal to 4. As one moves upward, away from the origin along the h ( z )  (vertical) axis in figure 7(a), 
one encounters a boundary followed by a dense set of points where the free energy is non- 
analytic before one reaches the point z = i. This boundary prevents analytic continuation, so 
that the zero at z = i, and similarly, the zero at z = -i, in the expression (6.1 1) are not true 
zeros of M. Note that the points f i  lie where the O1 and PM phases are directly adjacent, 
and separated by these points. Similarly, all of the remaining zeros in the numerator of the 
expression (6.11) are not actual zeros of M. Finally, none of the the apparent divergences 
in M4-8 actually occur, since they all lie outside of  the FM phase where (6.1 1) applies. 

As with other bipartite lattices, the staggered spontaneous magnetization Msl.&, is 
given by (3.1) in terms of M4-8 in the complex-temperature extension of the AFM phase 
and vanishes elsewhere. We may thus read o f f  the zeros of M$r.&s immediately; these 
are precisely the inverses of the four zeros of M, i.e., z;', ZI-. (z3-)-' = z)+, and 
( z y - '  = z;+. The first point is the physical critical point separating the PM and AFM 
phase. The second is the point where the boundary between the AFM and 0 phases crosses 
the negative real z axis. The third is where the border between the 0 3  and AFM phases 
narrows to zero thickness, and similarly for the fourth point, separating the 0s and AFM 
phases. The actual zeros of M and M,, are listed in table 2. 

In table 3 we compare the general properties of the complex-temperature phase diagrams 
for the Ising model on homopolygonal and heteropolygonal 2D Archimedean lattices, in 
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terms of the variable z, or equivalently, U. Since we have already indicated in table 2 which 
lattices have AFM phases, and since all have PM and FM phases, we do not include that 
information here. The entries in the column marked NO are the number of 0 phases. We 
observe that the king model on heteropolygonal lattices exhibits more of these 0 phases 
than on homopolygonal lattices. As we have discussed in our earlier papers [ l l ,  121, the 
points at which the curves (or line segments, if present) cross are singular points of the 
algebraic curves, in the technical terminology of algebraic geometry [ZO] .  This usage of 
the term should, of course, not be confused with the different meaning of ‘singular point’ 
in statistical mechanics; for example, the point zc = (-1 + 2/&’/’ of the king model on 
the kagomd lattice is a singular point (actually, the physical critical point separating the PM 
and FM phases) in the statistical mechanical sense, but is not a singular point of the curve 
forming the outer boundary of the complex-temperature FM phase, in the algebraic geometry 
sense (see figure 5(b)). A singular point of the algebraic curve is denoted as a multiple point 
of index nb if nb branches (arcs) of the curve pass through the point. (We use the terms 
‘multiple point’ and ‘intersection point’ synonymously here.) In the column marked ‘Mult. 
pt’, we list information about these multiple points, including the number and the index. 
The symbol cc means that the multiple points occur in complex conjugate pairs, while ‘real‘ 
means that the multiple points occur on the real axis in the z (equivalently, U) plane. For 
a normal double point, i.e. a multiple point of index 2, one may assign an angle 6 ,  as the 
angle between the tangents of the two branches (arcs) of the curve which pass through the 
point. All three homopolygonal lattices have multiple points on the curves (including line 
segments) across which the free energy is non-analytic. Each of these multiple points has 
index 2 and e,, = a/2, i.e. the two branches cross in an orthogonal manner. Our results as 
showninfigures5 and6showthatthemultiplepointsforthe (3-6.3.6) and(3.12*) lattices 
also have index 2 and 0, = x/2. Note that because the ’uansformation (2.3) relating z and 
U and also the transformation U = z’ are conformal mappings, they preserve angles, so that 
a given 0, is the same for a multiple point in the z, U, and U plane. For all of these four 
lattices, the multiple points occur as complex conjugate pairs as functions of z .  A general 
observation is that the heteropolygonal lattices have more multiple points on their curves than 
the homopolygonal lattices. The situation with the (4. 8*) lattice is the most complicated, 
since in this case the loci of points where the free energy is non-analytic form areas instead 
of curves. As one can see from figure I ,  there are a number of multiple points through which 
more than one of the boundaries of these areas pass. There are 18 such points in all; of these, 
14 consist of complex conjugate pairs while the remaining four lie on the real z or U axis. 
Of the 14 complex conjugate multiple points, 12 have index nb = 2 (with various values 
of crossing angles &). The four multiple points lying on the real axis (namely, zc = z1+. 
l/zc, zI-. and l/z,-) have index nb = 2 and 0, = 0. In the terminology of algebraic 
geometry, they are therefore (simple) tacnodes. We recall that a (simple) tacnode is defined 
as a multiple point of an algebraic curve through which two branches pass, in an osculating 
manner, i.e. such that their tangents coincide where the branches touch, so that n b  = 2 but 
the number of distinct tangents at the point is n, = 1 [ZO]. We have denoted this in tables 2 
and 3 by the notation ‘tn’, standing for ‘tacnode’. A generalized tacnode is a multiple point 
of an algebraic curve for which some of the tangents of the branches passing through the 
point coincide, so that nb > n, (and nb may be greater than 2). The (4.8’) lattice is the first 
one which we have studied which exhibits tacnodal points on the loci of points where the free 
energy is non-analytic. We come next to the multiple points at hi. These are, again, of a type 
unprecedented in any of the cases which we have previously studied; they have index 4 and 
are the first example of a multiple point of index higher than 2. Of the four branches which 
pass through this point, two cross at an angle of z/2 with respect to each other, the north- 
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Table 3. Comparison of some properties of complex-temperature phase diagrams. as functions 
o f t  or equivalently U, for the king model on homopolygonal and hereropolygond Archimedean 
lattices. No denotes the number of 0 phases. In the column marked ‘mult. pt’. the entry 
2:2. cc means that there are WO multiple points. each of index 2, and they occur as complex 
conjugate pain, etc. for other entries. ?he notation ‘In’ means a tacnodal multiple point. For the 
(4 .S‘) lanice we have listed the pmpenies of the various types of multiple points underneath 
the general number, 18. See the text for further discussions. 

