ECE 232-Circuits and Systems II
 Midterm

Please provide clear and complete answers. Don't forget to specify the units of measure!
Q1. (1 point) Consider the parallel of a resistor with $R=1 k \Omega$ and a capacitor with $C=1 \mu F$, and denote as $v(t)$ the voltage at the common terminals of resistor and capacitor. Can we have $v(t)=\sin \left(10^{-3} t\right)[V]$ for $t \geq 0$? Justify your answer.

Sol.: No, since the current in the resistor, $i_{R}(t)$, and capacitor, $i_{C}(t)$, must satisfy the Kirchoff current law:

$$
i_{R}(t)=-i_{C}(t)
$$

but also the relationships for resistor and capacitor:

$$
\begin{aligned}
i_{R}(t) & =\frac{v(t)}{R}=10^{-3} \sin \left(10^{-3} t\right) A \\
\text { and } i_{C}(t) & =C \frac{d v}{d t}=10^{-9} \cos \left(10^{-3} t\right) A .
\end{aligned}
$$

These conditions are incompatible!
Q2. (1 point) Calculate the Laplace transform of

$$
f(t)=e^{-10(t-0.03)} \cos (100 t-3) u(t-0.03),
$$

starting from the Laplace transform $\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}$ and using the properties of the Laplace transform. (Hint: Recall the translation in time and frequency properties...)

Sol.: We can write

$$
\begin{aligned}
f(t) & =e^{-10(t-0.03)} \cos \left(100\left(t-\frac{3}{100}\right)\right) u(t-0.03) \\
& =e^{-10(t-0.03)} \cos (100(t-0.03)) u(t-0.03)
\end{aligned}
$$

Using the translation in the frequency domain property, we get

$$
\mathcal{L}\left\{e^{-10 t} \cos (100 t) u(t)\right\}=\frac{s+10}{(s+10)^{2}+10^{4}},
$$

then, using the translation in time domain property, we get

$$
\begin{aligned}
& \mathcal{L}\left\{e^{-10(t-0.03)} \cos (100(t-0.03)) u(t-0.03)\right\} \\
= & \frac{s+10}{(s+10)^{2}+10^{4}} e^{-0.03 s}
\end{aligned}
$$

P1. (4 points) Consider the circuit in figure 1. It is known that $v_{C}\left(0^{-}\right)=10 \mathrm{~V}$. Moreover, the switch has been in position a for a long time before moving to position b at time $t=2$ $m s$.

Figure 1:
1.a) Calculate $v_{C}(t)$ for $0 \leq t \leq 2 \mathrm{~ms}$ (i.e., before the switch moves to position b).
1.b) Calculate $v_{C}(t)$ for $t \geq 2 \mathrm{~ms}$.

Sol.: 1.a) For $0 \leq t \leq 2 \mathrm{~ms}$, we can concentrate on the RC circuit on the left, with $R=1$ $k \Omega$ and $C=2 \mu F$. This has time constant

$$
\tau=R C=2 \mathrm{~ms}
$$

so that we have

$$
v_{C}(t)=v_{C}\left(0^{-}\right) e^{-t / \tau}=10 e^{-500 t}
$$

for $0 \leq t \leq 2 \mathrm{~ms}$.
1.b) For $t \geq 2 \mathrm{~ms}$ we can concentrate on the RLC circuit on the left with $R=1 k \Omega, C=2$ μF and $L=0.5 H$, which is characterized by

$$
\begin{aligned}
\alpha & =\frac{1}{2 R C}=250 \mathrm{rad} / \mathrm{s} \\
\omega_{0} & =\frac{1}{\sqrt{L C}}=1000 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Moreover, the initial conditions are $v_{C}\left(2 \times 10^{-3}\right)=10 e^{-1}=3.67 V$ and $i_{L}\left(2 \times 10^{-3}\right)=50$ $m A$. The latter fact follows from the analysis of the right part of the circuit for $t<2 \mathrm{~ms}$. The circuit operates in the underdamped regime $\left(\omega_{0}>\alpha\right)$ and the solution is given by

$$
\begin{aligned}
v_{C}(t)= & B_{1} e^{-250\left(t-2 \times 10^{-3}\right)} \cos \left(968.2\left(t-2 \times 10^{-3}\right)\right) \\
& +B_{2} e^{-250\left(t-2 \times 10^{-3}\right)} \sin \left(968.2\left(t-2 \times 10^{-3}\right)\right)
\end{aligned}
$$

with damped frequency given by

$$
\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}=968.2 \mathrm{rad} / \mathrm{s}
$$

