ECE 232-Circuits and Systems II
 Test 2

Please provide clear and complete answers. Don't forget to specify the units of measure!

Figure 1:
Consider the circuit in figure 1 and assume that there is no energy stored in the circuit elements at time $t=0^{-}$. The switch opens at time $t=0$. The source provides current $i_{s}(t)=10 \cos (1000 t) m A$.
1.a) Find the equivalent circuit in the s-domain and calculate the transfer function between the current input $i_{s}(t)$ and the voltage $v(t)$.

Figure 2:

Sol.: The equivalent circuit is shown in figure 2. The transfer function is given by the impedence of the parallel RLC branches. Therefore, we have

$$
\begin{aligned}
H(s) & =\frac{V(s)}{I_{s}(s)}=\left(2 \times 10^{3}\|2 s\| \frac{1}{50 \times 10^{-9} s}\right) \\
& =\frac{1}{0.5 \times 10^{-3}+\frac{0.5}{s}+50 \times 10^{-9} s} \\
& =\frac{20 \times 10^{6} s}{s^{2}+10^{4} s+10^{7}} .
\end{aligned}
$$

1.b) Find the Laplace transform $V(s)$, calculate and sketch poles and zeros. Which poles correspond to the transient component of the solutions? Which ones to the steady-state?

Sol.: The Laplace transform $V(s)$ is given by

$$
\begin{aligned}
V(s) & =H(s) I_{s}(s) \\
& =\frac{20 \times 10^{6} s}{s^{2}+10^{4} s+10^{7}} \cdot \frac{10 \times 10^{-3} s}{s^{2}+10^{6}}
\end{aligned}
$$

since $I_{s}(s)=\frac{10 \times 10^{-3} s}{s^{2}+10^{6}}$. The poles are given by:

- Source poles: $j 10^{3}$ and $-j 10^{3}$. These contribute to the steady-state component of the solution, which we expect to be a sinusoid with the same frequency ($1000 \mathrm{rad} / \mathrm{s}$) of the input;
- Transfer function poles: $-8,873$ and $-1,127$. These contribute to the transient component of the solution, which we expect to be the sum of two decaying exponentials with time constants $1 / 8,873$ and $1 / 1,127$, respectively.
1.c) Find $v(t)$ and evaluate the expression for $v(t)$ in steady-state.

Sol.: We use the partial fraction expansion method:

$$
V(s)=\frac{K_{1}}{s+8,873}+\frac{K_{2}}{s+1,127}+\frac{K_{3}}{s-j 10^{3}}+\frac{K_{3}^{*}}{s+j 10^{3}} .
$$

We obtain

$$
\begin{aligned}
K_{1} & =\left.\frac{20 \times 10^{6} s}{s+1,127} \cdot \frac{10 \times 10^{-3} s}{s^{2}+10^{6}}\right|_{s=-8,873} \\
& =-25.5 \\
K_{2} & =\left.\frac{20 \times 10^{6} s}{s+8,873} \cdot \frac{10 \times 10^{-3} s}{s^{2}+10^{6}}\right|_{s=-1,127} \\
& =14.45 \\
K_{3} & =\left.\frac{20 \times 10^{6} s}{s^{2}+10^{4} s+10^{7}} \cdot \frac{10 \times 10^{-3} s}{s+j 10^{3}}\right|_{s=j 10^{3}} \\
& =5.52+j 4.97=7.43 e^{j 41.98^{\circ}} .
\end{aligned}
$$

It follows that

$$
v(t)=\left(-25.5 e^{-8,873 t}+14.45 e^{-1,127 t}+14.86 \cos \left(1000 t+41.98^{\circ}\right)\right) u(t)
$$

In steady-state, we have

$$
v(t)=14.86 \cos \left(1000 t+41.98^{\circ}\right) u(t)
$$

1.d) Assume now that $v\left(0^{-}\right)=10 \mathrm{~V}$ and repeat 1.b.

Figure 3:

Sol.: The only difference is that now we have an extra current source in parallel to the capacitor (see figure 3). This source is given as in the figure and equals $I_{s}^{\prime}(s)=C v\left(0^{-}\right)=$ $50 \times 10^{-9} \times 10=50 \times 10^{-8}$. Using the superposition principle, we immediately have

$$
\begin{aligned}
V(s) & =H(s)\left(I_{s}(s)+I_{s}^{\prime}(s)\right) \\
& =\frac{20 \times 10^{6} s}{s^{2}+10^{4} s+10^{7}} \cdot\left(\frac{10 \times 10^{-3} s}{s^{2}+10^{6}}+50 \times 10^{-8}\right) .
\end{aligned}
$$

The poles are given as at point 1.b.
1.e) (Extra) For $v\left(0^{-}\right)=10 \mathrm{~V}$ repeat also 1.c).

Sol.: By the previous point, we have that $v(t)$ is equal to what we calculated at point 1.c) plus the inverse Laplace transform of

$$
\begin{aligned}
H(s) I_{s}^{\prime}(s) & =\frac{20 \times 10^{6} s}{s^{2}+10^{4} s+10^{7}} \cdot 50 \times 10^{-8} \\
& =\frac{K_{1}}{s+8,873}+\frac{K_{2}}{s+1,127}
\end{aligned}
$$

Using partial fraction expansion, we calculate

$$
\begin{aligned}
K_{1} & =\left.\frac{10 s}{s+1,127}\right|_{s=-8,873}=11.45 \\
K_{2} & =\left.\frac{10 s}{s+8,873}\right|_{s=-1,127}=-1.45
\end{aligned}
$$

so that

$$
\begin{aligned}
v(t)= & \left(-25.5 e^{-8,873 t}+14.45 e^{-1,127 t}+14.86 \cos \left(1000 t+41.98^{o}\right)\right. \\
& \left.+11.45 e^{-8,873 t}-1.45 e^{-1,127 t}\right) u(t) \\
= & \left(-14.05 e^{-1,127 t}+13 e^{-8,873 t}+14.86 \cos \left(1000 t+41.98^{\circ}\right)\right) u(t)
\end{aligned}
$$