Lattice No Mult. pt Endpt 

sq (44) 1 2:2, cc 0 
ui (36) 1 22,cc 2, cc, in FM 
he% (6’) 0 22,cc 2. cc, in PM 
(3.6.3.6) 2 4:2, cc 4, cc, in PM 
(3. 12’) ~ 2 4 2 .  cc 4,cC.inpM 
(4 ; 82) 3 18; see below: 0 

12:2, cc 
23, cc, m (.ti) 
42, real, tn 

east-south-west and north-west-south-east curves), while two others pass through the points 
in a north-south direction, hence with a crossing angle of n/4 with respect to the former two 
curves and a crossing angle of 0 with respect to each other. This multiple point is therefore 
a higher-order tacnodal point, with nb = 4 and n, = 3. Finally, in the last column of table 3 
we list the number of endpoints of the algebraic curves and in which complex-temperature 
phase these endpoints lie. For all cases, the endpoints occur in complex~conjugate pairs. 

For lattices with even q, namely the square, hexagonal, and kagom6 lattices, a more 
compact way to present the complex-temperature phase diagrams is in the U plane. Thus, 
in the U variable, the entries for these three respective lattices analogous to those listed in 
table 3 are as follows: No = 0, 0, l ;  multiple points: (1:2, real), (1:2, real), and (22, CC); 
endpoints: 0, (1, real, in FM), and (2, cc, in PM). 

I. Conclusions 

In this paper, using exact results, we have determined the complex-temperature phase 
diagrams and singularities of the spontaneous magnetization on three heteropolygonal 
Archimedean lattices, (3 . 6 . 3  .6) (kagom6), (3 . 12% and (4 . 8’) (bathroom tile). This 
study reveals a rich variety of complex-temperature singularities and provides an interesting 
comparison with the situation for the three homopolygonal lattices. In particular, we  have^ 
found the first example of a lattice where, even for equal spin-spin exchange couplings, the 
non-trivial non-analyticities of the free energy lie in areas rather than on curves, in the z 
(or equivalently, U) plane. We have also given a simple explanation of why this happens. 
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