Imposing the initial conditions, we get:

$$
\begin{aligned}
B_{1} & =3.67 \\
-250 B_{1}+968.2 B_{2} & =-\frac{1}{C}\left(\frac{v_{C}\left(2 \times 10^{-3}\right)}{R}+i_{L}\left(2 \times 10^{-3}\right)\right) \\
& =-\frac{1}{2 \times 10^{-6}}\left(3.67 \times 10^{-3}+50 \times 10^{-3}\right) \\
& \rightarrow B_{2}=\frac{1}{968.2}\left(250 \times 3.67-26.8 \times 10^{3}\right) \\
& =-26.7,
\end{aligned}
$$

Figure 2:
so that

$$
\begin{aligned}
v_{C}(t)= & 3.67 e^{-250\left(t-2 \times 10^{-3}\right)} \cos \left(968.2\left(t-2 \times 10^{-3}\right)\right) \\
& -26.7 e^{-250\left(t-2 \times 10^{-3}\right)} \sin \left(968.2\left(t-2 \times 10^{-3}\right)\right) .
\end{aligned}
$$

P2. (4 points) Consider the circuit in figure 2. The switch has been in position a for a long time before it moves to position b at time $t=0$. The energy stored in the capacitor at time $t=0^{-}$is zero.
2.a) Find initial current $i_{L}\left(0^{-}\right)$and construct an equivalent circuit in the s-domain for $t>0$ (use whatever representation you find more convenient for both inductor and capacitor in the s-domain).
2.b) Find $I_{L}(s)$ and $V_{C}(s)$ (Express all coefficients in numerical form).
2.c) Calculate poles and zeros of $I_{L}(s)$ and $V_{C}(s)$.
2.d) Now substitute the capacitor with a short circuit. Everything else remains the same. Find $I_{L}(s)$ and the time-domain current $i_{L}(t)$ for $t \geq 0$. What is the time constant of the circuit?

Sol.:
2.a) We have

$$
i_{L}\left(0^{-}\right)=\frac{30}{4 \times 10^{3}}=7.5 \mathrm{~mA}
$$

and

$$
v_{C}\left(0^{-}\right)=0 V,
$$

since the circuit is in steady-state for $t=0^{-}$.
An equivalent circuit in the s-domain is shown in figure 3 using the series equivalent for the inductor (the capacitor has zero initial conditions). Notice that the voltage source is $L i_{L}\left(0^{-}\right)=0.5 \times 7.5 \times 10^{-3}=3.75 \times 10^{-3}[V \times \mathrm{sec}]$.
2.b) Using the representation above for the circuit, we find

$$
\begin{aligned}
I_{L}(s) & =\frac{3.75 \times 10^{-3}}{0.5 s+6 \times 10^{3}+\frac{1}{2 s} 10^{6}} \\
& =\frac{7.5 \times 10^{-3} s}{s^{2}+12 \times 10^{3} s+10^{6}}
\end{aligned}
$$

Figure 3:
and

$$
\begin{aligned}
V_{C}(s) & =-\frac{1}{2 s} 10^{6} \times I_{L}(s) \\
& =-\frac{3.75 \times 10^{3}}{s^{2}+12 \times 10^{3} s+10^{6}}
\end{aligned}
$$

2.c) $I_{: L}(s)$ has a zero in $s=0$, unlike $V_{C}(s)$ that has no zeros. The poles are the same for both $I_{L}(s)$ and $V_{C}(s)$, and given by

$$
\begin{aligned}
& s_{1}=-83.9 \\
& s_{2}=-11,916
\end{aligned}
$$

Notice that these are the roots of the characteristic polynomial of the RLC circuit at hand, namely

$$
\begin{aligned}
& s_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}}=-83.9 \\
& s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}=-11,916
\end{aligned}
$$

where $\alpha=\frac{R}{2 L}=6 \times 10^{3}$ and $\omega_{0}=\frac{1}{\sqrt{L C}}=1000$.
d) If there is no capacitor, the circuit for $t \geq 0$ is RL and we have from figure 3

$$
\begin{aligned}
I_{L}(s) & =\frac{3.75 \times 10^{-3}}{0.5 s+6 \times 10^{3}}= \\
& =\frac{7.5 \times 10^{-3}}{s+12 \times 10^{3}}
\end{aligned}
$$

which leads to

$$
i_{L}(t)=7.5 e^{-12000 t} \text { for } t \geq 0
$$

The time constant of the circuit is

$$
\tau=\frac{L}{R}=\frac{1}{12000}=0.08 \mathrm{~ms}
$$

