

THE EDGE IN KNOWLEDGE

- The union bound $P_{W U B}(E)$ for linear modulations can be easily calculated directly from the constellation.
- The key observation is that the squared Euclidean distance $\Delta_{E}(i, j)$ can be directly obtained form the constellation, since:

$$
\begin{aligned}
\Delta_{E}(i, j)= & \int_{-\infty}^{+\infty}\left|x_{z, i}(t)-x_{z, j}(t)\right|^{2} d t \\
& =E_{b} \underbrace{\left|d_{i}-d_{j}\right|^{2}}_{\begin{array}{c}
\text { squared Euclidean distance } \\
\text { between the points in the } \\
\text { constellation }
\end{array}}
\end{aligned}
$$

Ex.: a) 4-PAM

The distance spectrum is then given as

$$
\left[\left\{\frac{8 E_{b}}{5}, 6\right\},\left\{\frac{32 E_{b}}{5}, 4\right\},\left\{\frac{72 E_{b}}{5}, 2\right\}\right]
$$

and the union bound is

$$
\begin{aligned}
& P_{W U B}(E)=\frac{1}{4}\left(6 \mathrm{Q}\left(\sqrt{\frac{4 E_{b}}{5 N_{0}}}\right)+4 Q\left(\sqrt{\frac{16 E_{b}}{5 N_{0}}}\right)+2 \mathrm{Q}\left(\sqrt{\frac{36 E_{b}}{5 N_{0}}}\right)\right) \\
& \begin{array}{c}
\text { Union bound } \\
\text { approximation }
\end{array} \longrightarrow \simeq \frac{3}{2} \mathrm{Q}\left(\sqrt{\frac{4 E_{b}}{5 N_{0}}}\right)
\end{aligned}
$$

Remark: Comparing with 4-PSK, we see that 4-PSK has a gain of

$$
\frac{2 E_{b} / N_{0}}{4 E_{b} / 5 N_{0}}=\frac{5}{2} \simeq 3.9 \mathrm{~dB}
$$

over 4-PAM (why do you think that 4-PAM is not as efficient as 4PSK?).

Linear stream modulation

- With linear modulation, increasing the number of transmitted bits, namely K_{b}, requires to use very large constellations (with $2^{K_{b}}$ points!)
- This problem is solved by transmitting a stream of linearly modulated symbols.
- Linear modulation:

- Linear stream modulation:

- Each symbol $d(k)$ encodes a different part of the message, say $M(k)$, which carries K_{b} bits.
- Transmission rate: $R=\frac{K_{b}}{T_{P}}$
- Mathematically, a linear stream modulated signal is

$$
\begin{gathered}
x_{z}(t)=x_{I}(t)+j x_{Q}(t) \\
=\sum_{l} d(l) \sqrt{E_{b}} u(t-l T) \\
\downarrow \\
d(l)=d_{I}(l)+j d_{Q}(l)
\end{gathered}
$$

- The MLWD for linear stream modulation requires to perform a correlator for each symbol time (i.e., for each symbol $d(k)$):

- Let us calculate $Q(k)$:

$$
\begin{aligned}
Q(k)= & \int_{-\infty}^{+\infty} \sum_{l} d(l) \sqrt{E_{b}} u(t-l T) u^{*}(t-k T) d t \\
= & d(k) \sqrt{E_{b}} \int_{-\infty}^{+\infty}|u(t-k T)|^{2} d t \\
& +\underbrace{\sum_{l \neq k} d(l) \sqrt{E_{b}} \int_{-\infty}^{+\infty} u(t-l T) u^{*}(t-k T) d t}_{\text {inter-symbol interference (ISI) }}
\end{aligned}
$$

- In order to have zero ISI, we need to choose $u(t)$ such that

$$
\int_{-\infty}^{+\infty} u(t-l T) u^{*}(t-k T) d t=0 \quad \text { for all } k \neq l
$$

Nyquist criterion for zero ISI

- This condition is equivalent to

$$
R_{u}(\tau)=0 \quad \text { for } \tau=k T, k \neq 0
$$

correlation function of $u(t)$

satisfies the Nyquist criterion since:

$$
R_{u}(T)=R_{u}(-T)=R_{u}(2 T)=\cdots=0
$$

b) $u(t)=\frac{1}{\sqrt{T}} \operatorname{sinc}\left(\frac{t}{T}\right)$ satisfies the Nyquist criterion since

and $R_{u}(k T)=0 \quad$ for all $k \neq 0$

- See also Fig. 16.5-16.6 and eq. (16.22) in the textbook

