ECE 232 - Circuits and Systems II Test 3

Please provide clear and complete answers. Don't forget to specify the units of measure!

1. Consider the circuit in Fig. 1-(a).

1.a. Find the impulse response h(t).

1.b. Find the output voltage $v_O(t)$ when the input is $v_I(t)$ as shown in Fig. 1(b) (and the capacitor has zero energy at time $t = 0^-$). To do so, evaluate the convolution integral $v_O(t) = v_I(t) * h(t)$.

1.c. Sketch the result.

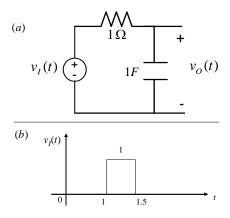


Figure 1:

Sol.: 1.a. The transfer function is

$$H(s) = \frac{1/s}{1+1/s} = \frac{1}{s+1},$$

so that the impulse response is

$$h(t) = e^{-t}u(t).$$

1.b. The input $v_I(t)$ can be written as

$$v_I(t) = rect(t-1),$$

where rect(t) is a rectangle between 0 and 0.5 with height 1. In other words, $v_I(t)$ is a regular rectangle of duration 0.5 delayed by 1. The output $v_O(t)$ can thus be obtained by calculating the convolution

$$rect(t) * h(t)$$

and then delaying the result by 1 by time-invariance ¹. The convolution rect(t) * h(t) is given by:

¹You can also evaluate directly the convolution $v_I(t) * h(t)$ but this approach is easier.

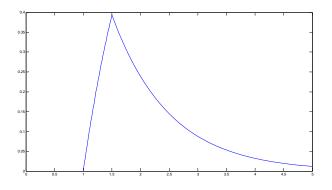


Figure 2:

- If $t \le 0$, rect(t) * h(t) = 0;
- If $0 \le t \le 0.5$

$$rect(t) * h(t) = \int_0^t e^{-\tau} d\tau = 1 - e^{-t};$$

• If $t \ge 0.5$

$$rect(t) * h(t) = \int_{t-0.5}^{t} e^{-\tau} d\tau = e^{-(t-0.5)} - e^{-t}$$
$$= e^{-t} (e^{0.5} - 1).$$

We thus obtain $v_O(t)$ as

• If $t \leq 1$

$$v_O(t) = 0;$$

• If $1 \le t \le 1.5$

$$v_O(t) = 1 - e^{-(t-1)};$$

• If $t \ge 1.5$

$$v_O(t) = e^{-(t-1)}(e^{0.5} - 1).$$

The result is shown in the figure below.

2. Add a resistor with resistance equal to 1Ω in parallel to the capacitor in the circuit of Fig. 1-(a).

2.a. What type of filter do you obtain? What is the cut-off frequency and the maximum amplitude response of this filter?

2.b. (Extra) Calculate and plot the amplitude and phase responses.

Sol.: 2.a. The transfer function is

$$H(s) = \frac{(1||1/s)}{1 + (1||1/s)}$$
$$= \frac{\frac{1/s}{1+1/s}}{1 + \frac{1/s}{1+1/s}}$$
$$= \frac{1}{s+2}.$$

This is a low-pass filter with cut-off frequency $\omega_c = 2$. In fact, it can be written as

$$H(s) = \frac{1}{2} \cdot \frac{2}{s+2},$$

where $\frac{2}{s+2}$ is the standard transfer function of an RC low-pass filter with cut-off frequency $\omega_c = 2$. The maximum amplitude response of the low-pass filter is obtained for zero frequency and is given by 1/2. Notice that the presence of the load resistor has modified both the cut-off frequency and the maximum amplitude response as compared to the original filter in Fig. 1-(a).

2.b. We obtain

$$|H(j\omega)| = \frac{1}{\sqrt{4+\omega^2}}$$

$$\theta(j\omega) = -\angle(2+j\omega).$$