1. MSK.

$$
\begin{aligned}
& \begin{array}{c}
\text { MSG } \\
E_{b}=1 \\
T_{p}=1
\end{array} \quad x_{z, 0}(t)= \begin{cases}e^{j \frac{\pi}{2} t} & \text { for } \quad 0 \leq t \leq T_{p} \\
0 & \text { elsewhere }\end{cases} \\
& X_{z_{1}, 1}(t)= \begin{cases}e^{-j \frac{\pi}{2} t} & \text { fo } 0<t \leq T_{p} \\
0 & \text { elsewhere }\end{cases}
\end{aligned}
$$

a. Using the correlation structure

$$
\begin{aligned}
& V / I\left(T_{p}\right)=\operatorname{Re}\left\{\int_{0}^{T_{p}} Y_{z}(t)\left(e^{i \frac{\pi}{2} t}-e^{-i \frac{\pi}{2} t}\right) \downarrow \downarrow\right\} \\
& 2 j \sin (5 t) \\
& =-2 \int_{0}^{T p} Y_{2}(t) \sin \left(\frac{\pi}{2} t\right) d t \\
& \xrightarrow{K_{z}(t)} \underset{\sim}{I_{m}} \rightarrow \sqrt{\int_{0}^{T \rho} Y_{Q}(t) \sin \left(\frac{t}{2} t\right) d t} \xrightarrow{V_{ \pm}\left(T_{p}\right)} \\
& \gamma=\frac{E_{1}-E_{0}}{2}=0
\end{aligned}
$$

b. $\quad P_{B}(E)=\frac{1}{2} \operatorname{effc}\left(\sqrt{\frac{E_{0}}{2 \pi f_{0}}}\right)=\frac{1}{2} \operatorname{erfc}(\sqrt{5}) \simeq \frac{1}{2 \sqrt{n 5}} e^{-5}$

$$
=8.5 \times 10^{-4}
$$

$$
\text { c. } \begin{aligned}
G_{x_{2,0}}(f) & =E_{b} T_{p} \cdot \operatorname{sinc}\left(\left(f-f_{d}\right) T_{p}\right)=\sin \left(f-\frac{1}{4}\right) \\
G_{x_{z, 1}}(f) & =\sin c\left(f+\frac{1}{4}\right) \\
D_{x_{z}}(f) & =\frac{1}{2} \sin c\left(f-\frac{1}{4}\right)+\frac{1}{2} \operatorname{sinc}\left(f+\frac{1}{4}\right)
\end{aligned}
$$

2.

A is tound by imposing that $E_{5}=2 E_{b}$:

$$
\begin{aligned}
& E_{S}=E_{0}=E_{1}=E_{2}=E_{3}=A^{2} \frac{T_{p}}{4}=2 E_{b} \\
& \Rightarrow A=\sqrt{\frac{8 E_{b}}{T_{p}}}
\end{aligned}
$$

b. The spt demoduletor is wosed on the gikelihood metrics
\Rightarrow Demadulaton.

c. Thesquared Exclideon chstime between any Tro wavefrus is the sauve and epnal

$$
\begin{aligned}
\Delta_{E}(i, j) & =2 A^{2} \frac{T_{p}}{4}=A^{2} \frac{T_{p}}{2}=\frac{8 E_{b}}{T_{p}} \frac{T_{p}}{2} \\
& =4 E_{b}
\end{aligned}
$$

\Rightarrow The conditiocol dstance sfectrue tor all massapes is the same and equal to

$$
A_{d, i}:\left\{4 E_{6}, 3\right\}
$$

d. Union bound:

$$
\begin{aligned}
P_{\text {wub }}(E)= & \frac{1}{4} \cdot 12 \cdot \frac{1}{2} \operatorname{erfc}\left(\sqrt{E_{b}}\right) \\
& H \text { of pairs } \\
& \text { at 山⿱stance } 4 E_{b} \\
= & \frac{3}{2} \operatorname{erfe}\left(\sqrt{\frac{E_{0}}{N_{0}}}\right)
\end{aligned}
$$

3. Ophinal demodulator for B PK:
a.

$$
\begin{aligned}
m_{0} & \left.=2 \sqrt{E_{0} p}\right]_{0}^{T_{p}} x_{I_{1}, a}(t) d t \\
& =2 \sqrt{\frac{E_{0}}{T_{p}} \int_{0}^{T_{p}} \cos \left(\frac{7}{8} \pi\right) \sqrt{E_{b}} \frac{1}{\sqrt{T_{p}}} d t} \\
& =2 E_{b} \cos \left(\frac{7}{8} \pi\right) \\
m_{1} & =2 \sqrt{\frac{E_{b}}{T_{p}}} \int_{0}^{T_{p}} x_{1,1}(t) d t=2 E_{b}
\end{aligned}
$$

b. $\sigma_{N_{I}}^{2}=\frac{N_{0}}{2} \int_{J_{0}}^{T_{p}}|h(t)|^{2} d t=\frac{N_{0}}{2} \cdot K \frac{E_{b}}{T_{p}} T_{p}=2 E_{b} N_{0}$

$$
h(t)= \begin{cases}2 \sqrt{\frac{E}{T_{\rho}}} & 0 \leq t \leq T_{p} \\ 0 & \text { otherwise }\end{cases}
$$

c. $\quad P_{B}(E)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\left(m_{1}-m_{0}\right)^{2}}{8 \sigma_{N_{I}}^{2}}}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\left(2 E_{b}\left(1-\cos \frac{7}{8} \pi\right)\right)^{2}}{8\left(2 E_{b} N_{0}\right)}}\right) \\
& =\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{b}\left(1-\cos \frac{7}{8}\right)^{2}}{4 N_{0}}}\right)
\end{aligned}
$$

d. With Bisk, we have $P_{B}(E)=\frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_{0}}{N_{0}}}\right)$

$$
\Rightarrow \operatorname{los} 5=-10 \log _{10}\left(\frac{\left(1-\cos \left(\frac{1}{5} \pi\right)\right)^{2}}{4}\right)=0.337 \mathrm{~dB}
$$

4. a. We need to uupase that

$$
\begin{aligned}
& \frac{1}{16} \sum_{i=0}^{15}\left(\left.d i\right|^{2}=4\right. \\
\Rightarrow & \frac{1}{10}\left(4 \frac{A^{2}}{2}+4 \frac{9}{2} A^{2}+8\left(\frac{A^{2}}{4}+\frac{9}{4} A^{2}\right)\right) \\
= & \frac{5}{2} A^{2}=4 \Rightarrow A=2 \sqrt{\frac{2}{5}}
\end{aligned}
$$

b. Minimum distarece

$$
\Delta_{t}(\text { min })=E_{b} A^{2}=\frac{8 E_{b}}{5}
$$

\Rightarrow Union bund approximation

$$
\begin{aligned}
P_{w}(E) & =\frac{1}{16^{\circ}}(4.2+8.3+4.4) \operatorname{erfc}\left(\sqrt{\frac{8 E_{b}}{20 N_{0}}}\right) \\
& =\frac{3}{2} \operatorname{erfc}\left(\sqrt{\frac{2 E b}{5 N_{0}}}\right)
\end{aligned}
$$

